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Abstract

We advocate the use of a notion of entropy
that reflects the relative abundances of the
symbols in an alphabet, as well as the sim-
ilarities between them. This concept was
originally introduced in theoretical ecology to
study the diversity of ecosystems. Based on
this notion of entropy, we introduce geometry-
aware counterparts for several concepts and
theorems in information theory. Notably, our
proposed divergence exhibits performance on
par with state-of-the-art methods based on
the Wasserstein distance, but enjoys a closed-
form expression that can be computed effi-
ciently. We demonstrate the versatility of our
method via experiments on a broad range of
domains: training generative models, comput-
ing image barycenters, approximating empiri-
cal measures and counting modes.

1 Introduction

Shannon’s seminal theory of information (1948) has
been of paramount importance in the development of
modern machine learning techniques. However, stan-
dard information measures deal with probability distri-
butions over an alphabet considered as a mere set of
symbols and disregard additional geometric structure,
which might be available in the form of a metric or
similarity function. As a consequence of this, informa-
tion theory concepts derived from the Shannon entropy
(such as cross entropy and the Kullback-Leibler diver-
gence) are usually blind to the geometric structure in
the domains over which the distributions are defined.

This blindness limits the applicability of these concepts.
For example, the Kullback-Leibler divergence cannot
be optimized for empirical measures with non-matching
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supports. Optimal transport distances, such as Wasser-
stein, have emerged as practical alternatives with theo-
retical grounding. These methods have been used to
compute barycenters (Cuturi and Doucet, 2014) and
train generative models (Genevay et al., 2018). How-
ever, optimal transport is computationally expensive
as it generally lacks closed-form solutions and requires
the solution of linear programs or the execution of
matrix scaling algorithms, even when solved only in
approximate form (Cuturi, 2013). Approaches based
on kernel methods (Gretton et al., 2012; Li et al., 2017;
Salimans et al., 2018), which take a functional analytic
view on the problem, have also been widely applied.
However, further exploration on the interplay between
kernel methods and information theory is lacking.

Contributions. We i) introduce to the machine learn-
ing community a similarity-sensitive definition of en-
tropy developed by Leinster and Cobbold (2012). Based
on this notion of entropy we ii) propose geometry-aware
counterparts for several information theory concepts.
We iii) present a novel notion of divergence which in-
corporates the geometry of the space when comparing
probability distributions, as in optimal transport. How-
ever, while the former methods require the solution of
an optimization problem or a relaxation thereof via
matrix-scaling algorithms, our proposal enjoys a closed-
form expression and can be computed efficiently. We
refer to this collection of concepts as Geometry-Aware
Information Theory: GAIT.

Paper structure. We introduce the theory behind
the GAIT entropy and provide motivating examples
justifying its use. We then introduce and characterize a
divergence as well as a definition of mutual information
derived from the GAIT entropy. Finally, we demon-
strate applications of our methods including training
generative models, approximating measures and find-
ing barycenters. We also show that the GAIT entropy
can be used to estimate the number of modes of a
probability distribution.

Notation. Calligraphic letters denote Sets, bold
letters represent Matrices and vectors, and double-
barred letters denote Probability distributions and
information-theoretic functionals. To emphasize cer-
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Figure 1: HK
1 interpolates towards

the Shannon entropy as r →∞.
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Figure 2: A 3-point space with
two highly similar elements.

Figure 3: HK
1 for distributions

over the space in Fig. 2.

tain computational aspects, we alternatively denote a
distribution P over a finite space X as a vector of proba-
bilities p. I, 1 and J denote the identity matrix, a vec-
tor of ones and matrix of ones, with context-dependent
dimensions. For vectors v, u and α ∈ R, v

u and vα de-
note element-wise division and exponentiation. 〈·, ·〉 de-
notes the Frobenius inner-product between two vectors
or matrices. ∆n , {x ∈ Rn| 〈1,x〉 = 1 and xi ≥ 0}
denotes the probability simplex over n elements. δx
denotes a Dirac distribution at point x. We adopt the
conventions 0 · log(0) = 0 and x log(0) = −∞ for x > 0.

Reproducibility. Our experiments can be reproduced
via: https://github.com/jgalle29/gait

2 Geometry-Aware Information Theory

Suppose that we are given a finite space X with n ele-
ments along with a symmetric function that measures
the similarity between elements, κ : X × X → [0, 1].
Let K be the Gram matrix induced by κ on X; i.e,
Kx,y , κxy , κ(x, y) = κ(y, x). Kx,y = 1 indicates
that the elements x and y are identical, while Kx,y = 0
indicates full dissimilarity. We assume that κ(x, x) = 1
for all x ∈ X. We call (X, κ) a (finite) similarity space.
For brevity we denote (X, κ) by X whenever κ is clear
from the context.

Of particular importance are the similarity spaces
arising from metric spaces. Let (X, d) be a metric
space and define κ(x, y) , e−d(x,y). Here, the sym-
metry and range conditions imposed on κ are triv-
ially satisfied. The triangle inequality in (X, d) in-
duces a multiplicative transitivity on (X, κ): for all
x, y, z ∈ X, κ(x, y) ≥ κ(x, z)κ(z, y). Moreover, for any
(non-degenerate) metric space, the Gram matrix of its
associated similarity space is positive definite (Reams,
1999, Lemma 2.5).

In this section, we present a theoretical framework
which quantifies the “diversity” or “entropy” of a proba-
bility distribution defined on a similarity space, as well
as a notion of divergence between such distributions.

2.1 Entropy and diversity

Let P be a probability distribution on X. P in-
duces a similarity profile KP : X → [0, 1], given by
KP(x) , Ey∼P [κ(x, y)] = (Kp)x.1 KP(x) represents
the expected similarity between element x and a ran-
dom element of the space sampled according to P. In-
tuitively, it assesses how “satisfied” we would be by
selecting x as a one-point summary of the space. In
other words, it measures the ordinariness of x, and thus

1
KP(x) is the rarity or distinctiveness of x (Leinster and
Cobbold, 2012). Note that the distinctiveness depends
crucially on both the similarity structure of the space
and the probability distribution at hand.

Much like the interpretation of Shannon’s entropy as
the expected surprise of observing a random element
of the space, we can define a notion of diversity as
expected distinctiveness: ∑

x∈X P(x) 1
KP(x) . This arith-

metic weighted average is a particular instance of the
family of power (or Hölder) means. Given w ∈ ∆n

and x ∈ Rn≥0, the weighted power mean of order β is

defined as Mw,β(x) ,
〈
w,xβ

〉 1
β . Motivated by this av-

eraging scheme, Leinster and Cobbold (2012) proposed
the following definition:
Definition 1. (Leinster and Cobbold, 2012) (GAIT
Entropy) The GAIT entropy of order α ≥ 0 of distri-
bution P on finite similarity space (X, κ) is given by:

HK
α [P] , logMp,1−α

(
1

Kp

)
(1)

=
1

1− α
log

n∑
i=1

pi
1

(Kp)1−αi

. (2)

It is evident that whenever K = I, this definition re-
duces to the Rényi entropy (Rényi, 1961). Moreover,
a continuous extension of Eq. (1) to α = 1 via a
L’Hôpital argument reveals a similarity-sensitive ver-
sion of Shannon’s entropy:

HK
1 [P] = −〈p, log(Kp)〉 = −Ex∼P[log(KP)x]. (3)

1This denotes the x-th entry of the result of the matrix-
vector multiplication Kp.

https://github.com/jgalle29/gait
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Let us dissect this definition via two simple examples.
First, consider a distribution pθ = [θ, 1− θ]> over the
points {x, y} at distance r ≥ 0, and define the similarity
κxy , e−r. As the points get further apart, the Gram
matrix Kr transitions from J to I. Fig. 1 displays the
behavior of HKr

1 [pθ]. We observe that when r is large
we recover the usual shape of Shannon entropy for a
Bernoulli variable. In contrast, for low values of r, the
curve approaches a constant zero function. In this case,
we regard both elements of the space as identical: no
matter how we distribute the probability among them,
we have low uncertainty about the qualities of random
samples. Moreover, the exponential of the maximum en-
tropy, exp

[
supθ H

Kr
1 [pθ]

]
= 1 + tanh(r) ∈ [1, 2], mea-

sures the effective number of points (Leinster and
Meckes, 2016) at scale r.

Now, consider the space presented in Fig. 2, where
the edge weights denote the similarity between ele-
ments. The maximum entropy distribution in this
space following Shannon’s view is the uniform distribu-
tion u = [ 13 ,

1
3 ,

1
3 ]>. This is counter-intuitive when we

take into account the fact that points A and B are very
similar. We argue that a reasonable expectation for a
maximum entropy distribution is one which allocates
roughly probability 1

2 to point C and the remaining
mass in equal proportions to points A and B. Fig. 3
displays the value of HK

1 for all distributions on the
3-simplex. The green dot represents u, while the black
star corresponds to the maximum GAIT entropy with
[A, B, C]-coordinates p∗ , [0.273, 0.273, 0.454]>. The
induced similarity profile is Kp∗ = [12 ,

1
2 ,

1
2 ]>. Note

how Shannon’s probability-uniformity gets translated
into a constant similarity profile.

Properties. We now list several important properties
satisfied by the GAIT entropy, whose proofs and formal
statements are contained in (Leinster and Cobbold,
2012) and (Leinster and Meckes, 2016):

• Range: 0 ≤ HK
α [P] ≤ log(|X|).

• K-monotonicity: Increasing the similarity re-
duces the entropy. Formally, if κxy ≥ κ′xy for all
x, y ∈ X, then HJ

α[P] ≤ HK
α [P] ≤ HK′

α [P] ≤ HI
α[P].

• Modularity: If the space is partitioned into fully
dissimilar groups, (X, κ) =

⊗C
c=1(Xc, κc), so that

K is a block matrix (x ∈ Xc, y ∈ Xc′ , c 6= c′ ⇒
κxy = 0), then the entropy of a distribution on X

is a weighted average of the block-wise entropies.

• Symmetry: Entropy is invariant to relabelings
of the elements, provided that the rows of K are
permuted accordingly.

• Absence: The entropy of a distribution P over
(X, κ) remains unchanged when we restrict the

similarity space to the support of P.

• Identical elements: If two elements are identi-
cal (two equal rows in K), then combining them
into one and adding their probabilities leaves the
entropy unchanged.

• Continuity: HK
α [P] is continuous in α ∈ [0,∞]

for fixed P, and continuous in P (w.r.t. standard
topology on ∆) for fixed α ∈ (0,∞).

• α-Monotonicity: HK
α [P] is non-increasing in α.

The role of α. Def. 1 establishes a family of entropies
indexed by a non-negative parameter α, which deter-
mines the relative importance of rare elements versus
common ones, where rarity is quantified by 1

KP . In par-

ticular, HK
0 [P] = log

〈
p, 1

Kp

〉
. When K = I, HK

0 [P] =

log |supp(P)|, which values rare and common species
equally, while HK

∞[P] = − log maxi∈supp(p)(Kp)i only
considers the most common elements. Thus, in princi-
ple, the problem of finding a maximum entropy distri-
bution depends on the choice of α.

Theorem 1. (Leinster and Meckes, 2016) Let (X, κ)
be a similarity space. There exists a probability dis-
tribution P∗X that maximizes HK

α [·] for all α ∈ R≥0,
simultaneously. Moreover, H∗X , sup

P∈∆|X|

HK
α [P] does not

depend on α.

Remarkably, Thm. 1 shows that the maximum entropy
distribution is independent of α and thus, the maximum
value of the GAIT entropy is an intrinsic property of
the space: this quantity is a geometric invariant. In
fact, if κ(x, y) , e−d(x,y) for a metric d on X, there
exist deep connections between H∗X and the magnitude
of the metric space (X, d) (Leinster, 2013).

Theorem 2. (Leinster and Meckes, 2016) Let P be
a distribution on a similarity space (X, κ). HK

α [P] is
independent of α if and only if KP(x) = KP(y) for all
x, y ∈ supp(P).

Recall the behavior of the similarity profile observed
for p∗ in Fig. 2. Thm. 2 indicates that this is not a
coincidence: inducing a similarity profile which is con-
stant over the support of a distribution P is a necessary
condition for P being a maximum entropy distribu-
tion. In the setting α = 1 and K = I, the condition
Kp = p = λ1 for some λ ∈ R≥0, is equivalent to the
well known fact that the uniform distribution maxi-
mizes Shannon entropy.

2.2 Concavity of HK
1 [·]

A common interpretation of the entropy of a probability
distribution is that of the amount of uncertainty in
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the values/qualities of the associated random variable.
From this point of view, the concavity of the entropy
function is a rather intuitive and desirable property:
“entropy should increase under averaging”.

Consider the case K = I. HI
α[·] reduces to the the Rényi

entropy of order α. For general values of α, this is not
a concave function, but rather only Schur-concave (Ho
and Verdú, 2015). However, HI

1[·] coincides with the
Shannon entropy, which is a strictly concave function.
Since the subsequent theoretical developments make
extensive use of the concavity of the entropy, we restrict
our attention to the case α = 1 for the rest of the paper.

To the best of our knowledge, whether the entropy
HK

1 [P] is a (strictly) concave function of P for general
similarity kernel K is currently an open problem. Al-
though a proof of this result has remained elusive to us,
we believe there are strong indicators, both empirical
and theoretical, pointing towards a positive answer.
We formalize these beliefs in the following conjecture:

Conjecture 1. Let (X, κ) be a finite similarity space
with Gram matrix K. If K is positive definite and
κ satisfies the multiplicative triangle inequality, then
HK

1 [·] is strictly concave in the interior of ∆|X|.

Fig. 4 shows the relationship between the linear approx-
imation of the entropy and the value of the entropy over
segment of the convex combinations between two mea-
sures. This behavior is consistent with our hypothesis
on the concavity of HK

1 [·].

We emphasize the fact that the presence of the term
log(Kp) complicates the analysis, as it incompatible
with most linear algebra-based proof techniques, and
it renders most information theory-based bounds too
loose, as we explain in App C. Nevertheless, we pro-
vide extensive numerical experiments in App. C which
support our conjecture. In the remainder of this work,
claims dependent on this conjecture are labelled ♣.

2.3 Comparing probability distributions

The previous conjecture implies that−HK
1 [·] is a strictly

convex function. This naturally suggests considering
the Bregman divergence induced by the negative GAIT
entropy. This is analogous to the construction of the
Kullback-Leibler divergence as the Bregman divergence
induced by the negative Shannon entropy.

Straightfoward computation shows that the gap be-
tween the negative GAIT entropy at p and its linear
approximation around q evaluated at p is:

−HK
1 [p]−

[
−HK

1 [q] +
〈
−∇qHK

1 [q], p− q
〉]

= 1 +

〈
p, log

Kp

Kq

〉
−
〈

q,
Kp

Kq

〉
(Conj. 1)
≥ 0.

Figure 4: Left: The entropy HK
1 [(1−θ)q+θp] is upper-

bounded by the linear approximation at q, given by
HK

1 [q] + θ
〈
∇qHK

1 [q], p− q
〉
. Right: Optimal Gaus-

sian model under various divergences on a simple mix-
ture of Gaussians task under an RBF kernel. W1 de-
notes the 1-Wasserstein distance.

Definition 2. (GAIT Divergence)♣ The GAIT di-
vergence between distributions P and Q on a finite
similarity space (X, κ) is given by:

DK[P ||Q] , 1 + EP

[
log

KP
KQ

]
− EQ

[
KP
KQ

]
. (4)

When K = I, the GAIT divergence reduces to the
Kullback-Leibler divergence. Compared to the family
of f -divergences (Csiszár and Shields, 2004), this defini-
tion computes point-wise ratios between the similarity
profiles KP and KQ rather than the probability masses
(or more generally, Radon-Nikodym w.r.t. a reference
measure). We highlight that KP(x) provides a global
view of the space via the Gram matrix from the per-
spective of x ∈ X. Additionally, the GAIT divergence
by definition inherits all the properties of Bregman
divergences. In particular, DK[P ||Q] is convex in P.

Forward and backward GAIT divergence. Like
the Kullback-Leibler divergence, the GAIT divergence
is not symmetric and different orderings of the argu-
ments induce different behaviors. Let Q be a family of
distributions in which we would like to find an approx-
imation Q to P /∈ Q. arg minQ DK[· ||P] concentrates
around one of the modes of P; this behavior is known as
mode seeking. On the other hand, arg minQ DK[P || ·]
induces a mass covering behavior. Fig. 4 displays this
phenomenon when finding the best (single) Gaussian
approximation to a mixture of Gaussians.

Empirical distributions. Although we have devel-
oped our divergence in the setting of distributions over
a finite similarity space, we can effectively compare
two empirical distributions over a continuous space.
Note that if an arbitrary x ∈ X (or more generally a
measurable set E for a given choice of σ-algebra) has
measure zero under both µ and ν, then such x (or E)
is irrelevant in the computation of DK[P ||Q]. There-
fore, when comparing empirical measures, the possibly
continuous expectations involved in the extension of
Eq. (2) to general measures reduce to finite sums over
the corresponding supports.
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Table 1: Definitions of GAIT mutual information and joint entropy.

Joint Entropy HK⊗Λ[X,Y ] , −Ex,y∼P[log([K⊗Λ]P)x,y]

Conditional Entropy HK,Λ[X|Y ] , HK⊗Λ[X,Y ]−HΛ[Y ]

Mutual Information IK,Λ[X;Y ] , HK[X] + HΛ[Y ]−HK⊗Λ[X,Y ]

Conditional M.I. IK,Λ,Θ[X;Y |Z] , HK,Θ[X|Z] + HΛ,Θ[Y |Z]−HK⊗Λ,Θ[X,Y |Z]

Concretely, let (X, κ) be a (possibly continuous) sim-
ilarity space and consider the empirical distributions
P̂ =

∑n
i=1 piδxi and Q̂ =

∑m
j=1 qjδyi with p ∈ ∆n

and q ∈ ∆m. The Gram matrix of the restriction of
(X, κ) to S , supp(P) ∪ supp(Q) has the block struc-

ture KS ,

(
Kxx Kxy

Kyx Kyy

)
, where Kxx is n× n, Kyy is

m×m and Kxy = K>yx. It is easy to verify that

DK[P̂ || Q̂] = 1 +

〈
p, log

Kxxp

Kxyq

〉
−
〈

q,
Kyxp

Kyyq

〉
. (5)

Computational complexity. The computation of
Eq. (5) requires O(|κ|(n+m)2) operations, where |κ|
represents the cost of a kernel evaluation. This exhibits
a quadratic behavior in the size of the union of the
supports, typical of kernel-based approaches (Li et al.,
2017). We highlight that Eqs. (2) and (5) provide a
quantitative assessment of the dissimilarity between P
and Q via a closed form expression. This is in sharp
contrast to the multiple variants of optimal transport
which require the solution of an optimization problem
or the execution of several iterations of matrix scaling
algorithms. Moreover, the proposals of Cuturi and
Doucet (2014); Benamou et al. (2014) require at least
Ω((|κ|+L)mn) operations, where L denotes the number
of Sinkhorn iterations, which is an increasing function
of the desired optimization tolerance. A quantitative
comparison is presented in App. G.

Weak topology. The type of topology induced by a
divergence on the space of probability measures plays
important role in the context of training neural gen-
erative models. Several studies (Arjovsky et al., 2017;
Genevay et al., 2018; Salimans et al., 2018) have ex-
hibited how divergences which induce a weak topology
constitute learning signals with useful gradients. In
App. A, we provide an example in which the GAIT
divergence can provide a smooth training signal despite
being evaluated on distribution with disjoint supports.

2.4 Mutual Information

We now use the GAIT entropy to define similarity-
sensitive generalization of standard concepts related
to mutual information. As before, we restrict our at-
tention to α = 1. This is required to get the chain
rule of conditional probability for the Rényi entropy

and to use Conj. 1. Finally, we note that although
one could use the GAIT divergence to define a mutual
information, in a fashion analogous to how traditional
mutual information is defined via the KL divergence,
the resulting object is challenging to study theoretically.
Instead, we use a definition based on entropy, which is
equivalent in spaces without similarity structure.

Definition 3. Let X, Y , Z be random variables tak-
ing values on the similarity spaces (X, κ), (Y, λ), (Z, θ)
with corresponding Gram matrices K, Λ, Θ. Let
[κ⊗ λ]((x, y), (x′, y′)) , κ(x, x′)λ(y, y′), and (KQ)x ,
Ex′∼Q[κ(x, x′)] denotes the expected similarity between
object x and a random Q-distributed object. Let P
be the joint distribution of X and Y . Then the joint
entropy, conditional entropy, mutual information and
conditional mutual information are defined following
the formulas in Table. 1.

Note that the GAIT joint entropy is simply the entropy
of the joint distribution with respect to the tensor
product kernel. This immediately implies monotonicity
in the kernels K and Λ. Note also that the chain rule
of conditional probability holds by definition.

Subject to these definitions, similarity-sensitive versions
of a number theorems analogous to standard results of
information theory follow:

Theorem 3. Let X, Y be independent, then:

HK⊗Λ[X,Y ] = HK[X] + HΛ[Y ]. (6)

When the conditioning variables are perfectly identi-
fiable (Λ = I), we recover a simple expression for the
conditional entropy:

Theorem 4. For any kernel κ,

HK,I[X|Y ] = Ey∼Py [HK[X|Y = y]]. (7)

Using Conj. 1, we are also able to prove that condition-
ing on additional information cannot increase entropy,
as intuitively expected.

Theorem 5. ♣ For any similarity kernel κ,

HK,I[X|Y ] ≤ HK[X]. (8)

Theorem 5 is equivalent to Conj. 1 when considering a
categorical Y mixing over distributions {Xy}y∈Y.
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Figure 5: Left: Generated Swiss roll data. Center and Right: Manifolds for MNIST and Fashion MNIST.

Finally, a form of the data processing inequality (DPI),
a fundamental result in information theory governing
the mutual information of variables in a Markov chain
structure, follows from Conj. 1.
Theorem 6. (Data Processing Inequality)♣.
If X → Y → Z is a Markov chain, then

IK,Θ[X;Z] ≤ IK,Λ[X;Y ] + IK,Θ,Λ[X;Z|Y ]. (9)

Note the presence of the additional term
IK,Λ,Θ[X;Z|Y ] relative to the non-similarity-sensitive
DPI given by I[X;Z] ≤ I[X;Y ]. Intuitively, this can
be understood as reflecting that conditioning on Y
does not convey all of its usual “benefit”, as some
information is lost due to the imperfect identifiability
of elements in Y . When Λ = I this term is 0, and the
original DPI is recovered.

3 Related work

Theories of Information. Information theory is
ubiquitous in modern machine learning: from vari-
able selection via information gain in decision trees
(Ben-David and Shalev-Shwartz, 2014), to using en-
tropy as a regularizer in reinforcement learning (Fox
et al., 2016), to rate-distortion theory for training gen-
erative models (Alemi et al., 2018). To the best of our
knowledge, the work of Leinster and Cobbold (2012);
Leinster and Meckes (2016) is the first formal treat-
ment of information-theoretic concepts in spaces with
non-trivial geometry, albeit in the context of ecology.

Comparing distributions. The ability to compare
probability distributions is at the core of statistics and
machine learning. Although traditionally dominated
by maximum likelihood estimation, a significant por-
tion of research on parameter estimation has shifted
towards methods based on optimal transport, such as
the Wasserstein distance (Villani, 2008). Two main
reasons for this transition are (i) the need to deal with
degenerate distributions (which might have density only

over a low dimensional manifold) as is the case in the
training of generative models (Goodfellow et al., 2014;
Arjovsky et al., 2017; Salimans et al., 2018); and (ii)
the development of alternative formulations and relax-
ations of the original optimal transport objective which
make it feasible to approximately compute in practice
(Cuturi and Doucet, 2014; Genevay et al., 2018).

Relation to kernel theory. The theory we have
presented in this paper revolves around a notion of sim-
ilarity on X. The operator KP corresponds to the em-
bedding of the space of distributions on X into a repro-
ducing kernel Hilbert space used for comparing distri-
butions without the need for density estimation (Smola
et al., 2007). In particular, a key concept in this work
is that of a characteristic kernel, i.e., a kernel for which
the embedding is injective. Note that this condition
is equivalent to the positive definiteness of the Gram
matrix K imposed above. Under these circumstances,
the metric structure present in the Hilbert space can
be imported to define the Maximum Mean Discrepancy
distance between distributions (Gretton et al., 2012).
Our definition of divergence also makes use of the ob-
ject KP, but has motivations rooted in information
theory rather than functional analysis. We believe that
the framework proposed in this paper has the potential
to foster connections between both fields.

4 Experiments

4.1 Comparison to Optimal Transport

Image barycenters. Given a collection of measures
P = {Pi}ni=1 on a similarity space, we define the
barycenter of P with respect to the GAIT divergence
as arg minQ

1
n

∑n
i=1 DK[Pi ||Q]. This is inspired by

the work of Cuturi and Doucet (2014) on Wasserstein
barycenters. Let the space X = [1 : 28]2 denote the
pixel grid of an image of size 28×28. We consider each
image in the MNIST dataset as an empirical measure
over this grid in which the probability of location (x, y)
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Figure 6: Approximating a dis-
crete measure with a uniform
empirical measure.

Figure 7: Approximating a con-
tinuous density with a finitely-
supported measure.

Figure 8: Top: Original word
cloud. Left: Sparse approxima-
tion with support size 43. Right:
Top 43 original TF-IDF words.

is proportional to the intensity at the corresponding
pixel. In other words, image i is considered as a mea-
sure Pi ∈ ∆|X|. Note that in this case the kernel is
a function of the distance between two pixels in the
grid (two elements of X), rather than the distance be-
tween two different images. We use a Gaussian kernel,
and compute KPi by convolving the image Pi with an
adequate filter, as proposed by Solomon et al. (2015).

Figure 9: Barycenters for each class of MNIST with
our divergence (top) and the method of Cuturi and
Doucet (2014) (bottom).

Fig. 9 shows the result of gradient-based optimization
to find barycenters for each of the classes in MNIST (Le-
Cun et al., 1998) along with the corresponding results
using the method of Cuturi and Doucet (2014). We note
that our method achieves results of comparable quality.
Remarkably, the time for computing the barycenter for
each class on a single CPU is reduced from 90 seconds
using the efficient method proposed by Cuturi and
Doucet (2014); Benamou et al. (2014) (implemented
using a convolutional kernel (Solomon et al., 2015))
to less than 5 seconds using our divergence. Further
experiments can be found in App. D.

Generative models. The GAIT divergence can also
be used as an objective for training generative models.
We illustrate the results of using our divergence with
a RBF kernel to learn generative models in Fig. 5 on
a toy Swiss roll dataset, in addition to the MNIST
(LeCun et al., 1998) and Fashion-MNIST (Xiao et al.,
2017) datasets. For all three datasets, we consider a
2D latent space and replicate the experimental setup

used by Genevay et al. (2018) for MNIST. We were
able to use the same 2-layer multilayer perceptron
architecture and optimization hyperparameters for all
three datasets, requiring only the tuning of the kernel
variance for Swiss roll data’s scale.

Moreover, we do not need large batch sizes to get good
quality generations from our models. The quality of
our samples obtained using batch sizes as small as
50 are comparable to the ones requiring batch size of
200 by Genevay et al. (2018). We include additional
experimental details and results in App. F, along with
comparisons to variational auto-encoders (Kingma and
Welling, 2014).

4.2 Approximating measures

Our method allows us to find a finitely-supported ap-
proximation Q =

∑m
j=1 qjδyi to a (discrete or contin-

uous) target distribution P. This is achieved by min-
imizing the divergence DK[P||Q] between them with
respect to the locations {yi}mi=1 and/or the masses of
the atoms q ∈∆m in the approximating measure. In
this section, we consider situations where P is not a
subset of the support of Q. As a result, the Kullback-
Leibler divergence (the case K = I) would be infinite
and could not be minimized via gradent-based methods.
However, the GAIT divergence can be minimized even
in the case of non-overlapping supports since it takes
into account similarities between items.

In Fig. 6, we show the results of such an approximation
on data for the population of France in 2010 consisting
of 36,318 datapoints (Charpentier, 2012), similar to
the setting of Cuturi and Doucet (2014). The weight
of each atom in the blue measure is proportional to
the population it represents. We use an RBF kernel
and an approximating measure consisting of 50 points
with uniform weights, and use gradient-based optimiza-
tion to minimize DK with respect to the location of the
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Figure 10: Left: 1,000 samples from a mixture of 6 Gaussians. Center: Modes detected by varying σ in our
method. Right: Modes detected by varying collision threshold ε in the birthday paradox-based method.

atoms of the approximating measure. We compare with
K-means (Pedregosa et al., 2011) using identical initial-
ization. Note that when using K-means, the resulting
allocation of mass from points in the target measure
to the nearest centroid can result in a highly unbal-
anced distribution, shown in the bar plot in orange. In
contrast, our objective allows a uniformity constraint
on the weight of the centroids, inducing a more homo-
geneous allocation. This is important in applications
where an imbalanced allocation is undesirable, such as
the placement of hospitals or schools.

Fig. 7 shows the approximation of the density of
a mixture of Gaussians P by a uniform distribution
Q = 1

N

∑N
i=1 δxi over N = 200 atoms with a polyno-

mial kernel of degree 1.5, similar to the approximate
super-samples (Chen et al., 2010) task presented by
Claici et al. (2018) using the Wasserstein distance.
We minimize DK[P ||Q] with respect to the locations
{xi}ni=1. We estimate the continuous expectations with
respect to P by repeatedly sampling minibatches to
construct an empirical measure P̂. Note how the so-
lution is a “uniformly spaced” allocation of the atoms
through the space, with the number of points in a given
region being proportional to mass of the region. See
App. D for a comparison to Claici et al. (2018).

Finally, one can approximate a measure when the lo-
cations of the atoms are fixed. As an example, we
take an article from the News Commentary Parallel
Corpus (Tiedemann, 2012), using as a measure P the
normalized TF-IDF weights of each non-stopword in
the article. Here, K is given by an RBF kernel applied
to the 300-dimensional GLoVe (Pennington et al., 2014)
embeddings of each word. We optimize Q applying a
penalty to encourage sparsity. We show the result of
this summarization in word-cloud format in Fig. 8.
Note that compared to TF-IDF, which places most
mass on a few unusual words, our method produces
a summary that is more representative of the original
text. This behavior can be modified by varying the
bandwidth σ of the kernel, producing approximately
the same result as TF-IDF when σ is very small; details
are presented in App. D.3.

4.3 Measuring diversity and counting modes

As mentioned earlier, the exponential of the entropy
exp(HK

1 [P]) provides a measure of the effective number
of points in the space (Leinster, 2013). In Fig. 10, we
use an empirical distribution to estimate the number
of modes of a mixture of C Gaussians. As the kernel
bandwidth σ increases, exp(HK

1 [P̂]) decreases, with a
marked plateau around C. We highlight that the lack
of direct consideration of geometry of the space in the
Shannon entropy renders it useless here: at any (non-
trivial) scale, exp(H[P̂]) equals the number of samples,
and not the number of classes. Our approach obtains
similar results as (a form of) the birthday paradox-
based method of Arora et al. (2018), while avoiding
the need for human evaluation of possible duplicates.
Details and tests on MNIST can be found in App. E.

5 Conclusions

In this paper, we advocate the use of geometry-aware
information theory concepts in machine learning. We
present the similarity-sensitive entropy of Leinster and
Cobbold (2012) along with several important proper-
ties that connect it to fundamental notions in geom-
etry. We then propose a divergence induced by this
entropy, which compares probability distributions by
taking into account the similarities among the objects
on which they are defined. Our proposal shares the
empirical performance properties of distances based on
optimal transport theory, such as the Wasserstein dis-
tance (Villani, 2008), but enjoys a closed-form expres-
sion. This obviates the need to solve a linear program
or use matrix scaling algorithms (Cuturi, 2013), reduc-
ing computation significantly. Finally, we also propose
a similarity-sensitive version of mutual information
based on the GAIT entropy. We hope these methods
can prove fruitful in extending frameworks such as
the information bottleneck for representation learning
(Tishby and Zaslavsky, 2015), similarity-sensitive cross
entropy objectives in the spirit of loss-calibrated de-
cision theory (Lacoste-Julien et al., 2011), or the use
of entropic regularization of policies in reinforcement
learning (Fox et al., 2016).
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