A APPENDIX

A.1 Implementation Details

We used a 100 dimensional embedding layer to represent the ICD10 codes as dense vectors followed by a single-
layer LSTM with 100 hidden units. In a pilot study, we tuned the embedding dimension and the number of LSTM
units based on the model performance on the validation set. We empirically found that the model performance
is robust to these hyperparameters. To make sure that the o and \ parameters are positive, we reparametrized
them using the exponential function e.g. o = exp(a’). For learning, we used the Stochastic Gradient Descent
algorithm with momentum set to 0.9 (Sutskever et al] [2013]). We initialized the o and A parameters using the
learnt parameters of the Hawkes process. We empirically found that initializing the parameters with sensible
values often accelerates the optimization process. All other parameters are initialized to random values from
N(0, 1). We performed early stopping based on prediction loss on the held-out validation set. The model
is implemented in PyTorch and is available at https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/
master/alg/dynamic_disease_network_ddp/\

A.2 Comparison of Intensity Functions

Figure [1| contains a illustrative example of the difference in intensity functions between DDP and the Hawkes
process. In Hawkes processes, including cHawk, each event’s contribution to the intensity function has the same
magnitude and shape. In DDP, the event’s contribution depends on the weights given by the LSTM (yellow
circle), which in turn depends on the full event history. This allows for a richer representation of the overall
intensity function and the relationship between events.
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Figure 1: A side-by-side comparison between the intensity functions of DDP and the Hawkes process. The event timeline
in the middle shows the occurrence of two types of events (polygons). The weights given by the LSTM at each step are
represented as yellow circles. The coloured lines show each event’s contribution to the intensity function of the type 1
event. The black lines are the overall intensity function of type 1 event, which are the sum of the coloured lines.

A.3 Disease Progression Is Non-Markovian

Figure[2]shows an example based on real patient data. All patients illustrated here had Pneumonia but depending
on whether they had previous comorbidities in the respiratory system or the circulatory system, their chances
for developing new comorbidities in the respective systems will differ. This example shows that the Markovian
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assumption is clearly violated in disease network modelling. Our approach to model disease network as a dynamic
graph captures the observation that past comorbidities have varying effects on the future diseases.
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Figure 2: Disease pathway is moderated by previous comorbidities. The diseases are colour coded using their ICD10
chapters.

A.4 1ICD10 Codes Reference
We aggregated the original ICD codes to 3-digit level (125.10 becomes 125) and chose the most prevalent ones

in the cohort to train and evaluate the model. These codes represent the most common comorbidities among
colorectal cancer patients (various gastrointestinal disorders and cardiovascular diseases).

Table 1: ICD10 Codes Reference Table.

ICD10 Code Disease Name

150 Heart failure

N39 Other disorders of urinary system
A4l Other Sepsis

D12 Neoplasm of digestive organs

E86 Volume depletion

125 Chronic ischemic heart disease
K63 Other diseases of intestine

K83 Other diseases of biliary tract

A.5 Schematics of the Validation Setup

The primary dataset of colorectal cancer patients was randomly split into training (60%), validation (20%) and
testing (20%) sets. Hyperparameter tuning was based on the validation set, whereas model evaluation was based
on the test set. Out-of-domain data of stomach cancer patients was used as a separate test set.

Train Validate Test .
(60%) (20%) (20%) Out-of-domain Test
54,000 colorectal cancer patients 25,000 stomach cancer patients

Figure 3: Schematics of the validation setup.



A.6 Predictive Performance over Different Time Horizon

We stratified the test data set based on the prediction time t;y1, and evaluated the AUC score in each stra-
tum. The results are presented in figure [4] and [f] for colon cancer and out-of-domain stomach cancer patients
rebpectlvelyﬂ Unsurprisingly, we observe that in general the prediction accuracy decreases as the time horizon
increases. DDP outperforms the benchmarks in the majority of cases especially in the longer time horizon. The
long-term prediction accuracy is highly important in disease network modelling because many interesting pat-
terns of disease interaction evolve gradually through time and they may not be observable in the short time
window.
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Figure 4: Prediction AUC for different time windows: 0-6 months, 6-12 months and greater than one year.
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Figure 5: Prediction AUC for patients with stomach cancer.

A.7 Visualization of Disease Networks for Colorectal and Stomach Cancer Patients

We randomly sampled a subset of patients from the colorectal and stomach cancer patients and calculated their
distance matrix based on the Jaccard index. We applied t-SNE to the distance matrix and embed each patent’s
disease network in R2. The results are visualized in Figure |§|, which indicates no clear difference between the

!Since Charlson Score’s performance is worse than all models by a big margin it is not shown in the figure.
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Figure 6: t-SNE Visulization of the Dynamic Disease Networks. There is no clear separation between stomach and
colorectal cancer patients.

networks for stomach and colorectal cancer patients. In other words, the disease networks learnt by DDP applies
to both sets of patients and is invariant across cancer sites.

A.8 Dynamic Disease Network on Individual-level

Now, we prodivde an additional example to illustrate how the dynamic disease network can be used in the clinical
setting to help doctors gain a better understanding about the comorbidity pathway for individual patient, which
may eventually lead to better treatment plans.

M16: Osteoarthritis of hip (A)
M17: Osteoarthritis of knee

M25: Other joint disorder .
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Figure 7: The disease network for two real patients A and B plotted on a timeline. For patient A, the impact of M25 on
T84 was inhibited by the presence of M17. For patient B, no inhibition was present. The RNN output was shown below
the circles. To protect privacy, the time between diseases is not drawn to scale.

Figure [7] gives an example of two patients, A and B. The sequence of diseases are plotted on a timeline. Both
patients had a history of hip osteoarthritis (M16) and other joint disorders (M25). However, patient A also
had knee osteoarthritis (M17) shortly before M25. It is well-known that the standard treatment for late stage
osteoarthritis, hip or knee replacement, leads to various postoperative complications (T84) depending on existing
comorbidities (Gupta et al) [2001)) (Greenfield et all)[1993). Therefore, whether the doctor will recommend joint
replacement surgery for each patient partly depends on how much preexisting conditions elevate the risk of




complications. The dynamic disease network learnt on individual level helps answer this question.

In fact, on the population level, DDP finds that all three morbidities (M16, M17 and M25) strongly increase the
risk of postoperative complications. However, the population level disease relationship only captures the average
scenario and it does not always hold for each individual. In contrast, the dynamic network DDP constructed
for each patient takes into account their unique comorbidity history. In this example, the network for patient A
suggests that the presence of knee osteoarthritis (M17) inhibits M25’s impact on postoperative complications.
In a sense, the impact of M25 was explained away by M17. On the contrary, the network for patient B does not
show any inhibition effect and M25 is still believed to increase the risk of postoperative complications.

If we hadn’t taken into account the existing comorbidity pathway, we would have treated all previous comorbidi-
ties equally as is done by the Hawkes process, and therefore overestimated patient A’s risk of having postoperative
complications. This could lead to sub-optimal treatment plan for the patient.

A.9 Static Population Level Disease Network

In addition to producing dynamic comorbidity network, DDP can also learn a static population-level graph by
averaging out the time-varying components. Figure [8|shows the static comorbidity network learnt by DDP from
the real patient data. It is worth highlighting that the graph is learnt in a fully-automated way without any
input of prior medical knowledge. We applied a standard community detection algorithm (Blondel et al., [2008)
to the graph and colored the diseases based on the cluster membership.

One can immediately observe that the diseases in the same cluster usually share the initial letter, which cor-
responds to the chapter code in the ICD10 system. For example, all the M codes are related to bone or
connective-tissue disorders and they are all assigned to the red cluster on the top of the graph. The diseases 120,
123, 125, and RO7 are closely linked together (the blue cluster on the left of the graph) and they are all related
to heart diseases.
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Figure 8: The population level static disease network. Node colour represents the cluster membership of the disease. The
initial letter for the ICD code represents a broad classification of diseases. For visualization purposes, we have removed
edges with weights below a certain threshold.

A.10 Simulation Study

In this simulation study, we verify that DDP is able to recover the static network entailed by the Hawkes process.
We consider random samples from a Hawkes process with randomly chosen parameters. We proceed by fitting a



Hawkes process on the sample by maximizing likelihood until convergence and measure the L1 distance between
the true and the learned infectivity matrix (sum(abs(X-Y))). This serves as a lower-bound on error because
there is no model mis-specification (red dotted line in Figure E[) We then train DDP and track the L1 distance
between the DDP network (eq 12) and the ground truth during training. We observe that after a rapid drop at
the beginning, the error gradually decreases and approaches the lower bound. This means that DDP is able to
uncover the Hawkes process network.

The code to reproduce this simulation is available online. The simulation parameters are as follows:

1. Number of sequences: 5000

2. Sequence length: uniformly selected between 5 to 20 for each sequence

3. Number of event types: 50

4. Ground truth infectivity matriz: randomly drawn from Uniform(0, 1)

5. Initial DDP infectivity matriz: randomly drawn from Uniform(0, 1)

6. Initial values for DDP LSTM weights: randomly drawn from Uniform(-0.1, 0.1) (Pytorch default)
7. DDP LSTM hidden layer size: 100

8. SGD learning rate: 0.001

9. SGD momentum: 0.9
10. Size of mini-batch: 100
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Figure 9: Simulation Results: The DDP network approaches distance lower bound during training.

A.11 Additional Experiments on MIMIC Data

Data Set We evaluate the predictive performance of DDP on the publicly available Medical Information Mart
for Intensive Care data (MIMIC). The data set has been used by many authors as a test bed for new algorithms
including [Du et al.| (2016]) and [Mei & Eisner| (2017). To ensure a fair comparison with existing work, we use the
pre-processced data curated by Mei & Eisner| (2017)). The data set contains a collection of de-identified clinical
records of Intensive Care Unit (ICU) patients. During a patient’s stay in ICU, a total of 75 types of events
are tracked along with their timestamps. We're interested in predicting what event will happen next given the
events happened in the part.

Evaluation Setting We adopt the same evaluation setting as the previous works. The models predict the
identity of the next event given the occurrence time of the event, and they are evaluated based on the error rate
(also known as 0-1 loss). We run five-fold cross validation to estimate the variation of the loss metric. Within each
fold, the original training data is further split into a new training set and a validation set for hyper-parameter
tuning and early stopping.
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Figure 10: Algorithm Performance on MIMIC data.

Benchmarks We used a variety of highly-performant algorithms as benchmark. Neural Hawkes
is a point process model that has achieved the state-of-the-art performance on event prediction.
LSTM (Gers et all [2000) is a RNN that has become the standard of sequence modelling. To capture the
variable duration between events, we use the time gap between events as an additional input dimension to
LSTM. RETAIN (Choi et al., |2016) (labelled as Attn LSTM in the figure) employs the temporal attention
mechanism akin to RPPN model in Xiao et al.| (2019). Finally, Phased LSTM is a continuous time RNN that
naturally handles the unequal spacing between events.

Results The results are presented in Figure As we can see, DDP achieves predictive performance on par
with, if not slightly better than, the state-of-the-art benchmarks. However, compared with the benchmarks,
DDP enjoys the unique advantage of being able to explicitly learn the relationship between events and represent
those relationship as a dynamic graph.
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