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Supplementary Material: Sparse Hilbert—Schmidt Independence
Criterion Regression

A Asymptotics for U-statistics

U-statistics aim at estimating a parameter, say 0, based on the sample X1, --,X,,. Let us denote by ¥(.) a
symmetric kernel that will enter in the U-statistic, which is defined as follows.

Definition. Given a real-valued measurable kernel ¢ (.), which is of degreee r and symmetric in its argument,

for a sample X1,---, X, of size n > r, then a U-statistic with kernel 1)(.) is defined as
1
Un = 7o > Xy Xi,), (6)
()&=
where the summation is over the set C, , of all (Z) combinations of r integers iy < --- < 4, chosen from

{1’... ’n}.

Note that this definition concerns the particular case of symmetric kernel. Should the kernel be non-symmetric,
then the U-statistic would be defined as

1
Un = — Xl 5 ... )XZ 5
(n)r ;d}( 1 r)
where (n), = (n%'r), is the Pochhammer symbol and ¢ is the index set, which is the set of all r-tuples drawn
without replacement from {1,--- ,n}.

When deriving the asymptotic distribution of U-statistic based estimator, the variance and covariance of
U-statistics are key quantities entering the asymptotic variance covariance matrix. For a given parame-
ter # and corresponding symmetric kernel t(zq,---,x,), we consider the class of distribution F so that
Var(¢ (X1, -+, Xp)) < oo. We then define

1/1r(9€17 Tt 71.7“) = EXT+1,~~ Xn [w(xh o, Ty X’r‘+17 e 7Xn)]a
where X, 11, -+, X, are i.i.d. random variables. Then ¥y = 6, ¥, (x1,- - ,z,) = ¥(x1, - ,x,) and
vr, Bl (X, -, X,)] = 0.

Then to define the variance of the U-statistic, denote by 02 = Var(¢, (X1, -+, X,)).

Theorem A.l. Variance of a U-statistic, (Serfling, 1980)
The variance of a U-statistic given by Eq. (6) is

wien=(7) )02 ”

Theorem A.2. Asymptotic distribution of a U-statistic, (Serfling, 1980)
If Var(v(X1, -+, X)) < 0o and 02 > 0, then

VU, —0) -5 Ni(0,r207)

n— oo
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Remark. The asymptotic distribution depends on whether o? > 0, in which case we obtain a normal distribu-
tion, or 0?2 = 0, in which case the asymptotic law is an infinite linear combination of x?(1) distributions.

Theorem A.3. Covariance of U-statistics, (Serfling, 1980)

Let Uf(lk) and UT(LZ) be two U-statistics based on the same sample X = (X1,---,X,,), respectively equipped with
kernel vy and v, of degree ri, 1y, respectively (ry, < r;). Then the covariance is

—1 rg
& Oy " TN (T o
cov(UY UL (Tk) Z(s) (Tk B s) oz, (8)

s=1

where )
o; = cov(BEx, . x, [Wr(@r, o 2e, Xopr, o, X)),
Ex, iy x, (@, o, Xogr, o, X))
Theorem A.4. Multivariate asymptotic distribution, (Hoeffding, 1948)
Let (U,Sk)), k=1,---,d be a sequence of U-statistics, with mean U¥) and kernel v*) of degreee ry,. Let U,, =
(UT(,,l), I ,ﬁf”)T and U = (UM ... UD)T both d-dimensional vectors. If Yk < d,Var(®) (X1, , X,,)) <
0o, then

Vi(U, =U) =5 Nga(0, ),

where Xk, k < d (resp. Ty, k <1<d) is given by Eq. (7) (resp. Eq. (8)).

Theorem A.5. Uniform Law of Large Numbers, (Yeo and Johnson, 2001)
Let © C RY a compact set and consider the kernel

1
Un(0) = me(Xil,--- ,Xi,30),
T CnT

where 6 € ©. Let
1 S] S r?@j(xla"' 737]70) :EXj+1,-~~,Xk[w(xl7"' 7xj7Xj+17"' ,Xk70)],

and assume

(i) there is an integrable and symmetric kernel g(.) such thatV0 € © andvVX = (x1, - ,x,) € R™P |i(x;0)] <

9(),
o0
(i1) there is a sequence S%; of measurable sets such that P(R™*P — | J S%,) =0,
r=1
(i11) for each M and Vj < r, ¥j(x1,--- ,x;;0) is equicontinuous in 0 for (x1,---,x;) € th, where S}, =
Sy xSy,
then

sup|Un (0) — E[¢:(X;0)]] — 0.
96@ n— 00

In this Supplementary material, we report some technical results we relied on to derive the asymptotic distribu-
tions

B Large sample distribution

We used the convezity argument to derive the asymptotic distribution in the Lasso case. (Chernozhukov and
Hong, 2004), (Chernozhukov, 2005) use this convexity argument to obtain the asymptotic distribution of quantile
regression type estimators. This argument relies on the convexity Lemma, which is a key result to obtain an
asymptotic distribution when the objective function is not differentiable. It only requires the lower-semicontinuity
and convexity of the empirical criterion. The convexity Lemma, as in (Chernozhukov, 2005), proof of Theorem
4.1, can be stated as follows.
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Lemma B.1. Convexity Lemma, (Chernozhukov, 2005)

Suppose

(i) a sequence of convex lower-semicontinuous Fr : RY — R marginally converges to Foo : R — R over a dense
subset of R?;

(ii) Foo is finite over a nonempty open set E C R?;

(iti) Foo is uniquely minimized at a random vector U .

Then

. d . . d
argmin F,, (z) — argmin F(2), that is Uy, — Uo.
ZeR4 ZeRd

As for the SCAD and MCP, due to the non-convexity of the penalty function, we used Lemma 3 of (Umezu
et al., 2018), which generalises Lemma 2 of (Hjort and Pollard, 1993) to the case of convex non-penalized loss
functions with non-convex penalties. Lemma 2 of (Hjort and Pollard, 1993) allows for deriving consistency and
asymptotic normality of estimators that are defined by minimisation of convex criterion functions.

Lemma B.2. (Umezu et al., 2018)

Suppose that G, (u) is a strictly convex random function that is approximated by @n(u) Let u be a subvector of
u, and let {(u) and n(w) be continuous functions such that ¢, (w) and n, (@) converge to ((u) and n(w) uniformly
over u and @ in any compact set, respectively, and assume that {(u) is convex and n(0) = 0. In addition, for

vn(u) = Gy (u) + Gu(u) +nn(@), and vy (u) = Gy (u) + ((u) +n(a),

let w,, and 1, be the argmin of v, (u) and v, (u), respectively, and assume that @, is unique and w, = 0. Then,
for any e > 0,8 > 0,u > 6, there exists v > 0 such that

P(llun — @nl| > 0) <P(2A,(0) + € > T (0)) + P([lun — wnll = p) + P([|@n] =),
where
A, (0) = sup  |vp(u) — op(u)|, To(0) = inf |7 (w) — D ()]

U U—Tn || <5 U U—Wn || =6

Finally, for the large sample distribution of the Bridge penalized estimator, we relied on Theorem 2.7 of (Kim
and Pollard, 1990).

Theorem B.3. (Kim and Pollard, 1990)
Let {F,,} be a random function into the space of all locally bounded real functions on R%, and w,, random mapps
into R? such that

(i) Fp %, Q for a Borel measure Q concentrated on Crax (R
(1) un = Op(1);

(i11) Fr(uy) > sup {F,(u)} — v, for random variables (o) of order op(1).
u

Then u, — argmax {F(u)} for a F(u) with distribution Q.
u

C Proofs
Proof of Proposition 4.1
Proof. We first expand the V-statistic based quantity
n d 9
L.(Z, - ,Z,;0) = # > ((HnLHn)ij — Zﬁk(HnL’)“(Hn)ij)
i,j=1 k=1

— d d -
= HSIC(Y,Y) — 2> 0,HSIC(X® V) 4+ 3 6,0, HSIC(X*), x1V)
k=1 k=1

!See their page 195 for a definition of this set
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where H/SI\C(Y7 Y') is the empirical estimator of HSIC(Y,Y) given in Eq. (2). Then using Theorem 3 of (Song

et al., 2012), which enables to write the estimator of HSIC(Y, X) as a U-statistic, we have H/SE(Y, Y) can be
rewritten as

(4,4,9,m)
— 1
HSIC(Y,Y) = o > ha(igig.r), with hi(i,5,¢.7) = Y La(Lst + Luw — 2Lsu),
4 (4,5,9,r) €L} (s,t,u,v)

where the sum represents all ordered quadruples (s, t, u, v) selected without replacement from (4, j, ¢, ). In the
same manner, denoting K¥ = 1/)(X§k), Xt(k))7 we have for any k,1 < d

HsIC (i,4,9,7)
HSIC(X(’C), Y) = ﬁ Z ha(i,73,q,7), ho(i,j,q,7) = 4l Z Kft(ng + LZv . 2L}efu)v
(g.qr)ely (s,t,u,v)
e (3,4,q,7)
HSIC(X(k),X(l)) = ﬁ Z hg(i,j,q,r), hg(i,j,q,r) = % Z Kft(Kl Kiv 72Kiu)-
(4,4,q,m) €I} (s,t,u,v)
Thus, plugging these U-statistic based estimators of HSIC, we obtain
Ln(Zla T 7Zn70)
1 (%J;q, d d
= > Z {ha(i,4,q,7) = 2D Okhalisjoq,r) + > Oxbihs(i,j,q,7m)}
(i;j,q’T‘)EI" (S t,u,v) k=1 k=1
1 1 (4,5,9,7) d
= ) Z Z {Let(Lst + Ly — 2Lgy) — QZGkat(Lst + Lyy — 2L4,)
(i7j7q7?“)€1” (s t,u,v) 1

d
+ Z ekelK§t<Két + wa - QKéu)}
k=1

(w,q,
1

d
o Tl Yk (- Yo
=1

(4,9,9,m) €T} 4 (s,t,u,v)

d d
(Lot = > 0kKE) (Luw — ZalK{jv) + ZGkaijst — > OuKE Ly,
k=1 =1 k=1

k=1

d d d d
—2[(Lot = > OkKE) (Low — > _OKL) +> 04KE, Loy — > 0uKE Lo}
k=1 =1

k=1 k=1
1
= > UZ:,Z;,2,,Z,;0).
(i gar)ery
O
Proof of Proposition 4.2
Proof. Let us denote z; = (x1,y,)" € RPT9. Then we rewrite
1
VQkE(zla Z_]7 ZQ7 ZT‘) 00)
1 (2,3,4) (2,3,4) (2,3,4) (2,3,4)
= E[ Z wl,tuv(z1;00) + Z w2,suv(z1;00) + Z w3,stv(z1;00) + Z w4,stu(z1;00)}
’ s=1,(t,u,v) t=1,(s,u,v) u=1,(s,t,v) v=1,(s,t,u)

:: % [T1(60) + T(60) + T5(80) + Ta(60)),
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where
W1 tuw (25 600)

*2¢(x§k)aXt(k) o(y1, Y) 26‘ 1U( xﬁ”, (l) ) — w(x(lk),Xt(k) &Yy, Yy) ZGOW (X, x0y)
— P(XF, X (G, Y2) Zf) W@ X)) + (X XN, Y7) — (@, XY, V2)

+ 20, X)) (b, Y, Zemw (@, X)) + 202, X (631, V2) Zemw 2, x{")
=1

+ @, Xy, Ya) — 0@, X1, Ya),

and
Wa,suv (25 00)
= 29X =) (0(Ys, 1) Zeozw X0 20y —p(x® 2By (6(v,, ) Zemw x0, x0y)
P(XE, X ) (@(Ya, 1) Z9oz¢ X0, a)) + (X, XN (Ve 1) — (XP, 2 (Y, Vo)
d
+ 20(X® 2 (@(Ye, Ya) = Y 0000 (XD, X)) + 20(XP, X)) (6(Ys, 1) Zemw x0,2))
=1 =1
+ (X, XYYy, 1) — (XD, 2o (s, Vo),
and

w3,stv (Z; 00)

= —20(xM, x{) (¥, V1) Zew (X0, x{")) = p(x®, XY (6w, V. Zemw 70, X))

=1 =1

— P, XxP)(6(Ys, V7 Zew (XD, X)) + @, Xy, i) — o(XE, Xy, 2
=1

+ 20(X®, X (o(Ye, 1) Zeozw (XD, D)) + 2p(X P, 2 (Y3, V7) Zemw X0, x Oy
+ Pp(XP,2M)p(v,, V) - «/)<X§’“>,X£’“>>¢(Y;, ),
and finally

w4,stu(z§ 00)

= —20(X®, X{")(6(Y., Y2) Zew X0, X)) = p(XP, XY (6(Var 1) Zamw (x?,2{")
— (XM M) (oYL, V) Zaw (@, X)) + p(XE 2o (Y, ¥e) — (XD, XV 1)

d
+ (X, XY (0(Vs, Vo) Zeozw (XD, X))+ 20(x P, XP)(6(Y5, V2) Zew x0, x"))

+ (XWX, Yr) - ¢<X§’“>,X§’“>>¢<n,m.



Sparse Hilbert—Schmidt Independence Criterion Regression

Then taking the expectation with respect to Z;, Z,, Z, and using the independence between Y and X, we have
E[Y1(60)]

d
= —2E[p(z{", X{)El¢(y1, Ya)] + 2 00 E(, XM, X)) - Ep (2, X E[¢(Y., Vo))
=1

d
+ S 0B, XI)p(x O, xO)] - E[p(XE), X Elp(yn, Vo))

=1
d

+ Y 00 E(XE, Xyl X)) + Elp(XP, X, Ye)] - B, X))o (Y., Y.))
=1

+ 2B, XN E[g(y, Y —229011@ W Xy, xO)]

+ 2Bt XENE[p(y1, Ya)] — 2290,1E[w<x§’“%X&“W?%Xf”)]
=1

+ E[(, XPEGy, V)] - Bl (@, XI)EB(n, Ya)],

Proceeding the same way for the other expectations, we obtain

E[Y2(60)]
d
= —2E[(XP), 2l E[$(Ys, 1)) + 2D 00 Ep(XP, 2 (XD, 2] - Elp(XP, 2{)E[6(Y,, V2)]
=1

d
+ Zeo,lwxgk%x&’“w(Xy%X,E”)] —Ep(X, XPNE[B(Ys, y1)]

+ ZGOZE B, X)X, 2]+ Ep(XE, XENEG(Ys, 1)) — Ep(XE), 2 E[¢(Y,, V)]

d
+ 2E[p(XP, 2 )E[B(Y:, V)] — 2300 Bl (X P, 2y (x D, x ()]
=1
d
+ 2E[p(XP, XENE[(Ya, y1)] — 2D 00 Elp(X P, XEp(x D, 2]
=1

+ E(XE, XENEG(Ya, 11)] — Ep(XE), 28 o(Vs, Vo),

and
E[Y3(60)]
d
= 2B (X®, XIE[G(Y:, o)l + 23 00 Ep (X, X ) (x D, X))
=1
— ER(X®, XM E[p(n, Y, +Z‘901]E D, XN, X)) - B, X9)Ele(Ys, Y2))

d
+ Y 00 E(, X)X D, X)) + Bl XI)EG(Y:, Ye)] — ERp(XE, X)E[G(n, Y2)]

d
+ 2E[p(XP, X E[G(Ya,51)] — 2 00 Elp(XP, X)X D, 2] + 2By (X, 2 1)|E[6(Ys, V7))
=1

- 2290 EXF, eMp(x O, X)) + Ep(X P, 2 Eo(Ys, ¥2)] — E[p(XP, X)E[6(Ys, y1)],
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and finally
E[Y4(6)]

d
= —2E[(X), XM)E[B(Y;, Yo)] + 200 B (XF), X Myw(x®, x )]
=1
d
— ERp(XP, XIEG(Yu, y1)] + 00, ER (X, X)X D, 2V)] — Efp (X P, 20 Eo(Y,, V7))
=1

d
+ Y 00 Ep(XE, (XD, X)) + Elp(XP), 2 )E[p(Y:, Yi)] — E[p(XE), X EG(Ya, 1))
=1

d
+ 2E[p(X®, XEG(Y., Yo)) — 23 00, Ep(XE, XX D, X)) + 2B (X P, X)E[6(Y., V)]
=1

d
— 23 0 E(XP, XENp(x D, X)) + E[p(XE), X E[G(Ys, i) — E[p(XP, X E[g(Ys, Vo).
=1

Thus by symmetry of the kernel, i.i.d. random variables and under Py~ x = P xPy~, then we obtain Vz; € RP+4
by summing up all these expectations

Vk<dEy 7 7 [Vollz1,Z;, 24, Zr;60)] = 0.

O
Proof of Theorem 4.3
Proof. In a first step, we prove the uniform convergence of L™ (Z1,--- , Z,;.) to the limit quantity LE"(.) on
any compact set B C O, idest
sup [LE (21, -+, Z,:0) — LE(0)] = 0, (9)

GEB n—oo

d
where L2 (Zy, -+ , Z,;0) =Lp(Z1,-+ , Zn;0)+ > w(%, |0k]). We define C C © an open convex set and pick
k=1

0 € C. Then we need to apply the uniform law of lgrge numbers on the non-penalized term, where we rely on
Theorem 1 of (Yeo and Johnson, 2001), provided in the technical results (see the Supplementary material). To
do so, let £ < 4 and define

gk(zl,"' ,Zk;a) :EZk+1,<~-,Z4[£(zl’”. 7zkaZk+17"' 3Z470)]
We then need to prove

(i) there is an integrable and symmetric kernel g(.) such that V8 € © and Yz € RPt9*4 |4(2:0)| < g(2).

(ii) There is a sequence S4,; of measurable sets such that P(R(®P+T9)x4 — MU S1)=0
=1

(iii) For each M and Vk < 4, (i (21, , 2zx; 0) is equicontinuous in 6 for 21, - - - , 25 € S¥,, where S3; = S, ><S?(/[_’C

First, #(z1,---,24;0) is a symmetric kernel that is bounded by assumption 4 and continuous for all

0,(z1, - ,24) € O X RAP+a) | Tet §4 = Xi:l Sk, where Sy = {zg @ |2k < M}, with M a positive

integer. Then we have P(R*P*9) — |J S%,) = 0. For each fixed M, if (21, -+, z;) € S, then the coefficients
M=1

of U (z1,- -, zx; 0) are bounded, hence li(z1,- -+, zk; 0) is equicontinuous in 0. As a consequence, we obtain by
Theorem 1 of (Yeo and Johnson, 2001) the uniform convergence

Sup [Ln(Z1, -+, Zn; ®) — Loo(8)] — 0.
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Thus, using A,,/n — Ao and since the parameter is taken over a compact set, we obtain

sup [LE™(Zy, -+, Zp: 0) — LF"(0)] — 0.
GGB n—oo
Now we would like
dy . d
argmin {L,(Z1, - ,Z,;.) + Zg@(f, )} vd argmin {Lo(.) + Zga()\o, I}
k=1 k=1

d
First, L,(Z1, -+, Zn;0) + > (32, 10k|) > Ln(Z1, -+, Z,;0), and arg min {L,(Z1,---, Z,;0)} = Op(1) by
k=1 0cQ

d
convexity of the criterion, it thus follows that arg min {L,(Z1, -+, Z,;0) + > @(22,]0k])} = O,(1) with
6eq k=1
probability one. O

Proof of Theorem 4.4

Proof. Let v, = n~1/2 4+ y/card(A)A;,,. We would like to prove that for any e > 0, there exists C. > 0 such
that

1 .
IP’(V—HG — 60| > C.) < e
Following the reasoning of (Fan and Li, 2001) Theorem 1, and denoting LP"(Zy,---,Z,;0) =
d
Ln(Zla T 7Zn; 9) + E SD(%, |91€D7 we have
k=1

1, 4
P(—-)10 = o] > Co) < P(u, [lulls = Ce : LT (Z1, -+, Zni 00 + vpu) S LI (21,0 Zni 60)),

which implies that there is a local minimum in the ball {8y + v,u, |uls < C.} so that the minimum  satisfies
|6 — 8y|| = O, (vy,). Now by a Taylor expansion of the penalized loss function, we obtain

L2 (Zy, -+, Zny 00 + vpu) — LB (Z1, -+, Zy;600) = wvnu' VoLn(Zy1,--, Zn;00) + %ﬁuTvﬁgTLn(zl, o Zn; 00)u
d
+ kZ {p(32, 100k + vaurl) — o(32, 100 k])},
=1
since the third derivative vanishes. We want to prove
P(Fu, |ulo =Ce : u'VyLn(Z1,-+, Zn;00) + %u Hu + %R, (6))
d
+ Vﬁl(kz {p(32, 100k + vaurl) — 0(32,100k])}) <0) <,
-1
where R,,(0y) = uT{Vgor]Ln(Zl, -+, Zpn;0p) — H}u. First, element-by-element Vk < d, the score is

Volw(Z1, -+, Zn;00) = )y > Vol(Zi,Z;,Zq, Zyr;60)

(4,5,q,m) €I}
1 (4,5,q,7) d d
= 1t D0 or Do (S 2K5(Ler = ) foa k) = Ki(Luw = D 001K0,)
(i,5,9,7) €L} (s,t,u,v) =1 =1
d d d
—  K§(La =Y 001KL) + K§yLat — K§ Luy + 2K5,(Lew — > _001KL,) + 2K, (Lt — > 001K L)
=1 =1 =1

+ KB Lg—KEL).

By the Central Limit Theorem 8, since the score based symmetric kernel Vol(Z;,Z;, Z 4, Z,; 0y) is of degree 4
and is non-degenerate by assumption , we have

w VoL, (Z1,- , Zy;00) = Op(nV%u Mu),
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with M = E[Vgl(Z;00)Vem4(Z;60p)] assumed well defined by assumption 5. Moreover, the Hessian is formed
with the non-redundant d(d + 1)/2 elements 1 < k,1 < d

(4,4,4,7)
1
ngelﬂzn(zl,"' aZn;eO) = (n)ll Z ﬂ Z (ZthK}et—’_Kfthlw +K7]ijét _2K§tKiu _2K§uKét)
(i,4,q,m) €L} (s:t,u,v)

Thus by the law of large numbers for U-statistics (see e.g. Theorem 3 of (Lee, 1990), subsection 3.4.2)

V2grLn(Z1, -, Zn;00) — H,

n—oo
with H = E[V2,4(Z; 6y)] so that R,,(6y) = 0,(1).

We now focus on the penalty terms. First, we show that the penalty functions satisfy assumption 5. The Lasso
satisfies

)= 0.

An An
Vk € A, Vem( = 100.k) = —=sgn(fo,r). nge,@@(?
For 0 < ¢ < 1, the Bridge satisfies

VE € A, Vo, (2= ) = 22|60,k |9 sgn(bo,k ),
V0.9 ( \90,k|) 2n.q(q — 1)|00,%]7 2sgn (0o k),

thus the second order derivative of the Bridge converges to 0 when A, = o(n). As for the SCAD, we have

(bscad |90 k |)

b 1
(bscad—]_)i {|90k|>/\77:1})

Vk € A, WM( 16o.k]) = ( {60.k1<2n} T

As a consequence, the SCAD penalty is twice continuously differentiable for )‘n"

Vk € A, V5, .9 (22,100,x]) = o(1). In the MCP case, we have

< |6p,k|, which implies that

An An 0
vk € A T0,002 004]) = (O~ 0]y gn gy 01

00,k |<bmc
bmcp {| 0,k| p n

Under A, = o(n), we straightforwardly obtain V3 4 ¢ (22, 160,%|) = o(1) for non-zero components. Now for any
ke AcC{l1, - ,d}, and since the penalties are coordinate-separable, we have

A An V2 An
@(;, 100k + vnuk|) — ( |00.k]) = vrugsgn(fo, k)Vem( 0o k) + ukvekek (;’ 100,k]) (1 + o(1)).

Hence, using ¢(22,0) = 0, we have

An V2
IZso 00,1 + vur]) = (==, Box)l < vallulli Avs + 7IIUII§A2,n(1 +o(1)).
ke A

Using |lu||1 < y/card(A)||lu||2, and under assumption 5, the third derivative being dominated, we obtain
2
v
|Z‘/’ 160,k + vnukl) — (*”, 100,61 < v /card(A)|[ull2Arn + ZH|ull3A2n-
ke A

Then, denoting 6, = Apin(H)C?v,,, and using %UTE[VgeTﬁ(Z;OO)]u > 4, we deduce that Eq. (10) can be
bounded as

B(u, [lull, = C - u'VoLn(Z1,+, Zn;00) + 5u E[Vgy: £(Z;00)|u+ 5 R (60)
(Z{so( ug]) = (32, 160.1])}) < 0)
< P(ﬂu Tl = C. queL (Z1,-++  Z0;00)| > 6,/6) + P(Fu, ||ul2 = C| %R (60)| > 6,/6)
P(3u, [lu], = C |z{go< 100,k + vnuk]) = o(32, 00k )} > 106, /6).
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We have for n and C. sufficiently large enough

P(Ju, [|lull2 = |Z {022,100,k + vau|) — (32, 60.k)} > vn6,/6)
< P(Fu, ||ulls = C. : l/m/card (A)|lw|l2A1n + 2 ||u|| Az > 1p0,/6) < €/3.
Moreover, if v, = n~1/2 + y/card(A)A; p, for C. large enough

C?Cst < Cst
né2 — C4

€

P(3u, |julls = Cc : w" |VoLn(Z1,- -, Z,;00)| > 6,/6) <

< €/3,

where Cy; > 0 is a generic constant. Finally, using R,,(6y) = 0,(1), we obtain

PEu, [lullz = Cc s u' [VoLn(Z1, -+, Zn;00)| > 0,/6) + P(Fu, [lull2 = Ce| %5 Ra(60)| > 6,/6)

d
P(3u, f|ully = Ce : |k21{@(%7 url) = ¢(%2, 100,k }| > v20,/6)
< Gt +2/3<e
for n and C, large enough. We deduce || — 6| = O, (). O

Proof of Theorem 4.5

Proof. Let u € R? such that @ = 6y + u/y/n, and the empirical criterion F,,(u) = n{lL2"(Zy, -, Z,;0) —

LPen(Zy, -+, Zn;00)}.  Note that F,(w) is minimized at @, = n/2(@ — 6y) because 6 minimizes
Lee™(Zy, -+, Zp;0). Thus 4, = argmin {F,(u)}.
UcR?

We first establish the finite distributional convergence of F,(.) to Foo(.). Then we separate the proof depending
on the penalty function under consideration. We have the expansion

d

1
Fn(u) = \/ﬁveln(zl, ;Zn;eo)u+§uTV¢299TL7L(Zla"' 7Zn;00>u+n(z{ ( a|00 k+uk/\/>|) ( a|00 k|)})
k=1

By theorem A, section 5.5.1. of (Serfling, 1980) for the Central Limit Theorem and by Theorem 3, section 3.4.2
of (Lee, 1990) for the Law of Large Numbers for U-statistics

ViVeLa(Z1,-+ 2 00) =5 Nea(0.M), VggrLn(Z1,- -+, Zn;6p) — H.

n— oo

As for the penalty terms, in the MCP and SCAD cases, we proceed as follows. We have

)}) = Culw) +1n(w),

A
Z{w 6o+ ui/V/nl) = (==,
where using the coordinate-separability property of the penalties

An
w) =nY {o(7" 00 +un/vVil) - (* 0ok}, malu) =n) {w —uk/vn)}.
keA keAe
Then we have by a Taylor expansion for the indices k € A
Z\fvekw 100k ursgn(Go.1) + V3,0, 2( n7 60,1 )ui/2(1 + o(1)).
ke A

Under assumption 5, we have Az, = o(1). We then need to treat the first order term. For both SCAD and

MCP, since their derivatives respectively vanish outside [—bscad%, Dscad %"], [—bmcp%", bmcp%] we have
Vo(32 l00k) = Voo 100k1)1 (6, , <pons ey
Vo3, 100k) = Voo, oL o1 an
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which implies for any € > 0 and 7 € A that

P(vnVor (5 006D L (15, 1 <bcna ey > © S BllPok] < bicaa®y) =0,
P(\/ﬁvek@(%a |90,k|)1{|90‘k|§b M} > 6) S (|90 k| < bmcp#) — 0.

'mcp T,

As a consequence, \/ﬁngga(%, |60.x]) = 0p(1). This is a direct consequence of the unbiasedness property when
regularizing large coefficients. Thus Cn(u) — 0 asn — oo. As for k € A°, we have

= > Vn( VW = 10k1)) g, _olukl + 5 (Vaka,fﬂ( 16k1)) g, _oui (1 + 0(1)),
keAc
,x) = ’\7" and A\, = O(y/n), we deduce
(w) = Ao Y ful.
keAc

As a consequence, by Lemma B.2, where in the latter we take G, (u) = G, (u) = V/nVoln(Z1, - ,Zn;00)u+
iuTV2, Lo(Zy, -, Z,;00)u, we obtain argmin {F,, } LN argmin {F }.
u u

Based on the assumption that hm Vmgo(

n
n

For the Bridge estimator, we have for any index i € AU A° and under the rate A, /n’I/ 2 5 Ao, then

d

An An
n(z{ﬂ;, 60,1 4 ur/V/nl) — @(;, 160,k])})
k=1
d d
= M) {00k +ur/vVnl" = 160k|" = XoD_luk|"1a, ,—o-
k=1 k=1

Now we need to prove that argmin {IF,, } 4, argmin {F, } for any w and n sufficiently large. To do so, we use
U U
Theorem B.3 of (Kim and Pollard, 1990) (see Supplementary material B) and show argmin {F,} = O,(1). We
u

first have the expansion

d
M Ln(Z1, -, Zp;00+u//n) — Lo (Z1,- -, Zn;00)} + A D {60k + ur /1|7 — 60,17}
k=1
d
> n{Ln(Zla"' 7Z7L;00+u/\/77’) *]Ln(Zla"' aZnJOO)} *)‘nz |uk/\/ﬁ|q
F=1
d .
> n{Ln(Z1, -+, Zn;00+u/yn) —Ln(Z1,-+, Zn;600)} — (Ao +€) 3 |un/v/n]? :=Fp(u),
k=1

where, following the proof of Theorem 3 of (Knight and Fu, 2000), € is such that An/n%2 < X\ + €. Then,
expanding n{L,(Z1, -, Zn;00 + u//n) —L,(Z1, -+, Z,;00)} in F,(u), we have

d
F,(u) = RV, (0)u + %UTVZGTIL”(Q)U — (Ao + E)Z\uk/\/ﬁ\q.

k=1

The second term, which is quadratic in u, dominates the term with |u;|?, which is that the quadratic term grows
faster |u;|?. Hence argmin {F,,} = O,(1), which in turns implies argmin {F,,} = O,(1). We then obtain for the
u u

Bridge
V(0 — ;) = argmin {F,} <, argmin {Fo. }.
u u

Finally, for the Lasso estimator, we have

Z{VP =, 100,15 + uk/v/nl) — o n,|90,k|)})

d

= AnZ{Wo,k + /vl =[O0k} = Ao (wesgn(0o.x)1e, 20 + [uk] 1o, ,—0)-
k=1



Sparse Hilbert—Schmidt Independence Criterion Regression

We thus proved that F,,(u) 4 Fe (u), for a fixed u. Let us observe that

uy = argmin {F,(u)},
u

and F,,(.) admits as a minimizer u* = /n(6 — 6y). As F,, is convex and F, is continuous, convex and has a
unique minimum by assumption 5, then by the convexity Lemma B.1, we obtain

V(6 — 8y) = argmin {F,} % argmin {Fo. }.
u u

Proof of Theorem 4.6
Proof. Let us define § = (9;, 9;6)—'—. To prove the support recovery consistency, we show with probability tending
to one when n — oo, under |84 — 6o _4|| = O,(n~/2) and suitable regularization rates depending on the penalty,

that

Lﬁen(zla'” 7Z7L;0¢430.A°): min {I[‘fzen(zla"' 7Zn;0A39.AC)}' (11)
10.4c||<Cn—1/2

To prove Eq. (11), for any \/n-consistent 0 4, we show that over the set {k € A°, 0y : |0x| < n~/2C} for C > 0

Vo, LE(Z1, -+, Z,;0) >0 when 0< 6, <n /2C,

Ve, LE(Zy,-+ , Z,;0) <0 when —n~1/2C <6, <0, (12)

with probability converging to 1. For any index k € A°, by a Taylor expansion around the true parameter, we
have

Vo L3 (21, Z0;0) =V, Ln(Z1,- -, Zn; 0) +Vek<ﬂ( 10k |)sgn(6r)
= Vo Ln(Z1, - ,Z1;600) + Vi,0,Lu(Z1,+, Zy;60) (0 — Oo) + VW( ,|0x])sgn(6y).
By the central limit theorem and the law of large numbers, we have
ViVoLn(Z1,- - Zni00) = 0p(1), VogrLn(Z1,-, Zn;60) — E[Vyrl(Z;60)].
We thus obtain for the SCAD and MCP penalties

VoLn(Z1,- -+, Z,;0) = Op(n~12) + Vo, 0(22, |0)])sgn(0r)
= 22{V 0(52, |0k])sgn(6r) + Op (X))}

ﬂ

As a consequence, under the condition lim lim inf - ngp( ,¢) > 0 and if the regularization parameter

n—oo  g—0t+

satisfies
Eq. (12).

For the Bridge penalty, following the same reasoning as in the SCAD and MCP, the non-penalized terms are of
order O,(n~'/2). As for the penalty, we have

nl 2> — 00, we deduce that the sign of the gradient entirely depends on the sign of 6. This this proves

An An _ An _
V@,ﬁﬂ(;, 0%]) = ?CIWHQ 1sgn(9k) = qunl/QHqu 1sgn(9k).

As a consequence, we obtain

nd/
Vo, Lu(Z1, -+, Zn;00) = n(q+1)/2 {Q|”1/20k‘q 'sgn(0x) + O (%5 - )}

Thus, under the assumption that X, /n%/? — co, the sign of ), also entirely determines the sign of the gradient.
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We now turn to the asymptotic distribution. We proved that 6 4c degenerates at 0 4o with probability approaching
one. Now by a Taylor expansion around 6y, for & € A, we have

. Ay A .
VOkLn(Zlv B} Zn; 0) + v0k¢(?7 |0k|)sgn(9k)
A An
= VoLn(Z1,-+,Z0i00) + > Vo0 Ln(Z1,-+, Zn;600)(0; — 0o ;) + Vo (== 100,k )sgn(box)
JEA
2 /\n N

+ Voo, 2 100,k) 0k = Oo.) (1 + o(1)).
Then inverting this relationship and multiplying by /7, we obtain in vector form with respect to the elements
in A

\/EVALR(ZM R Zna 60)
. -1
= (_vilALn(Zla"' 7Zn;00) _Sn,AA)\/ﬁ{(e_QO)A‘F (vilALn(Zlv 7Zn;00)+Sn,AA) bn,A}a

where

-
boa = (Vo,o(32 10010)sen(60,1), -, Vo, (32, 100,k )sgn(0o.k,))
Sn,A.A = dlag(vgkek@(%’wo,ﬂ)ak = 17 ,]C()).

We thus deduce that by the central limit theorem for U-statistics and the Slutsky theorem
A -1 d
(7v?4A]]-‘7L(Z13 ) Zn; 00)7Sn,AA) \/E{(G*OO)A“F(VE\ALTL(ZD ) Zn; 00)+Sn,/‘\¢4) bn,A} njo)o N]Rko (Oa M)a

with
M =E[Vol(Z;00)VerL(Z;00)].

Proof of Theorem 4.7

The true sparse support now depends on the sample size so that the sparsity assumptions is defined as follows:

Assumption 7. Sparsity assumption: |Ay| = ko, < dp, with A, = {1 <k <d, : 0 # 0}.

We assume the following conditions on the penalty functions.

Assumption 8. @(%, l.]) is twice continuously differentiable except at the origin. We define

A A
Ay = lg}gf’é”|vek90(;na 100.1)l, A2n = élfllfgénwgkekw(;na 100.1)|,

so that Ay, = O(n_l/z) and As , — 0.

All quantities now depend on d,, hence on n and should be indexed by n. We denote H,, := H,(6y) =
E[V2007((Z;6,)] and M,, := M,,(80) = E[Vel(Z;00)Verl(Z;0y)]. To make the reading easier, we do not
index other quantities by n, which will be implicit. We now assume the following conditions on the loss function.
Assumption 9. H,, and M,, exist. H,, is positive-definite and there exist by, bs with 0 < by < by < 00 and ¢y, co
with 0 < ¢1 < cg < 00 such that, for all n,

bl < )\min(Mn) < )\max(Mn) < b27 C1 < Arrlin(IHIn) < Amax(Hn) < C2,

where Amin(K) (resp. Amax(K)) is the minimum (resp. mazimum) eigenvalue of any positive-definite square
matriz K.
Assumption 10. E[{Vg/(Z;00)Vgr{(Z;60)}?] < 0o and E[{Vg ¢ ((Z;600)}?] < 0o for every d,, (and then of
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Proof. We proceed as in the proof of Theorem 4.4. We denote v,, = \/dn{n_1/2 + Ay} and we would like to
prove that, for any € > 0, there exists C¢ > 0 such that

P(||6 — 6o]| > C.) < €
Now, following the same reasoning as in the proof of Theorem 4.4, denoting L2 (Z,,---,Z,;0) =

Lo.(Z1,--+,Z,;0)+ Egp( ,|0k]), we have

P(|6 - 6ol > Co) < P(3u € R, |lufly = Cc : LE™(Z1, -+ . Z03 00 + vpu) S LET(Z1, -+, Z,360)),

which implies that there is a local minimum in the ball {8y + v,u, ||u|l2 < C.} so that the minimum satisfies
|6 — 8|2 = Op(vy,). Now by a Taylor expansion of the penalized loss function

Lﬁm(zl»"' aZn;00+Vnu) —]Lﬁm(zl,"' avae()) = l/nu VHL (Zlv"' 7Z’n.a00)+ ﬁuTvggTL’n(zlv"' ,Z’naao)u

+ Z{W( o 100,k + vntk]) — @(32, 100k},

since the third derivative vanishes. We want to prove
P(Fu € R |lullo=Cc : w'VoLo(Z1, -, Zy;60) + 2w Hu + 2R, (6o)

+ ynl(:g_’jl{w(;n, url) = (32, 100,k1)}) <0) <e (13)

where R,,(6y) = uT{VzeTLn(Zl, <o Zp;00) — H}u. First, for a > 0 and the Markov inequality, we have for
the score term

P( sup |u'VeL,(Z1, -+, Z,;600) > a)

u:(|u||2=Ce
< P( sup lul]2|[VoLn(Z1, -+, Zn; 60)[2 > a)
U:||U||2=C.
a
Ce\2 5
< (;) E[[[VoLn(Z1, -+, Zn;60)|2]
C. agn 2
S 76 E Vak Zlv"' 7Z7L;00)) ]
a k=1
Ce\2 dn
= (j) (n>4;2 Z Z ZE[{VGICE(ZZ"ZJ”quZHHO)VBJCE(ZZ’UZJ'HZq’7ZT’§60)}2]~

i,7,q,7)EIN (3,5 ,q' ;') eI k=1
4 4

Thus, by assumption 10, we deduce

C2d,
P( sup  |u'VoLn(Z1,--,Zn;00) > a) < 5K,
U:|| w2 =Ce an
where 0 < K7 < oo is some constant.
We now focus on the Hessian. First, R, (6) can be written as
dn
n(00) = > wew{Vy, 0, Ln(Z1, -, Zn;6) — Hy}.
k=1

We have E[R,,(6p)] = 0 and the variance is defined as

dn

Var(R,(6o)) = (n); > Z Z Z wpw e wy B[C 16 g.qm) Skt (57! )]s

(i,d,q,m)EIF(&,5" " ' )EIT kKLU =1
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where (. 1 (i.j.q,r) = ngelf(Zi, Z;, 24,2, 00)—E[V§kel£(zi, Z;,Z4,Z,;6))]. Let b > 0, we have by the Markov
inequality and assumption 10
Kallulid _ CLKad?

n - n

PR, (B0)] > b) < 5EIR3(60)] <
for some constant Ko > 0. By assumption 9,

W E[VigrLo(Z1, -, Zn; 00)]u > Apin (H,)u .

We now turn to the penalty terms. For any k € A, C {1,---,d,}, and since the penalties are coordinate-
separable, we have

An An V2 An
@(;7|90,k+1/nuk|)— ( |00.k]) = vrugsgn(fo, k)Vek%)( NOo,k]) + UiV, 0, 0(=- ’|90,k|)(1+0(1))-

Hence, using @(7",0) = 0, we have

An V2
Z |90 k+ vnuk]) = o(= 5 [0okl)] < vallulliArn + flluH%Az,n(l +o(1)).
€A,

Using |Ju|; < /card(A,)|lu||2, and under assumption 8, the third derivative being dominated, we obtain

|ZSO =il + vnunl) — ( = 100,k)| < va/card(An)ull2A1n + ”HUH%AM

keA

Then, denoting 6, = Amin (H,, ) C2vy, using 22w "E[V3,:£(Z;600)]u > 6,, we deduce that Eq. (13) can be bounded
as

P(3u, ||u||2 =Ce:u'VoLn(Zy1,-++, Zn;00) + 2 u' B[V, U(Z;60)]u+ 2R, (60)
(Z{so( 100,k + vnuk]) = 0(32,100,k))}) < 0)
< P(Eu IIuIIz =C.: uTIVeL (Z1,++ Zn;60)| > 6n/6) + P(Fu, |ullz = Cc| 5 Rn(60)| > 6,/6)
P(Fu, lullz = Ce | Z {o(22, 100, + vnug|) — (32 )} > 60 /6).

We have for n and C. sufficiently large enough

P(3u, [lullz = |Z{90 2100,k + vaur|) — (32, 00 k])} > 16,/6)
< P(Fu, ||ulls = C. : Vm/card (Ap)|lull2A1,n + %"HquAzn > V0, /6) < €/3.
Moreover, if v, = n~1/2 + v/ card(Ay,) A, for C. large enough

052 dn Cst
2

P(3u € R, |juls = C : w" |[VoLn(Z1,--- , Z,;00)| > 6,/6) < —

)

where Cy; > 0 is a generic constant. Using
P(3u, [Jull2 = Cc|% Ra(00)] > 6,/6) < Lot

where Ly > 0 is a generic constant. Thus for C. fixed sufficiently large, under the assumption d? = O(n), we
have
P(Fu, |uls = Ce : w VLo (Z1, -+, Zn;00) + 2w E[V2,U(Z;600)]u + %R, (60)

C?%d, C, Lgv2d?
st 4 et 4 e/3 <

We deduce |0 — 6g|| = O, (vn). O
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D Derivations
Derivation of the HSIC Lasso
d . n d d /\
n?J(0) =n>> GHSIC(X®,Y) = > > 010 HSIC(X W), x )
k=1

k
1 d d
Oy trace(H, LH, K*)) — 3 > kb trace(H, K H, K*)

Il
ol
= M-
i

k=1k'=1
1 d d
=" Oxtrace(H, LH,H, KW H,) — = > " 0,0,/ trace(H, K" H, H, K* H,,)
k=1 2 k=1k'=1
x —ltrace(H LH,H,LH )+§d:9ktrace(H LH,H,K"H,) liz Ed: 0,0y trace(H, K™ H, H, K*) H,,)

d
1
= —gllvec(HLLHy) =3 yvec(HL KW H, )|,
k=1

d
1
= —§||HnLHn - § 0. H, K* H,|/%
k=1

where we use H, H,, = H,, trace(A" B) = vec(A) "vec(B), and vec(A) € R, (A € R™*™) is the vectorization
operator.

Derivative of the U-statistics

Element-by-element Vk < d, the score evaluated at the true parameter 6 is given by

Vouln(Z1,--+ Zn;60) = ()i Y Ve, l(Zi, 2. Zq,Zyr;00)

(4,3,4,7)
(1,5,q,7) d
= it D o Z (= 2K (Lot — > 001kL,) — KE5(L Zeozmv)
(i,j,q,r)€I4 (s t,u,v) =1
d
Koo (Lot = 00uK%) + Ky Lot — Kl Luw + 2K 5 (L Zaoszu + 2K, ( ét—ZGOLK
=1 =1 =1

+ KfuLSt - Kfthu)-

Kernel expression
L(H) = EZiZquZ,. [Z(Zl, Zj, Zq, ZT; 0)]7

which can be expressed in terms of kernel as

L(6) = Eyy/[¢(Y,Y")’] = 2Eyv [Ey/ [6(Y, Y')’] + Eyy [6(Y,Y)]” (14)
d
= 23 OBy oo [0 Y )(XE XY = 2By, ) [By [0V, Y E oy [ (X P, X D]

d
+ Eyyvr[o(Y, Y)E o oo X ™ XD+ 0604 0 xear s xar (X ™, XE)p(x @, x O]

k=1

— 2Exmx [Examy (X, X<k)/)]Exu>' [w(X D, x O] + E ) x o (X P, X(k),)]Equ(z)’ [w(x®, x].





