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Learning

This supplementary document presents the full proofs of technical results presented in the main text. It also
provides the details of our configurations for numerical experiments in Section 5.

A Convergence Analysis

We note that the original idea of using hybrid estimators has been proposed in our working paper (Tran-Dinh
et al., 2019b). In this work, we have extended this idea as well as the proof techniques for stochastic optimization
in Tran-Dinh et al. (2019b) into reinforcement learning settings. We now provide the full analysis of Algorithm 1
and 2. We first prove a key property of our new hybrid estimator for the policy gradient ∇J(θ). Then, we
provide the proof of Theorem 4.1 and Corollary 4.1.

A.1 Proof of Lemma 4.1: Bound on the Variance of the Hybrid SPG Estimator

Part of this proof comes from the proof of Lemma 1 in Tran-Dinh et al. (2019b). Let EB,B̂ [·] := Eτ,τ̂∼pθt [·] be

the total expectation. Using the independence of τ and τ̂ , taking the total expectation on (4), we obtain

EB,B̂ [vt] = βvt−1 + β [∇J(θt)−∇J(θt−1)] + (1− β)∇J(θt)

= ∇J(θt) + β [vt−1 −∇J(θt−1] ,

which is the same as (5).

To prove (6), we first define ut := 1
B

∑
τ̂∈B̂t

g(τ̂ |θt) and ∆ut := ut −∇J(θt). We have

‖∆vt‖2 = β2‖∆vt−1‖2 + β2

B2

∥∥∥∥∥∑
τ∈Bt

∆g(τ |θt)

∥∥∥∥∥
2

+ (1− β)2‖∆ut‖2 + β2‖∇J(θt−1)−∇J(θt)‖2

+ 2β2

B

∑
τ∈Bt

(∆vt−1)>[∆g(τ |θt)] + 2β2(∆vt−1)>[∇J(θt−1)−∇J(θt)]

+2β(1− β)(∆vt−1)>[ut −∇J(θt)] + 2β(1−β)
B

∑
τ∈Bt

[∆g(τ |θt)]>(∆ut)

+ 2β2

B

∑
τ∈Bt

(∆g(τ |θt))>[∇J(θt−1)−∇J(θt)] + 2β(1− β)(∆ut)
>[∇J(θt−1)−∇J(θt)].

Taking the total expectation and note that EB̂ [ut] := Eτ̂∼pθt [ut] = ∇J(θt) and EB̂
[
‖ut −∇J(θt)‖2

]
≤

1
B2

∑
τ̂∈B̂

E
[
‖g(τ̂ |θt)− E [g(τ̂ |θt)] ‖2

]
= σ2

B , we get

EB,B̂
[
‖∆vt‖2

]
= β2‖∆vt−1‖2 + β2

B2EB
[∥∥∥∑

τ∈Bt
∆g(τ |θt)

∥∥∥2
]

+ (1− β)2EB̂
[
‖∆ut‖2

]
−β2‖∇J(θt−1)−∇J(θt)‖2

≤ β2‖∆vt−1‖2 + β2

B2

∑
τ∈Bt

EB
[
‖∆g(τ |θt)‖2

]
− β2‖∇J(θt−1)−∇J(θt)‖2

+ (1−β)2σ2

B

≤ β2‖∆vt−1‖2 + β2

B2

∑
τ∈Bt

EB
[
‖∆g(τ |θt)‖2

]
+ (1−β)2

B σ2,

(10)

where the first inequality comes from the triangle inequality then we ignore the non-negative terms to arrive at
the second inequality.

Additionally, Lemma 6.1 in Xu et al. (2019a) shows that

Var [ω(τ |θt, θt−1)] ≤ Cω ‖θt − θt−1‖2 , (11)
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where Cω := H(2HG2 +M)(W + 1).

Using (11) we have

EB
[
‖∆g(τ |θt)‖2

]
= EB

[
‖g(τ |θt)− ω(τ |θt, θt−1)g(τ |θt−1)‖2

]
= EB

[
‖[1− ω(τ |θt, θt−1)]g(τ |θt−1) + (g(τ |θt)− g(τ |θt−1)‖2

]
≤ EB

[
‖[1− ω(τ |θt, θt−1)]g(τ |θt−1)‖2

]
+ EB

[
‖g(τ |θt)− g(τ |θt−1)‖2

]
(?)

≤ C2
gEB

[
‖1− ω(τ |θt, θt−1)‖2

]
+ L2

g ‖θt − θt−1‖2

(??)
= C2

gVar [ω(τ |θt, θt−1)] + L2
g ‖θt − θt−1‖2

(11)

≤
(
C2
gCω + L2

g

)
‖θt − θt−1‖2 ,

where Lg := HM(R+|b|)
(1−γ) , Cg := HG(R+|b|)

(1−γ) , and b is a baseline reward. Here, (?) comes from Lemma 3.1 and (??)

is from Lemma 1 in Cortes et al. (2010).

Plugging the last estimate into (10) yields

EB,B̂
[
‖∆vt‖2

]
≤ β2‖∆vt−1‖2 +

β2(C2
gCω + L2

g)

B
‖θt − θt−1‖2 +

(1− β)2

B
σ2, (12)

which is (6), where C := C2
gCω + L2

g. �

A.2 Proof of Lemma 4.2: Key Estimate of Algorithm 1

Similar to the proof of Lemma 5 in Tran-Dinh et al. (2019b) , from the update in Algorithm 1, we have

θt+1 = (1 − γ)θt + γθ̂t+1, which leads to θt+1 − θt = γ(θ̂t+1 − θt). Combining this expression and the L-
smoothness of J(θ) in Lemma 3.1, we have

J(θt+1) ≥ J(θt) + [∇J(θt)]
>

(θt+1 − θt)− L
2 ‖θt+1 − θt‖2

= J(θt) + α [∇J(θt)]
>

(θ̂t+1 − θt)− Lα2

2 ‖θ̂t+1 − θt‖2.
(13)

From the convexity of Q, we have

Q(θt+1) ≤ (1− α)Q(θt) + αQ(θ̂t+1) ≤ Q(θt) + α∇Q(θ̂t+1)>(θ̂t+1 − θt), (14)

where ∇Q(θ̂t+1) is a subgradient of Q at θ̂t+1.

By the optimality condition of θ̂t+1 = proxηQ(θt+ ηvt), we can show that ∇Q(θ̂t+1) = vt− 1
η (θ̂t+1− θt) for some

∇Q(θ̂t+1) ∈ ∂Q(θ̂t+1) where ∂Q is the subdifferential of Q at θ̂t+1. Plugging this into (14), we get

Q(θt+1) ≤ Q(θt) + αv>t (θ̂t+1 − θt)−
α

η
‖θ̂t+1 − θt‖2. (15)

Subtracting (15) from (13), we obtain

F (θt+1) ≥ F (θt) + α [∇J(θt)− vt]> (θ̂t+1 − θt) +
(
α
η −

Lα2

2

)
‖θ̂t+1 − θt‖2

= F (θt)− α [vt −∇J(θt)]
>

(θ̂t+1 − θt) +
(
α
η −

Lα2

2

)
‖θ̂t+1 − θt‖.

(16)

Using the fact that

[vt −∇J(θt)]
>

(θ̂t+1 − θt) = 1
2 ‖vt −∇J(θt)‖2 + 1

2‖θ̂t+1 − θt‖2

− 1
2‖vt −∇J(θt)− (θ̂t+1 − θt)‖2,
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and ignoring the non-negative term 1
2‖vt −∇J(θt)− (θ̂t+1 − θt)‖2, we can rewrite (16) as

F (θt+1) ≥ F (θt)−
α

2
‖∇J(θt)− vt‖2 +

(
α

η
− Lα2

2
− α

2

)
‖θ̂t+1 − θt‖2.

Taking the total expectation over the entire history Ft+1, we obtain

E [F (θt+1)] ≥ E [F (θt)]−
α

2
E
[
‖∇J(θt)− vt‖2

]
+

(
α

η
− Lα2

2
− α

2

)
E
[
‖θ̂t+1 − θt‖2

]
. (17)

From the definition of the gradient mapping (3), we have

η‖Gη(θt)‖ = ‖proxηQ(θt + η∇J(θt))− θt‖.

Applying the triangle inequality, we can derive

η ‖Gη(θt)‖ ≤ ‖θ̂t+1 − θt‖+ ‖proxηQ(θt + η∇J(θt))− θ̂t+1‖

= ‖θ̂t+1 − θt‖+ ‖proxηQ(θt + η∇J(θt))− proxηQ(θt + ηvt)‖

≤ ‖θ̂t+1 − θt‖+ η‖vt −∇J(θt)‖.

Taking the full expectation over the entire history Ft+1 yields

η2E [Gη(θt)]
2 ≤ 2E

[
‖θ̂t+1 − θt‖2

]
+ 2η2E

[
‖vt −∇J(θt)‖2

]
.

Multiply this inequality by −α2 and add to (17), we arrive at

E [F (θt+1)] ≥ E [F (θt)] + η2α
2 E

[
‖Gη(θt)‖2

]
− α

2

(
1 + 2η2

)
E
[
‖vt −∇J(θt)‖2

]
+ α

2

(
2
η − Lα− 3

)
E
[
‖θ̂t+1 − θt‖2

]
,

which can be rewritten as

E [F (θt+1)] ≥ E [F (θt)] + η2α
2 E

[
‖Gη(θt)‖2

]
− ξ

2E
[
‖vt −∇J(θt)‖2

]
+ ζ

2E
[
‖θ̂t+1 − θt‖2

]
,

where ξ := α(1 + 2η2) and ζ := α
(

2
η − Lα− 3

)
which is exactly (7). �

A.3 Proof of Theorem 4.1: Key Bound on the Gradient Mapping

Firstly, using the identity θt+1 − θt = γ(θ̂t+1 − θt), taking the total expectation over the entire history Ft+1, we
can rewrite (6) as

E
[
‖vt+1 −∇J(θt+1)‖2

]
≤ β2E

[
‖vt −∇J(θt)‖2

]
+ β2C

B E
[
‖θt+1 − θt‖2

]
+ (1−β)2

B σ2

= β2E
[
‖vt −∇J(θt)‖2

]
+ β2Cα2

B E
[
‖θ̂t+1 − θt‖2

]
+ (1−β)2

B σ2.
(18)

Multiply (18) by −κ
2

for some κ > 0, then add to (7), we have

E [F (θt+1)]− κ
2E
[
‖vt+1 −∇J(θt+1)‖2

]
≥ E [F (θt)]− (κβ2+ξ)

2 E
[
‖vt −∇J(θt)‖2

]
+ η2α

2 E
[
‖Gη(θt)‖2

]
+ 1

2

(
ζ − κβ2Cα2

B

)
E
[
‖θ̂t+1 − θt‖2

]
−κ(1−β2)σ2

2B

= E [F (θt)]− κ
2E
[
‖vt −∇J(θt)‖2

]
+ η2α

2 E
[
‖Gη(θt)‖2

]
− [ξ−κ(1−β2)]

2 E
[
‖vt −∇J(θt)‖2

]
+ 1

2

(
ζ − κβ2Cα2

B

)
E
[
‖θ̂t+1 − θt‖2

]
− κ(1−β2)σ2

2B .



Pham, Nguyen, Phan, Nguyen, van Dijk, Tran-Dinh

Let us define F (θt) := E [F (θt)]− κ
2E
[
‖vt −∇J(θt+1)‖2

]
. Then, the last inequality can be written as

F (θt+1) ≥ F (θt) + η2α
2 E

[
‖Gη(θt)‖2

]
− [ξ−κ(1−β2)]

2 E
[
‖vt −∇J(θt)‖2

]
−κ(1−β2)σ2

2B + 1
2

(
ζ − κβ2Cα2

B

)
E
[
‖θ̂t+1 − θt‖2

]
.

(19)

Suppose that η, α, β are chosen such that

2

η
− Lα− 3 ≥ κβ2Cα

B
> 0 and α(1 + 2η2) ≤ κ(1− β2). (20)

Then, we have ζ ≥ κβ2Cα2

B
and ξ ≤ κ(1− β2). By ignoring the non-negative terms in (19), we can rewrite it as

F (θt+1) ≥ F (θt) +
η2α

2
E
[
‖Gη(θt)‖2

]
− κ(1− β2)σ2

2B
.

Summing the above inequality for t = 0, · · · ,m, we obtain

F (θm+1) ≥ F (θ0) +
η2α

2

∑m

t=0
E
[
‖Gη(θt)‖2

]
− κ(m+ 1)(1− β2)σ2

2B
. (21)

Rearranging terms and multiply both sides by
2

η2α
, (21) becomes

∑m

t=0
E
[
‖Gη(θt)‖2

]
≤ 2

η2α

[
F (θm+1)− F (θ0)

]
+
κ(m+ 1)(1− β2)σ2

η2αB
. (22)

Note that

F (θ0) = F (θ0)− κ

2
E
[
‖v0 −∇J(θ0)‖2

]
≥ F (θ0)− κσ2

2N
,

and F (θm+1) = F (θm+1)− κ
2E
[
‖vm+1 −∇J(θm+1)‖2

]
≤ F (θm+1). Using these estimate in (22), we obtain∑m

t=0
E
[
‖Gη(θt)‖2

]
≤ 2

η2α
[F (θm+1)− F (θ0)] +

κσ2

η2αN
+
κ(m+ 1)(1− β2)σ2

η2αB

=
2

η2α
[F (θm+1)− F (θ0)] +

(m+ 1)κσ2

η2α

[
1

N(m+ 1)
+

(1− β2)

B

]
.

Multiplying both sides by 1
m+1 , we have

1

m+ 1

∑m

t=0
E
[
‖Gη(θt)‖2

]
≤ 2

η2α(m+ 1)
[F (θm+1)− F (θ0)] +

κσ2

η2α

[
1

N(m+ 1)
+

(1− β2)

B

]
. (23)

Now we choose β := 1−
√
B√

N(m+1)
so that the right-hand side of (23) is minimized. Note that if 1 ≤ B ≤ N(m+1),

then β ∈ [0, 1).

Let us choose η := 2
4+Lα ≤

1
2 which means ζ := 2

η − Lα − 3 = 1. We can satisfy the first condition of (20) by

choosing 0 < α ≤ B
κC

.

Besides, the second condition in (20) holds if 0 < α ≤ κ(1−β2)
1+2η2 . Since we have η ≤ 1

2 which leads to 1 + 2η2 ≤ 3
2

and using 1− β2 ≥ 1− β = B1/2

N1/2(m+1)1/2
we derive the condition for α as

0 < α ≤ 2κ
√
B

3
√
N(m+ 1)

.

Therefore, the overall condition for α is given as

0 < α ≤ min

{
1,

B

κC
,

2κ
√
B

3
√
N(m+ 1)

}
.
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If we choose κ :=
√

3[NB(m+1)]1/4√
2C

, then we can update α as

α :=
ĉ
√

2B3/4

√
3C[N(m+ 1)]1/4

. (24)

Using 1 ≤ B ≤ N(m+ 1), we can bound α ≤ ĉ
√

2B
3C

then we can choose ĉ ∈
(

0,

√
3C
2B

]
so that γ ∈ (0, 1].

With all the choices of β, η, α, and κ above, if we let the output θ̃T be selected uniformly at random from
{θt}mt=0, then we have

E
[
‖Gη(θ̃T )‖2

]
=

1

m+ 1

∑m

t=0
E
[
‖Gη(θt)‖2

]
≤

√
3CN1/4

η2ĉ
√

2[B(m+ 1)]3/4
[F (θm+1)− F (θ0)] +

3σ2

η2[BN(m+ 1)]1/2
.

(25)

Note that η = 2
4+Lα and since α ≤ 1 we have 1

η2 ≤
(4+L)2

4 . Plugging these into (25), we obtain

E
[
‖Gη(θ̃T )‖2

]
=

1

m+ 1

∑m

t=0
E
[
‖Gη(θt)‖2

]
≤ (4 + L)2

√
3CN1/4

4ĉ
√

2[B(m+ 1)]3/4
[F (θm+1)− F (θ0)] +

3(4 + L)2σ2

4[BN(m+ 1)]1/2

≤ (4 + L)2
√

3CN1/4

4ĉ
√

2[B(m+ 1)]3/4
[F ∗ − F (θ0)] +

3(4 + L)2σ2

4[BN(m+ 1)]1/2
,

(26)

where we use the fact that F (θm+1) ≤ F ∗. �

A.4 Proof of Corollary 4.1: Trajectory Complexity Bound of Algorithm 1 and Algorithm 2

If we fix a batch size B ∈ N+ and choose N := c̃σ8/3 [B(m+ 1)]
1/3

for some c̃ > 0, (26) is equivalent to

E
[
‖Gη(θ̃T )‖2

]
≤ (4 + L)2

√
3Cc̃1/4σ2/3

4ĉ
√

2[B(m+ 1)]2/3

[
F ∗ − F (θ

(0)
)
]

+
3(4 + L)2σ2/3

4c̃1/2[B(m+ 1)]2/3

=

[
(4 + L)2

√
3Cc̃1/4

4ĉ
√

2

[
F ∗ − F (θ

(0)
)
]

+
3(4 + L)2

4c̃1/2

]
σ2/3

[B(m+1)]2/3

=
Ψ0σ

2/3

[B(m+ 1)]2/3
,

where we define

Ψ0 :=

[
(4 + L)2

√
3Cc̃1/4

4ĉ
√

2

[
F ∗ − F (θ

(0)
)
]

+
3(4 + L)2

4c̃1/2

]
. (27)

Therefore, for any ε > 0, to guarantee E
[
‖Gη(θ̃T )‖2

]
≤ ε2, we need Ψ0σ

2/3

[B(m+1)]2/3
= ε2 which leads to the total

number of iterations

T = m+ 1 =
Ψ

3/2
0 σ

Bε3
= O

(
1

ε3

)
.

The total number of proximal operations proxηQ is also O
(

1
ε3

)
. In addition, the total number of trajectories is

at most
N + 2B(m+ 1) = c̃σ8/3 [B(m+ 1)]

1/3
+

2Ψ0σ

ε3

= c̃σ8/3 Ψ
1/3
0 σ1/3

ε
+

2Ψ0σ

ε3

= O
(

1

ε
+

1

ε3

)
= O

(
1

ε3

)
.
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This proves our the complexity of Algorithm 1.

Next, let us denote the superscript (s) when the current stage is s for s = 0, · · · , S − 1. Note that from the first
inequality of (26), for any stage s = 0, . . . , S − 1, the following holds

1

m+ 1

∑m

t=0
E
[
‖Gη(θ

(s)
t )‖2

]
≤ (4 + L)2

√
3CN1/4

4ĉ
√

2[B(m+ 1)]3/4

[
F (θ

(s)
m+1)− F (θ

(s)
0 )
]

+
3(4 + L)2σ2

4[BN(m+ 1)]1/2
.

Summing for s = 0, · · · , S − 1 and multiply both sides by
1

S
yields

1
S(m+1)

∑S−1

s=0

∑m

t=0
E
[
‖Gη(θ

(s)
t )‖2

]
≤ (4+L)2

√
3CN1/4

4ĉ
√

2[B(m+1)]3/4S

[
F (θ

(S−1)
m+1 )− F (θ

(0)
0 )
]

+ 3(4+L)2σ2

4[BN(m+1)]1/2S

≤ (4+L)2
√

3CN1/4

4ĉ
√

2[B(m+1)]3/4S

[
F ∗ − F (θ

(0)
0 )
]

+ 3(4+L)2σ2

4[BN(m+1)]1/2S
,

(28)

where we use F (θ
(S−1)
m+1 ) ≤ F ∗ again.

If we also fix a batch size B ∈ N+ and choose N := c̃σ8/3 [B(m+ 1)]
1/3

for some c̃ > 0, and select θ̃T uniformly

random from {θ(s)
t }

s=1,··· ,S
t=0,··· ,m, then, similar to (A.4), (28) can be written as

E
[
‖Gη(θ̃T )‖2

]
=

1

S(m+ 1)

∑S−1

s=0

∑m

t=0
E
[
‖Gη(θ

(s)
t )‖2

]
≤ (4 + L)2

√
3Cc̃1/4σ2/3

4ĉ
√

2[B(m+ 1)]2/3S

[
F ∗ − F (θ

(0)
0 )
]

+
3(4 + L)2σ2/3

4c̃1/2[B(m+ 1)]2/3S

=

[
(4 + L)2

√
3Cc̃1/4

4ĉ
√

2

[
F ∗ − F (θ

(0)
0 )
]

+
3(4 + L)2

4c̃1/2

]
σ2/3

[B(m+ 1)]2/3S

≤ Ψ0σ
2/3

[SB(m+ 1)]2/3
,

where we use Ψ0 defined in (27) and 1
S ≤

1
S2/3 for any S ≥ 1.

Therefore, to guarantee E
[
‖Gη(θ̃T )‖2

]
≤ ε2 for any ε > 0, we need Ψ0σ

2/3

[SB(m+1)]2/3
= ε2 which leads to the total

number of iterations

T = S(m+ 1) =
Ψ

3/2
0 σ

Bε3
= O

(
1

ε3

)
.

The total number of proximal operations proxηQ is also O
(

1
ε3

)
. In addition, the total number of trajectories is

at most
S [N + 2B(m+ 1)] = S

[
c̃σ8/3 [B(m+ 1)]

1/3
+

2Ψ0σ

ε3

]
= S

[
c̃σ8/3 Ψ

1/3
0 σ1/3

ε
+

2Ψ0σ

ε3

]

= O
(

1

ε
+

1

ε3

)
= O

(
1

ε3

)
, for any S ≥ 1.

Hence, we obtain the conclusion of Corollary 4.1. �

B Configurations of Algorithms in Section 5

Let us describe in detail the configuration of our experiments in Section 5. We set β := 0.99 for HSPGA
and α := 0.99 for ProxHSPGA in all experiments. To choose the learning rate, we conduct a grid search
over different choices. For Acrobot-v1, Cart pole-v0, and Mountain Car-v0 environments, we use the grid
containing {0.0005, 0.001, 0.0025, 0.005, 0.0075, 0.01}. Meanwhile, we use {0.0005, 0.00075, 0.001, 0.0025, 0.005}
for the remaining environments. The snapshot batch-sizes are also chosen from {10, 25, 50, 100} while the mini-
batch sizes are selected from {3, 5, 10, 15, 20, 25}. More details about the selected parameters for each experiment
are shown in Table 2.
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Table 2: The configuration of different algorithms on discrete and continuous control environments

Environment Algorithm
Policy Discount Trajectory Minibatch Snapshot Learning Epoch

Network Factor γ Length H Size Batchsize Rate Length m

CartPole-v0

GPOMDP

4× 8× 2 0.99 200

10 10−3

SVRPG 10 25 5× 10−3 3

HSPGA 5 25 5× 10−3 3

Acrobot-v1

GPOMDP

6× 16× 3 0.999 500

10 2.5× 10−3

SVRPG 5 10 5× 10−3 3

HSPGA 3 10 5× 10−3 3

MoutainCar-v0

GPOMDP

2× 8× 1 0.999 1000

25 5× 10−3

SVRPG 10 50 7.5× 10−3 3

HSPGA 5 50 7.5× 10−3 3

RoboschoolInvertedPendulum-v1

GPOMDP

5× 16× 1 0.999 1000

20 7.5× 10−4

SVRPG 10 50 10−3 3

HSPGA 5 50 10−3 3

ProxHSPGA 5 50 10−3 3

Swimmer-v2

GPOMDP

8× 32× 32× 2 0.99 500

50 5× 10−4

SVRPG 5 50 5× 10−4 3

HSPGA 5 50 5× 10−4 3

ProxHSPGA 5 50 5× 10−4 3

Hopper-v2

GPOMDP

11× 32× 32× 3 0.99 500

50 5× 10−4

SVRPG 5 50 5× 10−4 3

HSPGA 5 50 5× 10−4 3

ProxHSPGA 5 50 5× 10−4 3

Walker2d-v2

GPOMDP

17× 32× 32× 6 0.99 500

50 5× 10−4

SVRPG 5 50 5× 10−4 3

HSPGA 5 50 5× 10−4 3

ProxHSPGA 5 50 5× 10−4 3

C Additional Numerical Results

Due to space limit in the main text, we show here another evidence on the effect of regularizers to policy
optimization problems by carrying out an additional example on other continuous control tasks in Mujoco. The
results are presented in Figure 5.
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Figure 5: The performance of 4 algorithms on the composite vs. the non-composite settings using several Mujoco
environments.

Again, Figure 5 still reveals the benefit of adding a regularizer, which potentially gains more reward than without
using regularizer. We believe that the choice of regularizer is also critical and may lead to different performance.
We refer to (Liu et al., 2019) for more evidence of using regularizers in reinforcement learning.


