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A  Proofs

A.1 Proof of Lemma 1

Proof. Let P =N (0,Z,) be the isotropic normal distribution. Let Rp(8) = E,..p[¢(||z — 0||2)], where £ : R — R

is a convex loss, and let §(P) = argminy, Rp(6) be the minimizer of the population risk. We assume that ¢(-) =

?(-) < C is bounded. Note that when the derivative is unbounded, it is easy to argue that the corresponding

risk will be non-robust. We also assumed that th(is) risk is fisher-consistent for the Gaussian-distribution, i.e.
Bt

6(P) = 0. For notational convenience, let u(t) = =~. Then,

(llz = 0l2)
|z = 0ll2

u(llz—0]l2)

VRP(Q) = _EzNP (Z — 9)

o~

As before, let P. = (1—¢€)P+€e@. Then, we are interested in studying 6(P.). To do this, by first order optimality,
we know that 6(P.) is a solution to the following equation:

(1— €)VRp(O(P.)) + eVR(O(P.)) =0

First we calculate the derivative of §(P.) w.r.t. e using the fixed point above. Taking derivative of the above
equation w.r.t. €

(1—€)V*Rp(0(P.))0(P.) — VRp(0(P.)) + V2R (0(P.)0(Pe.) + VRo(0(P.)) = 0 (8)

Under our assumption that v is continuous, we get that at ¢ = 0,

0(Po)jo = (=V*Rp(0(P))) ' VRq(0(P)) (9)

By fisher consistency of ¢ for N'(0,Z,), we have that §(P) = 0. Suppose that @ is a point mass distribution with
all mass on 6g. Then, we have that,

VRq(0) = —u(l|fell2)0q

Our next step is to lower bound the operator norm of —V?Rp((P)). To do this we show that for any unit
vector v € SP~1, vT(=V2Rp(8(P)))v < %.

w(llz = 0]l2)

V2Rp(6) = ~E.op [uuz O)T, +
|z —0]|2

(=~ 0)(z - 9>T>}

Now, by definition u(t) = ¥(t)/t, so v/(s) = (¢¥'(s) — u(s))/s. Plugging this above,

(z=0)(z—=0)")

Iz =013

¢z = 0ll2)

Iz =613

V2 Rp(0) = —E.p [u(ﬂz BT, - )+ (=~ 6)(z — o)T))]

Hence, we get that

vIVZRp(0)v = ~E.on(o,n,) [u(llzl2)(vl3 — @7 (2/112]12))%) + 4" (I2ll2) (v (2/]|21]2))?]

Further for Isotropic Gaussian, ||z|l2 and z/||z||2 are independent random variables. Also, since, z/||z||2 is
uniformly distributed on unit sphere, we get that E...n 0,1 [(v7 2/]12]l2)?)] = [Jv[|3/p.

(07 (=V2Rp(0))v) = E.on(o,1,) [ulll2]2)] (1 = 1/p) + E.ono,r,) [/ (I12]12)] /o

T1 T2
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e Controlling T1

E.no,1,) [u(l2]2)] = Eono,r,) V(dz)}

R
< JoE L
EE
< VG (10)
p—2

where we use that 1 is bounded by constant C. The last inequality is combination of Jensen’s Inequality
and plugging the mean of reciprocal of inverse chi-squared random variable (Bernardo and Smith, 2009).

e Controlling T2. Under our assumption that ¢’(-) exists and is bounded, we get that T2 < % and can be
ignored.

Hence, for large p, we get that (vT'(—=V2Rp(0))v) < 1/C1/p. Now, if we put fg at oo, and use that 1(c0) = Ch,
we get that,

: 0
16(P.)[l2 = ¥(||6a]2) [V Rp(0) 12— l2 > Cav/p
1652
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A.2 Proof of Lemma 2

Proof. Let P = N(0,Z,). Every subset of size (1 — €)n can be thought of as samples from a mixture distribution
defined in (3), where the mixture proportion 7, ranges from [0,¢/(1 — €)]. In the asymptotic setting of n — oo,
the empirical squared loss over each subset corresponds to the population risk with the sampling distribution as
P,. For a given contamination distribution Q, let Rp, (8) = Ey~p, [||z — 0[]3] and let 6(P,) e argming Rp, (),
then subset risk minimization returns,

Osrat = 0(Py) (1)
where n* = argmin Rp, (0(F;))
n€l0, =

We are interested in bounding the bias of SRM i.e.

sup ||fsrm — 0% (|2
Q

To do this, we know that for any contamination distribution @), the solution of SRM necessarily satisfies the
following conditions.

Condition 1: Local Stationarity. 6(F,) = argminy Rp, (f) is the minimizer of the risk with respect to a
mixture distribution iff

VRp,(6(P,)) = (1 —n)VRp,. (6(P,))
+nVR(6(P,)) = 0. (12)

Condition 2: Global Fit Optimality. §SRM = 0(P,-) is the global minimizer of the population risk over all
mixture distributions iff

Rp,. (0(P)) = (1 = 1")Rp,(0(Py)) + 0" Ro(0(Py-))
< Rp,(0(P;)) V€ [0, IE_J (13)

Using Conditions 1 and 2, we next derive the bias of SRM for mean estimation.

We make a few simple observations.

e Observation 1. For any distribution P, we have,
Rp () = trace (5(P)) + 10 — n(P)3
e Observation 2. Condition 1 reduces to,
w(By) = 0y = (1= n)u(P) +npu(Q),
where p(-) is the Expectation functional.

Lemma 9. Under the mizture model in Equation (3), for the squared error, we have that,
Rp, (0y) = trace(£(P)) = (1 — n)trace (S(P*)) + ntrace ((Q)) + n(1 — n)||n(P*) — n(Q)|3-

Now, from Lemma 9, we know that

Rp,(0,) = (1 = n)trace (S(P)) + ntrace (2(Q)) + n(1 = n)llu(P) — n(@Q)II3

As a function of 1, Rp, (6,) is a concave quadratic function. Hence, it is always minimized at the end points of
the interval [0,€¢/(1 — €)], which implies that n* € {0, == }.

7 1—e

Hence, we have that,

, i Rp. (0.<) < Rp,(00).

é\ _ elie T—e
SRM —

0%, otherwise.
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From Lemma 9, Rp_. (0_< ) < Rp, (o) iff
T—e —e

<1 1 i 6> [1(P) — 1(Q)]|5 < trace (X(P)) — trace (X(Q))

Moreover, from Observation 2, we have that,

€

€ — P =
16,2, = u(P)ll2 = ——

1—e

[1(P) — 1(Q)]]2

Combining the above two, we get that,

€
1—¢€

(18 ) trace (512 mace (5@ |

|Bsrar — (P)|2 = [ lp(P) = M(Q)Ilz} I{[l(P) = (@3 <

Equation 6 follows from it.

A.2.1 Proof of Lemma 9

Proof. We give two alternate proofs of the Lemma.

e Proof 1: This proceeds by expanding on the definition of risk.

RPT, (977) = EZ~P7, [

2= 03]

= (1—n)E.up,[llz — 053] + nE.~olllz — 053] Expectation by conditioning.

= (1 — ) [trace (B(P")) + [0 — u(P7)]3]
+ 1 [trace (2(Q)) + |6, — (Q)||3] From Observation 1.

Now, using Observation 2 we get that,
16 = p(@)ll2 = (1 =) [|u(P7) = (@)l

16y = 1(P)ll2 = nllw(P*) — (@) ll2
Plugging this into above, we get,

Rp

which recovers the statement of the Lemma.

L (0y) = (1 = n)trace (B(P*)) + ntrace (2(Q)) + [|(P*) — w(Q)II (n*(1 = n) + (1 — n)*n)

e Proof 2: This proceeds by Law of Total Variance, or the Law of Total Cummulants. We know that Rp, =
trace (X(P,)). Let Z ~ P,, and let Y ~ Bernoulli(1 — 1) be the indicator if the sample is from the true

distribution. Then Z|Y =1~ P*, while Z|Y =0~ Q.

trace (2(P,)) = (1 — n)trace (S(P")) + ntrace (2(Q)) +n(1 — n)||u(P*) — Q)13 -

Var(E[Z|Y]) E[Var(Z|Y)]
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A.3 Proof of Lemma 3

Proof. Let P. = (1 — ¢)P* + eQ. Let I* be the interval u + -4, where u = E, . p«[z]. Moreover for notational
52k

convenience, let f,,(u,v) = /u(l —u)y/ log(j/v) + %mg(j/v) Let I = [a,b] be the interval obtained using 2, i.e.
the shortest interval containing n(1 — (01 + €+ fn(€ +d1,3))) points of Z;. Note that in the algorithm, we have
01 = ¢, and d5 = §/4. As a first step, we bound the length of I and show that I and I* must necessarily intersect.

Claim 1. Let I be the shortest interval containing 1 — &4 fraction of points, where 8, = (01 +¢€) + fn(e+d1,03).
Further assume that 04 < % Then with probability at least 1 — d3,

[\}
R)

length(I) < length(I*) <

(=2
o
S

Moreover, if 4 < %, then I N I* # ¢, which implies

|z — pf < e
1

Proof. We first show that with probability at least 1 —d3, I* contains at least n(1 — d4) points(Claim 5). Hence,
since our algorithm chooses the shortest interval([ ) containing 1 — d4 fraction of points, length of I is less than
length of I*. Next, if d4 is less than 5, then there are two intervals I and I* respectively, which contain at least
n/2 points. Hence, they must necessarlly intersect. O

Next, we control the final error of our estimator. Let |f| = ez {zl € f} be the number of points which lie

number of points which lie in I, which are distributed according to () and P*

in 1. Similarly, let |Ig| and |Ip-
respectively.

1 1 1
i T — p| < mZ(%*#)+m > (wi—p) (15)

el ziel ziel
z;i~Q x;~P*
T1 T2

Control of T1. To control T1, we can write it as:

1
i > (wi—p)

CL‘in

zi~Q
I

< | 9‘ max |x; — p| (16)
|I| ziel
~— Ti~Q
Tra ————
T1b

where fQ is the number of points in I distributed according to (). To control T1la, we use Bernsteins inequality.
To control T1b, we use Claim 1. The claim below formally controls T1.

Claim 2. Let I be the shortest interval containing n(1 — 04) of the points, where 6, = (81 + €) 4 fn(e + 01, 83).
Further assume that 04 < % Then, with probability at least 1 — 03 — 05, we have that,

\f \ €+ fule, d5) 4o
T1< i <
et |zs — | < 1-0, 5;/216

Tir~

(17)
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Proof. Using Bernstein’s bound, we know that wp at least 1 — d5,

gl < (e + /elT — ey BL%) | ZIoa(L/0s),

This follows from the fact that number of points drawn from Q which lie in 7 is less than the total number of
points drawn according to Q. In Claim 1, we showed that when §, < %, then, with probability at least 1 — d3,
we get that Inr % ¢, i.e. the intervals intersect, and that length(f) < length(I*). Hence, we get,
| < 4o
max |x; — pu| < —%
wiel = 51

Tqr~

Control of T2. To control T2, we write it as

|Ip- 1
= |f |jP* ZA (zi — ) (18)
X, I
wZNGP*
p-| |, 1 ; al e ; "
< — (= in)—E[quI,me]—&— — |Exlzr € I,z ~ P — p (19)
el 2, 7
@i~ P T2b

T2a

e Control of T2a: To bound the distance between the mean of the points from P* within T and Elz|z ~
P* x € I], we will use Bernsteins bound(Lemma 10) for bounded random variables. We know that the

'~

random variables are in a bounded interval b = length(I) < 6&, and that conditional variance of the random
2k
variables, when conditioned on them lying in I is controlled using Lemma 13. In particular, Lemma 13 shows
that for any event E, which occurs with probability P(E) > %,
Eyp[(x — Elz|z € E])*|x € E] < 0*/P(E).

Using these arguments, we get that with probability at least 1 — d7,

20%(log(3/07)) | 20 log(3/07)

T2a < — =
P*(I)|Ip- 5177 |Ip-

, (20)

where P*(I) is the probability that a random variable drawn according to P* lies in 1.

e Control of T2b: To control 72b, we use the general mean shift lemma (Lemma 12), which controls how
far the mean can move when conditioned on an event. We get that,

T2b < 20(P*(1)°)' /(R (21)
Combining the bounds in (20) and (21), we get

202(log(3/07)) | 20 log(3/d7)
P*(I)|Ip- 5177k |Ip.|

T2 < 20(P*(1)°)' =1/ 0 4 (22)

Combining the upper bound on T1 in (17) with (22), we get that with probability at least 1 — §5 — d5 — dg — I

e+ fn(e, d5) 4o
1-— 54 5i/2k

20°(log(3/67)) | 20 log(3/d7)
P+(1)|Ip- 51/%% | Ip-]

T1+T2< + 20 (P*(I)%)t 1/ 4
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We rearrange terms and use our assumption that € is small enough that Ipe > n/2. We also plugin the upper
bound on (P*(I)¢)'=1/(¥) from Claim 3 and set §; = €, and d5 = d6 = 63 = d7 = 6/4. Hence, we get that with
probability at least 1 — §

T1+T2< Croc V2 4 Cza(loi”)lfﬁ +Cs0 log(nl/‘;) + 0yr28U0) (23)

nezk

Since, we ensure that € = max(e, M) hence, M < ¢!~ 2. Note that our assumption of d; < % boils down
2k

n -
ne

to € being small enough such that 2¢ + \/elog(:f/é) + log(:/é) < 3. Hence, we recover the final statement of the
theorem.

O

A.3.1 Auxillary Proofs

Claim 3. Let I be the shorted interval containing n(1 — d4) points from Z;. Let P*(f) is the probability that a
random variable drawn according to P* lies in I. Then, there exists universal constants Cy,Cy > 0 such that wp
at least 1 — dg, we have that

A 1 1 — L I 1 log(1/6, 1 log(1/4 1
(P13 < et 1 ot F 4 Oy g 0By g, (N

Proof. Note that I is obtained by choosing the shortest interval containing n(1 — d4) points from Z;. We first
bound P} (f ), i.e. the empirical probability of samples distributed according to P* which lie in I. To do this,
note that in Z;, number of points drawn from Q which lie in I, say n¢ is less than the total number of points
drawn according to Q. Using Bernstein’s bound, we know that wp at least 1 — dg,

] < nle+ v/e(1—c) bﬂg%x+@%awa)

3 n
Let 7p~ be the number of points in Z;, which are drawn from P* and which lie in I. Since |fig| + |[fip-| = |I| =
n(1 — d4), hence the above implies that with probability at least 1 — dg,
log(1/6 2 log(1/6
|’fLP* 2 n(l _ 64) _ ’I’L(E + /6(1 — 6) Og(n/ 6) + g Og(n/ 6))7
Note that P*(I) = % Hence, we get that,
*( T |’fLP*
P (I) >
o) > 17
>1-— (6 + (54) — fn(6756> (25)
This implies that,
Py(1)° < (e+64) + fale, 06)
< 2e+ 61+ ful€,d6) + frn(e+ 01,03)
log(1/4 log(1/4
< de+ 20, + O Og(n/ oA Og(n/ 2) (26)

To finally bound the probability of a sample drawn from P* to lie in I, we use the relative deviations VC
bound(Lemma 11), which gives us,

\7,1_/ n n n n
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where S[2n] = O(n?). Using that vab < a + b,Va,b > 0, we get that,
log S[2n] n log(4/d6)
n

n

P*(1)° < C1PE(I)° + Cof ) (28)

Hence, we get that,

(P (1)) < Cret 3 4+ CofH 4 Cy(B) 1 4 CAM)Fﬁ + cawﬂ*ﬁ (29)

Claim 4. Let P*(I*) be the probability that a sample drawn according from P, is distributed according to P*
and lies in I*.

P*(I*)Z(1—6)(1—(51):1—(6—}—(51—651)21—(6+(51):1—52
———
d2

Proof. For any x ~ P., define, z; = 1 if x ~ P*. Now, for any x ~ P*, we know that, by chebyshevs we know
that,
P(lz — p| > t) = P((x — p)** > 1?%) < B[(x — p)**]/t?* < Copo® /1

Hence, we get that wp at least 1 — 61, 2 € p+ 0 /(6;)'/?F O

The following claim lower bounds the empirical fraction of samples which are distributed according to P* and
lie in I*, when n samples are drawn from P..

Claim 5. Let P(I*) be the empirical fraction of points which are distributed according to P* and lie in I*,
when n samples are drawn from P,. Then, with probability at least 1 — 03,

PoI) 21— (02 4 /(1 — ) L) 2108 (1/%),

04=(014€)+fn(e+d1,63)

Proof. This follows from Bernstein’s inequality(Lemma 10). O
Lemma 10. [Bernsteins bound,] Let X ~ P* be a scalar random variable such that | X — E[z]| < b with variance
n
o?. Then, given n samples {x1,xa,...,2,} ~ P*, the empirical mean, &, = % 2:13:1 1s such that,
i=
—nt?

Pllm = Elall > 1) < 2050555072

which can be equivalently re-written as. With probability at least 1 — 4§,

202log(1/6)  2blog(1/6
g < [P/ 2los(1/0)
n 3n
Lemma 11. [Relative deviations, (Vapnik and Chervonenkis, 2015)] Let F be a function class consisting of
binary functions f. Then, with probability at least 1 — 6,

log(Sx(2n)) + log(4/9) e log(Sx(2n)) + log(4/6)

n n

)

aup |P(f)  Pu(1)] < 4y B

fer
where Sr(n) = sup  [{(f(z1), f(z2),..., f(zn)) : f € F}| is the growth function, i.e. the mazimum number

21422500y Zn
of ways into which n-points can be classified the function class.

Lemma 12. [General Mean shift, (Steinhardt, 2018)] Suppose that a distribution P* has mean p and variance
o2 with bounded 2k -moments. Then, for any event A which occurs with probability at least 1 — e > %,

1 — Blz|A]| < 20€¢' 72

In particular, for just bounded second moments, we get that |y — E[z|A]| < 20+/€.
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Proof. For any event E, Let T{E} denote the indicator variable for E.

_ Beep (@ = WI{EY)| _ Elle — ul?)# (BL{E}"]"/)

« — <
where p,q > 1 are such that 1/p+ 1/¢ = 1. Put p = 2k, we get,
E \E <7
| a:NP*[x ]_MH = (P(E))l/2k
Now, we know that, |E[X|A] — u| = 1;1(315")4) |E[X|A€] — p|. Putting E = A°, we get,
1—-P(A) o 1
E[X|A] —p| < < 20et 2w,
| [ | ] .LL| = P(A) (1 _P(A))l/Qk = 20€ *
O

Lemma 13. [Conditional Variance Bound] Suppose that a distribution P* has mean p and variance o. Then,
for any event A which occurs with probability at least 1 —e€, the variance of the conditional distribution is bounded
as:

(EKx—EhvmﬂADS(l_@

Proof. Let uy = Ely|lA], d = pua — p. From Lemma 12, we know, d < 02,/e. Observe the following,

E[(y — pa)?|A] = E[(y — p — d)*|A] = E[((y — p)* — 2d(y — p) + d*)| A] (31)
= E[(y — p)*|A] — d? (32)
< E[(y — n)?|4] (33)
slfe, (34)
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A.4 Proof of Lemma 5

Proof. For brevity, let 55 = argmin sup [ul§ — f({uTx;} e, 5%)|, where f is our univariate estimator.
9 weN1/2(Sp-1)
Let 0* = E[z] be the true mean. Then, we can write the {5 error in its variational form.

105 — 6la = sup [uT (65 — 0%)| (35)

ueSpP—1

Suppose {y;} is a %—cover of the net, so there exist a y; such that v = y; + v, where |[v||2 <e.

185 — 6*]l2 < sup |yT (85 — 6%)] + [T (G5 — 67))
uesSr—1
< swp [yl (s - 00)] + [[vll205 — 07l
ijNf(ST’_l)
<2 sup |yJT(§5 —0")]
Yy ENE (SP-1)

165 — 0%l <2 sup [u” (B —6%)| (36)
uEN1/2
<2| sup |uT§— f(uTPme;<§)| + sup |uT9* - f(uTPme; 5)| (37)
ueN1L/2 ueN1L/2
<4 sup |uT0* - f(uTPn,e;g)| (38)
ueN'1/2

For a fixed u, the distribution «” P has mean uT9*, where 6* is the mean of the multivariate distribution P.
Hence, we get that, for a confidence level §, when the univariate estimator is applied to the projection of the
data long u, it returns a real number such that, with probability at least 1 — §

|f(T Py;e;6) — uT0%| < Crwys(e, ul P,6)

Taking a union bound over the elements of the cover, and using the fact that | 1/2(Sp=1)| < 5P (Wainwright,
2019), we substitute 6 = §/(57) and recover the statement of the Lemma.

O

A.5 Proof of Lemma 6

Proof. Let 05 = argmin sup |uTh — f({uTxi}?:l,QW)L where f(-) is our univariate estimator.
0E0. e/ (sr-1)

Observe that since (9\5 and the true mean 6* are both s-sparse. Hence, the error vector 0 — 0 is atmost 2s-sparse.
Then, we can write the /5 error in its variational form,

105 — 0% 2= sup  [uT (05 —6%)], (39)

weSP—INBay

where SP~1 N By, is the set of unit vectors which are 2s-sparse. The remaining of the proof follows along the
lines of proof of Lemma 5, coupled with the fact that the cardinality of the half-cover of an 2s-sparse ball, i.e.

‘j\/% (5:0*1)’ < (%) (Vershynin, 2009).

O
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A.6 Proof of Lemma 7

Let Of = argminge z SUP,epnr1/a(so-1) (U’ Ou — fF({(u"2:) iy, 2¢, & )|, where f is a univariate estimator, and 2;

are the pseudo-samples obtained by z; = (2;4n/2 — :)/V2 V2. We begin by first using one-step discretization,

1€: = S(P)2 = sup [u” (B = (P))ul

ueSP—1

O — X(P
S ly" (B — =(P))yl,

where N7 is the y-cover of the unit sphere. We set v = 1/4.

16— S(P)|ls <2 sup [u” (B — (P))u] (40)
ueN1/4
TA T 2 n 6 T Y
<2 sup fuOngu— f({(u"2:) iy, 26, o))+ sup W S(Pyu— f({(u" )}y 26, o]
ueN1/4 ueN1/4
(41)
<4 sup |u"S(Pu— f(u" Xy, ;0)] (42)

ueN1/2

For a fixed u, for the clean samples in z;, (u?2;)? has mean u? % (P)u, and variance Cy(uTX(P)u)?. Note that
the scalar random variables (u’z;)? have bounded k& moments, whenever z; has bounded 2k-moments. Hence,

for a fixed u, we get that with probability at least 1 — 6,

0

If({(u® 2)? 30, 2e, o —) —u"S(P)u| < wp(2e,u” P®2)5)
Taking a union bound over the elements of the cover, and using the fact that |[N'/4(SP~1)| < 9P (Wainwright,

2019), we substitute § = §/(97) and recover the statement of the Lemma.

A.7 Proof of Lemma 8

T

Let éﬂs = argminge x, SUP,, \r1/4(gp-1) lutOu — f({(u”2)?}, 2, -)|, where f is a univariate estimator,
2s

(9ep/8
and z; are the pseudo-samples obtained by 2z; = (2;4n/2 — :)/V2 V2.

Observe that since @ﬂs and the true covariance X(P) are both in F,. Hence, the difference matrix @f s—2(P) has

atmost 2s non-zero off diagonal elements. Hence, we can write that ||éf’s — X(P)|l2 = supyep,.nse—1 [u’ (O (S)
Y(P))u|, where BosNSP~1 is the set of unit vectors which are atmost 2s-sparse. Using the one-step dlscretlzatlon
we get that,

I8¢5 — 2(P)[l2 < 2 sup [u” (615 — S(P))u
wEN1/4(B2anSP—1)

The remainder of the proof follows from the proof of Lemma 7 coupled with the fact that the cardinality of the
1/4-cover of an 2s-sparse ball |N'1/4(SP=1)| < (22)* (Vershynin, 2009).

A.8 Proof of Corollary 5

Proof. From Corollary 4, we know that the with probability at least 1 — § sparse covariance estimator satisfies,

~ _ slogp logl )
1815 — 2(P)ll2 S [E(P)[l2¢" 1/’“+||E(P)H2\/ +IE(P)ll2 /

T1

Let (:)11\/[7s — X(P) = A, then, we have that ||A|2 < T1. Using Weyl’s Inequality, we know that,

A1 (Ons) = Ars 1 (B(P))] < [|Al2
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We know that A\.;1(X(P)) = 1. Hence, we have that )\r+1(éIM,s) € 1+T1. We also know that A.(X(P)) = 14+A,..
Hence, we can now lower bound the eigengap, i.e.

IAr(2) = Art1(Bnus)| > A, — T1
Under the assumption that T'1 < %AT, and using Davis-Kahan Theorem (Davis and Kahan, 1970), we get that,

105 =Sz _ 71

T T
- <
Ve =VVip < A, 711 =%

A.9 Proof of Lemma 4

Note that the proof of this follows from Lemma 6 (Altschuler et al., 2018), but we provide it for completeness.
Let F be a CDF and let Qp p(p) = inf{z € R: F(x) > p} and Qg r(p) = inf{x € R: F(z) > p} be the left and
right quantile functions. Let

Ru(t) > max{QR,F(% +t)—mym— QLF(% — 9,

where m is the median. Then, given n-samples from the mixture model, let 7 ({z;}7 ;) be the empirical median.

Then, we have that with probability at least 1 — 9,

= m] < Rz + 2Log(2/0)

).

To see this, for each sample z; define an indicator variable L; € {0,1}.

L; :]I{xi ~ Q,or(x; ~ P and x; > QR,F(2(11_€) +a))},

for a = y108(2/9) Note that

—ovm -
Pr(L = 1) < e+ (1—e)(1— (a+ 2(11_6)»
- % —(1-ea
i > QR,F(Q(ll_ gto = ZL >n/2
Hence, we have that,
Pr(m > QR,F(2(117 3 +a)) < Pr(z Li > n/2) < exp(—2n(1 — €)%a?) = g

3

The other side is also symmetric. Hence, we have that with probability at least 1 — 9,

2(1—¢)

|7 —m| < R( +a),

where a = ﬁ log(j/é). Note that under our assumption that P € PL;”, we have that R(t) < «t for all ¢ < to.
Hence, as long as the contamination level €, and confidence level ¢ are such that,

€ 1 log(2/9)
2i-o -V . =

tOv

we have that with probability at least 1 — 4,

log(2/6
i — m| < ke + K log(2/9)
n



