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Abstract

Feature selection is a fundamental problem
for machine learning and statistics, and it has
been widely studied over the past decades.
However, the majority of feature selection al-
gorithms are based on linear models, and the
nonlinear feature selection problem has not
been well studied compared to linear models,
in particular for the high-dimensional case.
In this paper, we propose the sparse Hilbert–
Schmidt Independence Criterion (SpHSIC)
regression, which is a versatile nonlinear fea-
ture selection algorithm based on the HSIC
and is a continuous optimization variant of
the well-known minimum redundancy maxi-
mum relevance (mRMR) feature selection al-
gorithm. More specifically, the SpHSIC con-
sists of two parts: the convex HSIC loss func-
tion on the one hand and the regularization
term on the other hand, where we consider
the Lasso, Bridge, MCP, and SCAD penal-
ties. We prove that the sparsity based HSIC
regression estimator satisfies the oracle prop-
erty; that is, the sparsity-based estimator re-
covers the true underlying sparse model and
is asymptotically normally distributed. On
the basis of synthetic and real-world experi-
ments, we illustrate this theoretical property
and highlight the fact that the proposed algo-
rithm performs well in the high-dimensional
setting.

1 Introduction

Feature selection/variable selection, which consists of
selecting a subset of features in high-dimensional data,
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is a widely studied problem in the machine learning
and statistics communities, and has many real-world
applications, including, e.g., biomarker discovery from
expression data (Peng et al., 2005; Yamada et al.,
2018), microarray gene expression data classification
(Abusamra, 2013), and text mining (Forman, 2003).

One standard feature selection approach is based on
sparse modeling, where the least absolute shrink-
age and selection operator (Lasso) is probably the
most commonly used linear feature selection algorithm
(Tibshirani, 1996). Lasso has been applied to a broad
range of applications, and its theoretical properties
such as the consistency and the conditions for support
recovery – in the adaptive case – have been widely
studied (Hastie et al., 2015). Most of the applications
of Lasso concern the standard linear regression model.
It often provides low performance when the underly-
ing data cannot be represented through a linear model.
For example, in gene expression data, the data gener-
ation process is, in general, unknown; using a linear
model may not be the best choice.

To handle complex data, nonlinear modeling offers a
more suitable alternative. One of the widely used non-
linear feature selection algorithms is the sparse ad-
ditive model (SpAM) (Ravikumar et al., 2009) and
its variants, where SpAM is a sparse variant of the
well-known additive model. SpAM outperforms linear
models including Lasso in various setups (Ravikumar
et al., 2009) and its theoretical properties are also es-
tablished. However, SpAM assumes the additiveness
of functions with univariate inputs, and the prediction
performance can be significantly lowered if the additive
assumption is violated (e.g., the multiplicative model).

Another standard nonlinear feature selection approach
is based on the screening method, in which the impor-
tant features are selected by ranking the association
measure between each feature and its corresponding
output (Fan and Lv, 2008; Balasubramanian et al.,
2013). After the screening step, a non-parametric
model is fitted to the screened features. Because this
screening-based approach simply selects features if a
relationship exists between a feature and the output,
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strong assumptions, such as additiveness in SpAM,
are not required. Moreover, the sure screening prop-
erty can be proved, which ensures that the screening
method can select true features with high probability
(Fan and Lv, 2008; Balasubramanian et al., 2013).

Typically, the mutual information (MI) (Cover and
Thomas, 2006), distance correlation (Székely et al.,
2009; Li et al., 2012), and the Hilbert–Schmidt inde-
pendence criterion (HSIC) (Gretton et al., 2005; Bal-
asubramanian et al., 2013) are used as an association
measure of the screening method. One of the limita-
tions of screening methods is that they tend to select
redundant features when a significant number of simi-
lar features are related to the output, which thus may
lower the prediction performance.

The minimum redundancy maximum relevance
(mRMR) feature selection (Peng et al., 2005) can
be a good candidate for a screening method to deal
with the redundancy problem. mRMR has been well
studied in the data mining community, and some
studies showed that it outperforms the linear models:
see, e.g., (Haws et al., 2015). However, to the best of
our knowledge, the theoretical properties of mRMR
methods and their variants have not been established.

In this paper, we propose the sparse Hilbert–Schmidt
Independence Criterion regression (SpHSIC) together
with a large sample analysis of the mRMR approach.
More specifically, we first consider the continuous op-
timization variant of the mRMR algorithm, in which
the loss function can be represented by the difference
between the centered input Gram matrices and the
centered output Gram matrices, which then provides
a regression model representation based on V-statistics
linking the dependent variable with the set of features
through a linear combination. Under the sparsity as-
sumption, we propose a penalization framework to re-
cover the true sparse support, that is, the key fea-
tures, where the set of penalties is given by Lasso (Tib-
shirani, 1996), Bridge (Frank and Friedman, 1993),
SCAD (Fan and Li, 2001), and MCP (Zhang et al.,
2010), which all are non-convex except Lasso.

The first key contribution of this paper is to propose
the SpHSIC regression framework, which is a continu-
ous optimization variant of the mRMR algorithm. The
second contribution is to present the asymptotic the-
ory of the sparsity-based HSIC estimator. We prove
the oracle property in the sense of (Fan and Li, 2001)
for non-convex penalties; that is, the sparsity-based
estimator recovers the true underlying sparse model
and is asymptotically normally distributed. The third
contribution is to conduct a large sample analysis for
V-statistics-based loss functions. Using the asymp-
totic equivalence between V-statistics and U-statistics,

we rewrite the V-statistic-based loss as a U-statistic-
based loss with a symmetric kernel of degree four. A
key assumption to derive asymptotic results is the non-
independence between the dependent variable and the
features, which allows for working with non-degenerate
U-statistics. Our study shares a similar spirit with
(Rejchel, 2017), who derived some large sample prop-
erties for degree two U-statistics based and convex loss
function with an adaptive Lasso type penalty. But
our work differs from the latter in two main respects:
the loss function involves a degree four kernel function
requiring a careful treatment of its U-statistics rep-
resentation and its degeneracy; we consider a general
framework encompassing a broad range of potentially
non-convex penalty functions.

2 Preliminaries

We first briefly review the framework of the HSIC that
will be used throughout this paper. More details can
be found in (Gretton et al., 2005) or (Song et al., 2012).

2.1 Problem formulation

Let X be a metric space and H a Hilbert space of func-
tions f : X → R. H is a reproducing kernel Hilbert
space (RKHS) induced by the inner product 〈., .〉 if
there exists a function φ : X × X → R such that

(i) ∀x ∈ X , φ(x, .) ∈ H,
(ii) ∀f ∈ H,∀x ∈ X , 〈f, φ(x, .)〉 = f(x).

For any probability measure P defined on X , the mean
µ(P) ∈ H is defined as E[f(X)] = 〈f, µ(P)〉 for any
f ∈ H with X sampled from X .

For the formal setting, we consider two random vari-
ables Y ∼ PY and X ∼ PX that take values on (Y,By)
and (X ,Bx), respectively, where Y,X are two separa-
ble metrics, and By,Bx are Borel σ-algebras. Then,
(Y × X ,By × Bx) is measurable, and the joint distri-
bution is defined as PY X , which assigns values to the
product space (Y × X ,By × Bx). We then define the
symmetric kernels φ(., .) and ψ(., .) on the spaces Y
and X , respectively, and assume EY [φ(Y, Y )] <∞ and
EX [ψ(X,X)] <∞.

The objective of this paper is to provide a proce-
dure for selecting a subset of the features X that
are important for its output Y . We suppose that
we observe n samples {(Y1, X1), · · · , (Yn, Xn)} from
(Y × X ,By × Bx).

2.2 Association-based feature selection

The simplest association-based feature selection algo-
rithm would be based on maximum relevance (MR)
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feature selection (Peng et al., 2005):

Ŝ = argmax
S

1

|S|
∑
k∈S

D(X(k), Y ),

where D(X(k), Y ) ≥ 0 is the association score between
the k-th feature and its output. In the original pa-
per, the MI is used as the association score of the
MR method (Peng et al., 2005). Moreover, this MR
method is related to the sure independence screening
method (Fan and Lv, 2008), which guarantees selec-
tion of true features with high probability.

However, the MR method tends to select redundant
features (i.e., the selected features can be highly cor-
related), because it does not use the feature-feature
relationship to select features. To deal with this prob-
lem, the mRMR feature selection algorithm was devel-
oped by (Peng et al., 2005), and the objective function
can be reformulated as

1

|S|
∑
k∈S

D(X(k), Y )− 1

|S|2
∑
k∈S

∑
k′∈S

D(X(k), X(k′)), (1)

where S is the set of selected feature indices. The
second term in Eq. (1) is the penalized term that
selects independent features. More specifically, since
D(X(k), X(k′)) takes nonnegative values if X(k) and
X(k′) are non-independent, the second term takes large
negative values if the selected features are not mutu-
ally independent. Thus, selecting features by maximiz-
ing Eq. (1), we can select features that are dependent
on the output, and the selected features are mutually
independent. Although some studies provide empiri-
cal results which highlight that the mRMR algorithm
performs well in practice, the theoretical properties of
the mRMR method have not been studied.

2.3 Hilbert–Schmidt independence criterion

Here, we review the HSIC. More details can be found
in (Gretton et al., 2005). The HSIC of PY X is

HSIC(Y,X) = EY Y ′XX′ [φ(Y, Y ′)ψ(X,X ′)]

+ EY Y ′ [φ(Y, Y ′)]EXX′ [ψ(X,X ′)]

− 2EY X [EY ′ [(φ(Y, Y ′))]EX′ [ψ(X,X ′)]],

where (Y ′, X ′) is an i.i.d. copy of (Y,X), and EXX′ [.]
(resp. EX [.]) is the expectation defined over X,X ′

(resp. X). Following the V-statistic-based HSIC esti-
mator of Gretton et al. (2005), we define

ĤSIC(Y,X) =
1

n2
trace(LHnKHn), (2)

where Lij = φ(Yi, Yj) and Kij = ψ(Xi, Xj) are ker-
nel functions, assumed symmetric; L = (Lij) ∈ Rn×n
and K = (Kij) ∈ Rn×n are Gram matrices; Hn =

In − 1
n1n1>n is a centering matrix; In is the n × n

dimensional identity matrix; 1n is the n-dimensional
vector whose elements are all 1; and > denotes the
transpose.

Throughout this paper, we define Zi = (Yi, Xi), where
the random variable Y is of size p and X of size q, and
a random vector containing d features is denoted as

X
(1)
i , · · · , X(d)

i for any observation i.

2.4 HSIC Lasso

We now briefly review the HSIC Lasso originally pro-
posed by (Yamada et al., 2014). The original mRMR
algorithm consists of a discrete optimization problem,
and the optimization is in general difficult. To miti-
gate the problem, continuous optimization tends to be
used. We first rewrite the mRMR algorithm as

argmax
β∈{0,1}d

1

β>1d

d∑
k=1

βkĤSIC(X(k), Y )

− 1

(β>1d)2

d∑
k=1

d∑
k′=1

βkβk′ĤSIC(X(k), X(k′)).

where 1d ∈ Rd is the vector whose elements are all
one. We then relax β as θ = (θ1, θ2, . . . , θd)

> ∈ Rd.
Moreover, because β is a sparse vector, we can write
the relaxed version of the optimization problem as

argmax
θ∈Rd+

d∑
k=1

θkĤSIC(X(k), Y )

− 1

2

d∑
k=1

d∑
k′=1

θkθk′ĤSIC(X(k), X(k′))− λ‖θ‖1,

where ‖θ‖1 is the `1 norm, and λ ≥ 0 is the regulariza-
tion parameter. Note that the nonnegative constraint
is added, because the original β is nonnegative.

Here, we simply drop the sum to one constraint, be-
cause it makes the problem easy to solve. This op-
timization problem is convex. However, it needs to
compute a d × d dimensional HSIC matrix, which is
computationally expensive. Moreover, this formula-
tion is not appropriate for a high-dimensional setup,
because it requires O(d2) memory space. To deal with
the problem, we express the optimization problem as

argmin
θ∈Rd+

‖L̄−
d∑
k=1

θkK̄
(k)‖2F +λ‖θ‖1,

where L̄ = HnLHn is the centered Gram matrix of
Y , with Lij = φ(Yi, Yj); K̄

(k) = HnK
(k)Hn is the

centered Gram matrix of the k-th input X(k); and

K(k) = (K
(k)
ij ) ∈ Rn×n with K

(k)
ij = ψ(X

(k)
i , X

(k)
j ) is
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the input Gram matrix. This formulation makes the
required memory space for the Gram matrices O(dn2),
which is more appropriate for a high-dimensional set-
ting (i.e., n� d).

3 SpHSIC Regression

In this section, we present the SpHSIC regression. Fol-
lowing the above development of the HSIC Lasso for-
mulation, we consider the regression model:

∀i, j,
(
L̄
)
ij

=

d∑
k=1

θk
(
K̄k
)
ij

+ Uij , (3)

where Uij is a centered error term with E[U2
ij ] = σ2.

The sparse HSIC regression (SpHSIC) (a.k.a., V-
statistic based M-estimation criterion) is defined as

θ̂ = argmin
θ∈Θ

{
Gn(Z1, · · · ,Zn;θ) +

d∑
k=1

ϕ

(
λn
n
, |θk|

)}
,

with

Gn(Z1, · · · ,Zn;θ) :=
1

n2

n∑
i,j=1

((
L̄
)
ij
−

d∑
k=1

θk
(
K̄(k)

)
ij

)2

,

where(
L̄
)
ij

= Lij−
1

n

n∑
j′=1

Lij′−
1

n

n∑
i′=1

Li′j+
1

n2

n∑
i′=1

n∑
j′=1

Li′j′ ,

∀ i, j ≤ n, and K̄(k) is defined in the same way based

on K
(k)
ij = ψ(X

(k)
i , X

(k)
j ). SpHSIC is based on the

transformed data Lij and Kk
ij , which are centered by

the empirical mean over all the components of L and
the column-wise and row-wise means.

The penalization is performed through the term
d∑
k=1

ϕ
(
λn
n , |θk|

)
, which is a coordinate-separable

penalty. We consider the following set of penalties:

Lasso : λ|θ|,
Bridge : λ|θ|q, q ∈ (0, 1),

MCP : sgn(θ)λ
∫ |θ|

0
(1− z/(λbmcp))+dz,

SCAD :


λ|θ|, for |θ| ≤ λ,
− (θ2−2bscadλ|θ|+λ2)

(2(bscad−1)) , for λ≤|θ|≤bscadλ,

(bscad + 1)λ2/2, for |θ| > bscadλ.

and λ ≥ 0 is the regularization parameter.

Note that the HSIC Lasso (Yamada et al., 2014) corre-
sponds to the SpHSIC with the `1 regularizer. In this
paper, we consider Bridge, MCP, and SCAD in addi-
tion to the `1 regularizer. For the `1 regularizer, the
objective function is convex. In contrast, the penal-
ized framework SpHSIC that we proposed using other
penalty functions is non-convex.

4 Theoretical Analysis

In this section, we provide a theoretical analysis of the
SpHSIC.

4.1 Parameter-dependent U-statistics

The non-penalized loss function Gn(.) is a V-statistic-
based loss function. Because we develop our analy-
sis asymptotically, we will use the U-statistic frame-
work rather than the V-statistic one. We thus propose
to rewrite the non-penalized V-statistic-based loss
Gn(Z1, · · · ,Zn;θ) as a U-statistic Ln(Z1, · · · ,Zn;θ),
which is a summation encompassing single indices and
pairs, triplets and quadruplets of indices, and develop
our large sample analysis using this loss. Indeed, there
is a

√
n-asymptotic equivalence between the two so

that the large sample distribution of the U-statistic is
the same as that of the V-statistic: see subsection 5.7.3
of (Serfling, 1980) and subsection 4.2 of (Lee, 1990) for
further details. Then, following the same reasoning as
(Song et al., 2012), where the HSIC statistics can be
expressed as a U-statistic with a symmetric kernel of
degree 4 (see their Theorem 3), we may express the
least squares criterion as a U-statistic with a symmet-
ric kernel of degree 4.

Proposition 4.1. The non-penalized loss function
Gn(Z1, · · · ,Zn;θ) can be rewritten in terms of a U-
statistic Ln(Z1, · · · ,Zn;θ) as

Ln(Z1, · · · ,Zn;θ)=(n)−1
4

∑
(i,j,q,r)∈In4

`(Zi,Zj ,Zq,Zr;θ),

where (n)c = n!
(n−c)! and

`(Zi,Zj ,Zq,Zr;θ)

=
1

4!

(i,j,q,r)∑
(s,t,u,v)

{
(
Lst −

d∑
k=1

θkK
k
st

)(
Lst −

d∑
l=1

θlK
k
st

)
+
(
Lst −

d∑
k=1

θkK
k
st

)(
Luv −

d∑
l=1

θlK
k
uv

)
+

d∑
k=1

θkK
k
uvLst −

d∑
k=1

θkK
k
stLuv

− 2
[(
Lst −

d∑
k=1

θkK
k
st

)(
Lsu −

d∑
l=1

θlK
l
su

)
+

d∑
k=1

θkK
k
suLst −

d∑
k=1

θkK
k
stLsu

]
},

(4)

is the symetrized kernel. The sum is taken over all
ordered quadruples (s, t, u, v) selected without replace-
ment from (i, j, q, r), and In4 denotes the set of all
4tuples drawn without replacement from {1, · · · , n}.
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Remark. The proof of this proposition relies on the
use of the U-statistic-based expression of the estimator
of the HSIC(Y,X) derived by (Song et al., 2012). It
can be found in the supplementary file.

This expression will enable us to use limit the-
orems for parameter-dependent U-statistics. In-
deed, the score vector ∇θ0Ln(Z1, · · · ,Zn;θ0) (θ0 =
(θ0,1, θ0,2, . . . , θ0,d)

>) is formed by U-statistics, which
are assumed to be non-degenerate. A condition for the
elements of the score-based U-statistic not being first
order degenerate is that

Var(˜̀(Zi,θ0)) 6= 0,

with ˜̀(Zi;θ0) = EZjZqZr
[∇θk`(Zi,Zj ,Zq,Zr;θ0)],

where the latter expectation corresponds to an inte-
gration with respect to Zj ,Zq,Zr. Assumption 2 is
required to avoid an order one degenerate score-based
U-statistic, which is crucial for the existence of the
positive-definite variance covariance matrix

M(θ0) =

E[∇θ`(Zi,Zj ,Zq,Zr;θ0)∇θ>`(Zi,Zj ,Zq,Zr;θ0)],

which will serve as the asymptotic variance covariance
matrix when applying the multivariate central limit
theorem for U-statistics. This assumption is key when
deriving the limiting distribution because the distri-
bution will be Gaussian under this assumption. On
the contrary, if the variables are independent and thus
each component of the U-statistic-based score function
is first order degenerate, each of these elements’ distri-
bution would be an infinite sum of the χ2(1) distribu-
tion. This is the motivation for the following proposi-
tion.

Proposition 4.2. Suppose that the kernels
φ(., .), ψ(., .) are symmetric and PY X = PY PX ,
then the score-based kernel satisfies

EZjZqZr
[∇θk`(z,Zj ,Zq,Zr;θ0)] = 0,

∀1 ≤ k ≤ d,∀z ∈ Rp+q,

so that the U-statistic based ∇θk`(z,Zj ,Zq,Zr;θ0) is
degenerate.

Remark. The proof of this result can be found in the
Supplementary material. As a consequence, we as-
sume throughout this paper PY X 6= PY PX , which im-
plies that the variance of each ∇θk`(z,Zj ,Zq,Zr;θ0)
is nonzero.

These variances form the diagonal of the variance co-
variance matrix M(θ0). Each diagonal element corre-
sponds to the variance:

Var(∇θkLn(Z1, · · · ,Zn;θ0)), k = 1, · · · , d,

which all are of degree 4, and each off-diagonal element
corresponds to the covariance: k, l ≤ d, k 6= l,

Cov(∇θkLn(Z1, · · · ,Zn;θ0),∇θlLn(Z1, · · · ,Zn;θ0)),

which are also kernels of degree 4. These quantities are
defined in Eq. (7) and Eq. (8) in the Supplementary
material.

In terms of population level, our parameter-dependent
criterion is, for any θ, given by

L(θ) = EZiZjZqZr
[`(Zi,Zj ,Zq,Zr;θ)],

whose explicit expression in terms of the kernel is given
in Eq. (14). In the rest of the paper, we will use the no-
tation E[`(Z;θ)] := EZiZjZqZr

[`(Zi,Zj ,Zq,Zr;θ)]

when there is no confusion about the integra-
tion. The same applies to E[∇2

θθ>`(Z;θ)] and
E[∇θ`(Z;θ)∇θ>`(Z;θ)].

4.2 Asymptotic properties

In this section, we derive the large sample properties of
the penalized estimator θ̂ based on the M-estimation
criterion:

θ̂ = argmin
θ∈Ω

{
Ln(Z1, · · · ,Zn;θ) +

d∑
k=1

ϕ

(
λn
n
, |θk|

)}
,

(5)
with

Ln(Z1, · · · ,Zn;θ) := (n)−1
4

∑
(i,j,q,r)∈In4

`(Zi,Zj ,Zq,Zr;θ),

where `(Zi,Zj ,Zq,Zr;θ0) is the symmetric kernel of
degree 4 defined in Eq. (4). We assume that L(θ) =
E[Ln(Z1, · · · ,Zn;θ)] is uniquely minimized at θ0. In
addition, we make the following assumptions.

Assumption 1. Sparsity assumption: |A| = k0 < d
with A = {k : θ0,k 6= 0}.
Assumption 2. Distributive property of (Yi, Xi):
PY X 6= PY PX .

Assumption 3. The parameter set Ω is a compact
subset of Rd.

Assumption 4. The kernels φ(., ., ), ψ(., .) are sym-
metric and bounded.

Assumption 5. For any fixed θ0, the matrices

H(θ0) = E[∇2
θθ>`(Z;θ0)],

M(θ0) = E[∇θ`(Z;θ0)∇θ>`(Z;θ0)],

exist and are positive definite.

Theorem 4.3. Under assumptions 3-4, if λn
n → λ0,

then for any compact B ⊂ Θ such that θ0 ∈ B,

θ̂
P−→

n→∞
argmin
θ∈B

{Lpen∞ (θ)} = θ∗0 , where
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Lpen∞ (θ) = L(θ) +

d∑
k=1

ϕ(λ0, |θ0,k|),

with L(θ) given by Eq. (14) evaluated at θ and corre-
sponding to the probability limit of Ln(Z1, · · · ,Zn;θ),
and for any scalar θ, the penalty ϕ(λ0, |θ|) is given as

Lasso : λ0|θ|,
Bridge : λ0|θ|q,
MCP :

bmcpλ
2
0

2 1{|θ|>bmcpλ0}

− (bmcpλ0−|θ|)2
(2bmcp) 1{|θ|≤bmcpλ0},

SCAD :


λ0|θ|, for |θ| ≤ λ0,
−(θ2−2bscadλ0|θ|+λ2

0)
(2(bscad−1)) , for λ0≤|θ|≤ bscadλ0,

(bscad + 1)λ2
0/2, for |θ| > bscadλ0.

Hence if λn = o(n), then θ̂ is a consistent estimator.

Remark. The penalized estimator does not converge
to θ0 when λn = O(n). In the first part of the proof,
we prove the uniform convergence of the penalized cri-
terion to the limit criterion. To do so, we use Theorem
A.5 to derive a uniform law of large numbers of our
parameter dependent U-statistic. We then rely on the
convexity of the non-penalized criterion to deduce the
consistency.

Assumption 6. ϕ(λnn , |.|) is twice continuously dif-
ferentiable except at the origin. We define

A1,n = max
k∈A
|∇θkϕ(

λn
n
, |θ0,k|)|,

A2,n = max
k∈A
|∇2

θkθk
ϕ(
λn
n
, |θ0,k|)|,

so that A2,n → 0.

Remark. The condition on the second derivative im-
plies that the penalty has less influence than the non-
penalized loss function in the regularized problem.
Moreover, for the penalties of interest, the scaling of
(λn, n) determines this rate.

Theorem 4.4. Under assumptions 1-6, the sequence
of penalized estimators θ̂ satisfies

‖θ̂ − θ0‖ = Op(n
−1/2 +

√
card(A)A1,n).

Remark. This result highlights that if λnn
−1 =

O(n−1/2), then we would obtain a
√
n-consistent θ̂.

Note that the probability bound holds for any norm
‖.‖. If we consider a setting with a diverging num-
ber of parameters – that is a double-asymptotic set-
ting, where the dimension depends on the sample size
– then the norm ‖.‖ must be explicit because of the
norm equivalences, where some constants may appear
so that these constants may depend on the dimension.

We now derive the asymptotic distribution for the rate
λn = O(

√
n) for Lasso, SCAD, and MCP and λn =

O(nq/2) in the Bridge case.

Theorem 4.5. Under assumptions 1-6, suppose λn =
o(n); then if the regularization rates of Lasso, SCAD,
and MCP satisfy λn = O(

√
n) and the Bridge

regularization rate satisfies λn = O(nq/2), and if
lim
θ→0+

∇θϕ(λnn , θ) = λn
n for SCAD and MCP, it follows

that √
n(θ̂ − θ0)

d−→
n→∞

argmin
u∈Rd

{F∞(u)},

provided F∞(.) is the random function in Rd where

F∞(u) = w>u+
1

2
u>Hu+

d∑
k=1

g(λ0, uk, θ0,k),

where w ∼ NRd(0,M) with M := M(θ0), H := H(θ0)
defined in assumption 5, and g(λ, u, θ) is given as fol-
lows:

Lasso : λ
(
u sgn(θ)1θ 6=0 + |u|1θ=0

)
,

Bridge : λ|u|q1θ=0

MCP : λ|u|1θ=0,
SCAD : λ|u|1θ=0.

Remark. This result establishes the
√
n-consistency

of the penalized estimator. However, for λn = O(
√
n)

in the Lasso case, the term in 1θ0,k 6=0 implies that the
true active set A cannot be recovered with high prob-
ability (see Proposition 1 of (Zou, 2006)).
To derive such distributions, we rely on specific theo-
retical results depending on the penalty function. In
the Lasso case, because the objective function is con-
vex, we are in a position to rely on the convexity
Lemma B.1 of (Chernozhukov, 2005). For the non-
convex MCP and SCAD cases, we rely on Lemma
B.2 of (Umezu et al., 2018). As for the Bridge, we
lower-bound the asymptotic development by a quan-
tity, whose minimum exists with high probability.

We now turn to the oracle property. It has been well
known since (Zou, 2006) that Lasso does not satisfy
this property. A way to fix this problem is to spec-
ify adaptive weights in the penalty function to penal-
ize each coefficient differently. These adaptive weights
are stochastic and depend on a first step estimator,
which is required to be

√
n-consistent. In practice,

this first step estimator is taken as a non-penalized
M-estimator; that is, in the first step, the penalized
criterion is solved for λn = 0. The key advantage of
non-convex penalties is that they actually satisfy the
oracle property without the need for these stochastic
weights.

Theorem 4.6. Suppose λn
n → 0, for θA satisfying

‖θA−θ0,A‖ = Op(n
−1/2), under assumptions 1-6, sup-

pose the MCP and SCAD regularization rates satisfy
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λn
n1/2 →∞ and

lim inf
n→∞

lim inf
θ→0+

n

λn
∇θϕ

(
λn
n
, θ

)
> 0,

and suppose the Bridge satisfies the regularization rate
λn
nq/2

→ ∞, 0 < q < 1 and λn = O(
√
n), then the

√
n-consistent local estimator θ̂ defined in Theorem 4.4

satisfies lim
n→∞

P(Â = A) = 1 and(
∇2
AALn(Z1, · · · ,Zn; θ0) + Sn,AA

)√
n{(θ̂ − θ0)A

+
(
∇2
AALn(Z1, · · · ,Zn;θ0) + Sn,AA

)−1
bn,A}

d−→
n→∞

NRk0 (0,M),

with M = E[∇θ`(Z;θ0)∇θ>`(Z;θ0)] and

bn,A =
(
∇θ1ϕ(λnn , |θ0,1|)sgn(θ0,1), · · · ,

∇θk0ϕ(λnn , |θ0,k0 |)sgn(θ0,k0)
)>
,

Sn,AA = diag(∇2
θkθk

ϕ(λnn , |θ0,k|), k = 1, · · · , k0).

Remark. This result establishes the conditions to
satisfy the oracle property. Unlike Theorem 4.5, where
the rate for SCAD/MCP is λn = O(

√
n) and that

for the Bridge is λn = O(nq/2), we now require
λn/
√
n → ∞ for the former cases and λn/n

q/2 → ∞
for the latter case. Note that adaptive Lasso (aLasso)
is not reported because we discard the estimation
methods requiring a two-step estimator as in the adap-
tive case (see (Zou, 2006)). The proof of the oracle
property first focuses on the support recovery, that is,
lim
n→∞

P(Â = A) = 1. To do so, we prove that the

sign of θk for indices k /∈ A determines the sign of the
score of the penalized criterion taken in θk under the
assumption ‖θA− θ0,A‖ = Op(n

−1/2) for any given θ.
We then derive the large sample distribution for the
parameters whose indices belong to A.

We propose to conclude our theoretical analysis with
a consistency result when the dimension d = dn so
that dn → ∞ when n → ∞. The dimension satisfies
dn = O(nc) with some q1 < c < q2, 0 ≤ q1 < q2 < 1.
We then have the following probabilistic bound.

Theorem 4.7. Suppose that d2
n = O(n),

under assumptions 5 and 7-10, let A1,n =
max

1≤k≤dn
|∇θkϕ(λnn , |θ0,k|)|, then the sequence of

penalized estimators θ̂ satisfies

‖θ̂ − θ‖2 = Op(
√
dn
(
n−1/2 +

√
AnA1,n

)
).

Remark. Contrary to Theorem 4.4, where the bound
holds for any norm, an explicit norm is required in the
double asymptotic case. Indeed, because of the norm
equivalences, some constants may appear so that these
constant may depend on the size dn and thus on n.
All the assumptions adapted to the double asymptotic
setting can be found in the Appendix.

5 Experiments

In this section, we illustrate the oracle property using
a synthetic experience. We also carry out a real data
experience to compare the forecasting performances.

5.1 Simulation experiment

We propose to explore the variable selection perfor-
mance through the number of zero coefficients cor-
rectly estimated, denoted as C, the number of zero co-
efficients incorrectly estimated (i.e. an estimated zero
coefficient whereas the true parameter is non-zero),
denoted as IC1, the number of nonzero coefficients
incorrectly estimated (i.e. an estimated non-zero co-
efficient whereas the true parameter is zero), denoted
IC2, in Table 1, averaged for a hundred independent
batches. Besides, the mean squared error is reported
as an estimation accuracy measure. We consider the
data generating process based on Eq. (3):

∀i, j ≤ n, ψ(Yi, Yj ,Hn)=

d∑
k=1

θkψ(X
(k)
i , X

(k)
j ,Hn)+Uij ,

where the error term Uij ∼ NR(0, ζ2) with ζ = 2

and ∀k ≤ d, ψ(X
(k)
i , X

(k)
j ,Hn) = (K̄(k))ij is eval-

uated over the multivariate Gaussian vector Xo ∼
NRd(0,Σ), 1 ≤ o ≤ n. In Eq. (3), we took φ(., .) =
ψ(., .) and selected the Gaussian kernel:

ψ(Yi, Yj) = exp
(
− |Yi−Yj |

2

2σ2
y

)
,

ψ(X
(k)
i , X

(k)
j ) = exp

(
− |X

(k)
i −X

(k)
j |

2

2σ2
x

)
,

where σ2
x and σ2

y denote the widths of the kernel, which
are set using the median heuristic (Sriperumbudur
et al., 2009): σx = 2−1/2median({‖Xi − Xj‖2}ni,j=1)

and σy = 2−1/2median({‖Yi − Yj‖2}ni,j=1).

Note that our framework can accommodate alternative
symmetric kernels such as the linear kernel, Laplace
kernel, Abel kernel and the like. The variance co-
variance Σ is simulated such that Σpq = ρ|p−q| with
ρ = 0.8. As for the true parameter vector, we con-
sider ∀i ≤ k0,θi ∈ U([0, 2]) the uniform distribution,
whose true number of zero parameters k0 depends on
the problem size (and is arbitrarily set). We consider
different problem sizes: d = 400, 800. In both cases,
the true support is set as k0 = 100. For the sam-
ple size, we considered n = 1200 when d = 400 and
n = 2000 for d = 800. To recover the sparse support,
we used Lasso, aLasso, SCAD, MCP, and Bridge.

To solve the penalization problem, in the SCAD and
MCP cases, we apply a gradient descent method (see,
e.g., (Breheny and Huang, 2011)). For Lasso and its
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Table 1: Model selection and precision accuracy based on 100 replications.

Model MSE C IC1 IC2 MSE C IC1 IC2
Truth 300 0 0 700 0 0
Lasso 0.07 231.24 0.63 67.75 0.03 621.40 1.89 74.55
aLasso 0.59 300 16.25 0 0.08 700 13.75 0
SCAD 0.01 299.98 2.10 0.01 0.01 700 2.18 0
MCP 0.01 299.61 1.36 0.39 0.01 700 1.25 0

Bridge 0.07 300 3.64 0 0.05 700 3.22 0

Table 2: Mean square error based on 100 test sets.

Data Set No Pen. Lasso aLasso SCAD MCP Bridge
Isolet 2.085 1.965 1.847 1.843 1.829 1.837
Coil 3.250 3.037 2.949 2.951 2.960 3.014

ILPD 4.063 4.045 4.026 4.028 4.024 4.044

adaptive specification, we used the shooting algorithm
developed by (Fu, 1998) and set the exponent enter-
ing the adaptive weights to γ = 1.5 (see equation 4 of
(Zou, 2006)). We chose the non-penalized OLS esti-
mator as the random coefficient entering these weights.
Finally, we solved Bridge with q = 1/2 using a local
quadratic approximation approach (see, e.g., (Fan and
Li, 2001)). For selecting the regularization parameter,
we used a standard cross-validation procedure.

Table 1 reports the performances of the regularization
methods. The aLasso, SCAD, MCP, and Bridge per-
form better performances than Lasso in terms of vari-
able selection and mean square error. This is in line
with the asymptotic theory.

5.2 Real data experience

We carried out a performance analysis of the regu-
larization methods on the real data sets Isolet, Coil,
and ILPD from the UCI Machine Learning Repository.
We considered a high-dimensional setting, where the
number of observations is smaller than the number of
covariates: for Isolet, we selected the first 150 obser-
vations and the first 500 covariates of the data set;
for Coil, we selected the first 500 observations and the
first 1000 covariates of the data set; we considered the
full data set for the ILPD case, which is formed with
583 observations and 9 covariates.

The same V-statistic-based OLS problem as in the
simulation experience is considered for prediction pur-
poses with the Lasso, aLasso, SCAD, MCP, and Bridge
regularization procedures. We also reported the non-
penalized case (No Pen.). One hundred observations
were then randomly chosen to fit the penalized OLS
models, and the remaining 50 observations were used
as a test set. The procedure was repeated 100 times,

and the average mean square error for prediction is
reported in Table 2.

The prediction performance is clearly improved when
considering a penalized version of the regression model
in the high-dimensional case that is, Isolet and Coil.
Moreover, these results emphasize the advantage of us-
ing non-convex penalty functions. Although aLasso
performs well, it still requires a

√
n-consistent first

step estimator. The results are very close in the low-
dimensional case.

6 Conclusion

In this paper, we proposed the SpHSIC regression,
which is a versatile nonlinear feature selection algo-
rithm. We obtained the conditions that satisfy the
oracle property for the SpHSIC. Through experiments
on synthetic and the real-world data, we demonstrated
the ability of the proposed penalized model to recover
the true sparse support.

In future work, the theoretical properties can be ex-
tended to a double-asymptotic setting, where the num-
ber of parameters diverges with the sample size. Some
finite sample error bounds can also potentially be de-
rived together with an evaluation of the probability
that these bounds hold by using concentration inequal-
ities.
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