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1 Proof of Theorem 3.1

Theorem 1 Let L(x) denote the likelihood function
of an input sample x under a Gaussian distribution
N (µ,K). Let K = UΛUT be the Eigen-decomposition
of the covariance matrix K. Let c = [c1, c2, . . . , cn] =
UTK, and Λ = diag([λ1, . . . λn]). Let η be a solution
of the set of equations∑

i

c2i
(1− 2ηλi)2

= ε2

2ηλi − 1 ≥ 0 ∀i

Then, the optimal additive perturbation δ with norm
bound ‖δ‖2 < ε that maximally decreases the likelihood
score of sample x is given by

δ∗ = (K−1 − 2ηI)−1K−T (µ− x) (1)

Proof: We are interested in generating an adversar-
ial attack on linear models trained on Gaussian input
distribution. As explained in Section 2.1 of the main
paper, adversarial perturbation δ on sample x can be
obtained by solving the following optimization:

min
δ

C − 1

2
log(|K|)− (x− µ+ δ)TK−1(x− µ+ δ)

2

s.t. ‖δ‖2 < ε

The Lagrangian L corresponding to this optimization
can be written as

L =− (x− µ+ δ)TK−1(x− µ+ δ)

2
+ η(δT δ − ε2)

=− (x− µ)TK−1(x− µ)

2
− (x− µ)TK−1δ

− δTK−1δ

2
+ η(δT δ − ε2)

First-order necessary conditions (KKT) From
the stationarity condition of KKT, the gradient of the
Lagrangian function w.r.t the optimization variables
should be 0.

∇δL = −K−T (x− µ)−K−1δ + 2ηδ = 0

(K−1 − 2ηI)δ = K−T (µ− x)

δ = (K−1 − 2ηI)−1K−T (µ− x) (2)

From complementary slackness, we obtain

η(δT δ − ε2) = 0 (3)

So, either η = 0 or δT δ = ε2. When η = 0, δ = µ− x.
For the other condition δT δ = ε2, we obtain,

(µ− x)TK−1(K−1 − 2ηI)−2K−T (µ− x) = ε2

Now, consider the Eigen-decomposition of matrix K =
UΛUT , where Λ = diag(λ1, λ2, . . . λn). Using this in
the above equation, we obtain the condition∑

i

c2i
(1− 2ηλi)2

= ε2 (4)

where c = [c1, c2, . . . cn] = UT (µ − x). Eq. (4) can be
solved numerically to obtain the value of η.

Second order sufficiency condition: The Hessian
of the Lagrangian function can be written as

∇2
δδL = −K−1 + 2ηI

The above matrix should be positive semi-definite.
This gives the following condition

2ηλi − 1 ≥ 0 ∀i (5)

We see that the solution δ = 0 does not satisfy this
property, hence, it can be eliminated. Hence, the op-
timal perturbation is the solution to Eq. (4) which
satisfy Eq. (5).

2 Proof of Theorem 3.2

Lemma 2 Let X be a χ2(n) distribution. Then, for
any t > 1,

Pr(X ≥ 2tn) ≤ e− tn
10

Proof: From Laurent & Massart (2000), we know
that for a χ2(n) random variable X,

Pr(X ≥ n+ 2
√
nx+ 2x) ≤ e−x

Substituting x = tn
10 , we get

Pr(X ≥ n+ 2n
√
t/10 + 2tn/10) ≤ e−tn/10
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Now, n(1 + 2
√
t/10 + 2t/10) < n(1 + 2t/10 + 2t/10) <

2nt for t > 1. Hence,

Pr(X ≥ 2nt) < Pr(X ≥ n+ 2n
√
t/10 + 2tn/10)

≤ e−tn/10

Theorem 3 Let x be an input sample drawn from
N(µ, σ2I). Let L(x) denote the log-likelihood func-
tion of the sample x estimated using a m- step ad-
versarially trained model. Let δ be any perturba-
tion vector having a norm-bound ‖δ‖2 ≤ ε. For any

∆, when m ≥ max
[

log
(

1
2σ2∆

(
2σε
√

20 log(1/γ) +

ε2
))
, log

(
1

2σ2∆

[
2σε
√

2n+ε2
])]

/ log(1+α), with prob-

ability greater than 1− γ,

L(x)− L(x + δ) < ∆

Proof: From Section 3.1.1 of main paper, the opti-
mal adversarial perturbation for spherical covariance
matrix is given by

δ =
ε

‖x− µ‖
(x− µ)

From Section 3.2, we know that the estimated model
parameters after m steps of adversarial training is
given by

µadvm = µ

Kadv
m = σ2(1 + α)mI

Log-likelihood drop for this model under the optimal
adversarial perturbation can then be computed as

L(x) = C ′ − ‖x− µ‖2

2σ2(1 + α)m

L(x + δ) = C ′ − ‖x− µ‖2

2σ2(1 + α)m

(
1 +

ε

‖x− µ‖

)2

L(x)− L(x + δ) =
1

2σ2(1 + α)m

(
2ε‖x− µ‖+ ε2

)
We want this likelihood difference to be less than ∆.

Pr(L(x)− L(x + δ) < ∆)

= Pr(
‖x− µ‖

σ
<

2σ2∆(1 + α)m − ε2

2σε
)

We now reparameterize x̃ = x−µ
σ ∼ N (0, I). The norm

vector ‖x̃‖2 then obeys a χ2(n) distribution with n
degrees of freedom. Then,

Pr(L(x)− L(x + δ) < ∆)

= Pr
(
‖x̃‖2 <

(2σ2∆(1 + α)m − ε2

2σε

)2)
(6)

= 1− Pr
(
‖x̃‖2 ≥

(2σ2∆(1 + α)m − ε2

2σε

)2)

Now, we use Lemma 2 in (6). Set

t =
1

2n

(2σ2∆(1 + α)m − ε2

2σε

)2

(7)

Then,

Pr
(
‖x̃‖2 ≥

(2σ2∆(1 + α)m − ε2

2σε

)2)
≤ exp

(−1

20

(2σ2∆(1 + α)m − ε2

2σε

)2)
≤ γ

Simplifying the above expression, we obtain,

m ≥
log
(

1
2σ2∆

(
2σε
√

20 log(1/γ) + ε2
))

log(1 + α)

Also, in condition (7), we require t > 1. This gives,

m >
log
(

1
2σ2∆

[
2σε
√

2n+ ε2
])

log(1 + α)

Hence, when m ≥ max
[

log
(

1
2σ2∆

(
2σε
√

20 log(1/γ)+

ε2
))
, log

(
1

2σ2∆

[
2σε
√

2n+ε2
])]

/ log(1+α), Pr(L(x)−
L(x + δ) < ∆) ≥ 1− γ . This concludes the proof.

3 Extension of linear attacks to
non-linear models

We now present how the linear attacks discussed in the
previous section can be used to attack non-linear flow-
based models. Let G : Rd → Rd denote a non-linear
flow-based generative model. We can locally linearize
the generator function using a first order Taylor ap-
proximation as

G(z) ≈ G(z0) +∇GT |z=z0(z− z0)

=
(
G(z0)−∇GT |z=z0z0

)
+∇GT |z=z0z

Since z ∼ N (0, I), G(z) which is an affine transforma-
tion of z also obeys a Gaussian distribution with mean
and covariance given by

µ = G(z0)−∇GT |z=z0z0

K = ∇G∇GT |z=z0

Using this local linear approximation, we can use The-
orem 1 to create an adversarial attack. Given a pertur-
bation bound ε, Theorem 1 provides an efficient form
for computing adversarial attack. However, the local
linear approximation might not hold true for larger
perturbation radii. Hence, we propose an iterative
version of adversarial attack, called Iterated Gaussian



Iteration NLL

Clean 2.075
1 2.077
2 2.093
3 2.123
4 2.141
5 2.180
6 2.204
7 2.249
8 2.292
9 2.317
10 2.360

Table 1: Sample results of iterated linear Gaussian at-
tack on a CIFAR-10 image. Attack strength is weaker
than PGD-1 (2.92) or PGD-10 (3.65).

attack, as given in Algorithm 1. Sample experimen-
tal results on Iterated Gaussian attack are reported in
Table 1. We observed that the attack is weaker than
one or ten step PGD with the maximum epsilon, which
obtain NLL scores 2.92 and 3.65 respectively.

Algorithm 1 Iterated Gaussian attack

Require: Input sample x, `2 perturbation radius ε
1: Choose a small perturbation ball εs
2: Initialize xatt = x
3: while ‖xatt − x‖2 < ε do
4: Set z0 = G−1(xatt)
5: Find xatt using Theorem 1 with perturbation

radius εl
6: end while

4 Visualization of Attack
Distributions

In addition the tables reported in the main text, we
visualize the distributions of the attack likelihoods for
CIFAR-10. We show these results for the three model
types (1) clean (2) adversarially trained and (3) hy-
brid adversarially trained, against the two attack mod-
els (1) in-distribution attacks at various ε compared
against out-of-distribution samples (unattacked uni-
form noise) and (2) out-of-distribution attacks at var-
ious ε compared against “plain” in-distribution sam-
ples.

The trends observed here are consistent with what we
previously reported in Tables 1 and 2 of the main pa-
per. For in-distribution attacks, we observe that clean
model (which is not adversarially trained) is suscepti-
ble to adversarial attacks even at perturbations as low
as ε = 1. This can be seen as the ε = 1 attack distribu-
tion falls clearly to the right of the clean ε = 0 distribu-

tion (Figure 4). In addition, we observe that the likeli-
hoods for ε = 4 exceeds that for the out-of-distribution
attacks, thus confirming that in-distribution samples
can made less likely than out-of-distribution samples.
For adversarially trained and hybrid models (Figures
2 and 3), NLL distributions of unperturbed and per-
turbed samples all overlap, showing that models are
robust against in-distribution attacks.

We observe that out-of-distribution attacks are suc-
cessful against all models - clean models and in-
distribution adversarially and hybrid trained models
(Figures 4, 5, and 6). Thus we do not provide such
robustness. As the attack ε increases, the likelihoods
of out-of-distribution samples are pushed towards the
in-distribution likelihoods. Although the distributions
do not overlap as in the in-distribution case, the trend
is clear: higher ε push the distribution towards the
clean distribution.

5 Are generated samples from
adversarially trained model
adversarial?

Generative models trained on adversarial examples
provide a unique opportunity to ask the question of
whether the samples generated by this model has an
adversarial nature. To do this, we generate sam-
ples from an adversarially trained model, and evaluate
their likelihood on model trained on unperturbed sam-
ples. We find that samples generated by adversarially
trained model are indeed adversarial with respect to
the unperturbed model, at a strength comparable to
that on which the model was trained. These results
are shown in in Figure 7.

6 Experimental Details

All model architectures for GLOW and RealNVP were
trained with default values given in their respective im-
plementations. Adversarial and Hybrid models were
trained with ε = 8, and m = 10 attack iterations.
GLOW test sizes for CIFAR-10 and LSUN Bedroom
test size were N = 10, 000 and N = 1200 (default)
respectively. For GLOW robustness evaluations, ad-
versaries were trained with m = 32 and m = 40 for
CIFAR-10 and LSUN Bedroom respectively.

For the random noise baseline, random images were
generated as Unif[−ε, ε] (centered) and then clipped
to [0, 255].

Out-of-distribution attacks were performed with a
Unif[0,255] random image, and trained trained with
m = 100 iterations.
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Figure 1: In-distribution attack distributions for clean model.

Figure 2: In-distribution attack distributions for adversarially trained model.

Figure 3: In-distribution attack distributions for hybrid adversarially trained model.

Figure 4: Out-of-distribution attack distributions for clean model.



Figure 5: Out-of-distribution attack distributions for adversarially trained model.

Figure 6: Out-of-distribution attack distributions for hyrbid adversarially trained model.

7 Instability in GLOW likelihood
evaluations on CIFAR-10 for high ε

In our experiments, we observed variance in likelihood
evaluations for GLOW models trained on CIFAR-10
under strong adversaries (attack strengths ε ≥ 8). On
the other hand, low attack strengths (ε < 8) had negli-
gible variance. This adds uncertainty as to the ”true”
value of the attack strength, however we maintain that
the trend is clear: stronger adversaries are more dis-
ruptive of the likelihood score. As this paper is primar-
ily concerned with the existence of adversarial attacks
and robust defenses, we consider this issue not ger-
mane to the present work. For completeness, we give
details on our investigation of this issue below.

Sources of randomness and numerical issues were in-
vestigated. Two sources of randomness found were (1)
the addition of uniform random noise in the compu-
tation of continuous log-likelihoods (Equation (2) in
Kingma & Dhariwal (2018)) and (2) the random ini-
tialization of rotation matrices W in the invertible 1×1
convolution (paragraph below Equation (9) in Kingma
& Dhariwal (2018)).

High NLL values correspond to very small probabili-
ties. Since the entire computation is done in the log

scale, underflow is not a problem. Computations are
by default performed with float32, having the range
of approximately ±3.4 × 1038, which far exceeds the
highest value we observed of 1016.

The authors of Kingma & Dhariwal (2018) propose
LU-decomposition as a fast means of computing the
determinant. In the reference implementation this op-
tion was disabled by default. We found that enabling
it helped with numeric stability, with negligible drop
in training speed.
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Figure 7: Samples generated at different temperatures from an adversarially trained model, evaluated against
a clean model.


