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A Notation
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n�)]

>.

B Background material on Gaussian random variables, vectors and matrices

In this section, we review a few important results regarding the functions of Gaussian matrices and Gaussian
vectors that are used in our examples. The first result is about the moments of the inverse of the minimum
eigenvalue of a Wishart matrix.

Lemma 1. (Lemma 19 of [Xu et al., 2019]) Let Xij

i.i.d.⇠ N(0, 1
n
), and suppose that n, p ! 1 while n/p = �0 for

�0 > 1. Then, for a fixed r � 0, we have
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>X)

�
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Our next two lemmas are concerned with the moments of a Gaussian and �2 random variables:

Lemma 2. Let Z ⇠ N(0,�2). Then, we have

E(|Z|p)  �p(p� 1)!!, (11)

where the notation p!! denotes the double factorial. Furthermore, when p is even the above inequality is in fact an

equality.

The proof of this claim is straightforward and can be found in many standard statistics text books.

Lemma 3. Let Z ⇠ �2
k
, i.e., it has a �2

distribution with k degrees of freedom. Then, for any integer m � 1 we

have

E(Zm) = k(k + 2)(k + 4) . . . (k + 2m� 2).

C Proof of Theorem 1
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The proof concludes upon noting that Lemma 4 and 5 yield
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Lemma 4. Under the assumptions of Theorem 1 we have that:

E
✓
1

n

nX

i=1

�(yi,x
>
i
�̂/i)�

1

n

nX

i=1

E[�(yi,x>
i
�̂/i) | D/i]

◆2

 1

n

✓
EVar[�(yo,x

>
o
�̂/1)|D/1] +

⇣c0c1⇢�1/2

⌫

⌘2
◆
.

Proof of Lemma 4.
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Likewise,
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Lemma 5. Under the assumptions of Theorem 1, we have:

E
 
1

n

nX

i=1

E[�(yi,x>
i
�̂/i) | D/i]� E[�(yo,x>

o
�̂) | D]

!2

 1

n

✓
c0c1⇢�1/2

⌫

◆2

.

Proof of Lemma 5. Note that we have for all i:
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Lemma 6. If both the loss function and the regularizer are twice di↵erentiable, then for all i = 1, . . . , n:
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Likewise,
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D Proof of Corollary 1

We would like to use Theorem 1 to prove this corollary. Toward this goal, we first have to prove that Assumptions 1,
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where the last equation is due to c0 = c1 = 2 (shown in Example 1) and ⌫ = �.
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E Proof of Corollary 2

We would like to use Theorem 1 to prove this corollary. Toward this goal we have to confirm Assumptions 1,

2, and 3 and prove the boundedness of E
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⇣
Var[fH(y0,x

>
0 �̂/i) | D/i]

⌘
 2

✓
�4 +

⇢�3�

⌫r
(�✏ +

p
⇢b) + �2(⇢b+ �2

✏
)

◆
.

We have

Var[fH(yo,x
>
o
�̂/i) | D/i] = �4 Var

h n
1 +

�yo � x
>
o
�̂/i

�

�2o1/2
� 1

!2

| �̂/i

i

 �4 E
h n

1 +
�yo � x

>
o
�̂/i

�

�2o1/2
� 1

!2

| �̂/i

i

 �4 E
h
2 +

|yo � x
>
o
�̂/i|2

�2
| �̂/i

i

 2�4 + �2 E[|yo � x
>
o
�̂/i|2 | �̂/i]

 2�4 + 2�2 E[y2
o
+ (x>

o
�̂/i)

2 | �̂/i]

 2�4 + 2�2(E[y2
o
| �̂/i] +

⇢

p
k�̂/ik22).

Furthermore, we have that E[y2
o
| �̂/i]  ⇢�⇤>�⇤

p
+Var[✏0]  ⇢b+ �2

✏
. Additionally, note that using the strong

convexity of the regularizer, and by comparing the value of
P

j 6=i
fH(yj � x

>
j
�) + �r(�) at �̂/i and 0, we have

that k�̂/ik22  ⌫�1
r

P
j 6=i

�|yj |  ⌫�1
r

�kyk1.4 Therefore,

E ⇢

p
k�̂/ik22  ⇢�

⌫r

1

p
E kyk1 =

⇢��

⌫r
E|y1|.

We may bound this quantity explicitly in terms of the covariance of x:

E|y1|  E|✏1|+ |x>
1 �

⇤| 
q
E ✏21 +

q
E(x>

1 �
⇤)2

 �✏ +

r
⇢

p
k�⇤k22  �✏ +

p
⇢b.

Hence,

E
⇣
Var[fH(y0,x

>
0 �̂/i) | D/i]

⌘
 2

✓
�4 +

⇢�3�

⌫r
(�✏ +

p
⇢b) + �2(⇢b+ �2

✏
)

◆
.

4
We have used the fact that fH(a)  �|a|.
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To summarize, using the bound above and Theorem 1 (with Cb = ( c0c1⇢�
1/2

⌫
)2), we conclude that

Cv = EVar[�(yo,x
>
o
�̂/1) | D/1] + 2Cb + 2C1/2

b

q
EVar[�(yo,x>

o
�̂/1) | D/1] + Cb

= 2

✓
�4 +

⇢�3�

⌫r
(�✏ +

p
⇢b) + �2(⇢b+ �2

✏
)

◆
+ 2

✓
c0c1⇢�1/2

⌫

◆2

+ 2

✓
c0c1⇢�1/2

⌫

◆s

2

✓
�4 +

⇢�3�

⌫r
(�✏ +

p
⇢b) + �2(⇢b+ �2

✏
)

◆
+

✓
c0c1⇢�1/2

⌫

◆2

= 2

✓
�4 +

⇢�3�

⌫r
(�✏ +

p
⇢b) + �2(⇢b+ �2

✏
)

◆
+ 2

✓
�2⇢�1/2

⌫r

◆2

+ 2

✓
�2⇢�1/2

⌫r

◆s

2

✓
�4 +

⇢�3�

⌫r
(�✏ +

p
⇢b) + �2(⇢b+ �2

✏
)

◆
+

✓
�2⇢�1/2

⌫r

◆2

where the last equation is due to c0 = c1 = � (shown in Example 2) and ⌫ = ⌫r.

F Proof of Example 1

It is straightforward to check that, for any i, we have:

inf
t2[0,1]

�min(At,/i) � c�min(X
>
/i
X/i).

This implies that:

E
⇣

inf
t2[0,1]

�min(At,/i)
⌘�8

 1

c8
E��8

min(X
>
/i
X/i).

Define the vectors zi = ⌃
� 1

2xi. Hence, zi ⇠ N(0, I). Furthermore, define the matrix Z as the matrix that has
zi as its rows. It is straightforward to check that:

�min(X
>
/i
X/i) = �min(

X

j 6=i

xjx
>
j
) � ⇢

p
�min(

X

j 6=i

zjz
>
j
) = ⇢��min

 
Z

>
/i
Z/i

n

!
.

The fact that the quantity E��8
min

✓
Z>

/iZ/i

n

◆
is lower bounded by a constant for large values of n, p when n/p = � > 1

is proved in [Xu et al., 2019]. See Lemma 1 in the supplementary material.

G Proof of Theorem 2

The proof of this result is very similar to the proof of Theorem 1. Hence, instead of rewriting the proof, we only
emphasize on the di↵erences between the proofs of Theorems 1 and 2. The strategy of the proof is exactly the
same. We break the error between LO and Errout into V1 and V2 and try to bound the second moments of these
quantities. The following lemma obtains an upper bound for the second moment of V1.

Lemma 7. Under the assumptions of Theorem 2 we have

E
✓
1

n

nX

i=1

�(yi,x
>
i
�̂/i)�

1

n

nX

i=1

E[�(yi,x>
i
�̂/i) | D/i]

◆2

 1

n

✓
EVar[�(yo,x

>
o
�̂/1) | D/1] + c̃0c̃

2
1⇢�ṽc4

◆

Proof. The proof of this lemma is similar to the proof of Lemma 4. All the steps are exactly the same up to the
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point that is proved:

E
⇣

�(y1,x
>
1 �̂/1)� E[�(y1,x>

1 �̂/1) | D/1]
⌘⇣

�(y2,x
>
2 �̂/2)� E[�(y2,x>

2 �̂/2) | D/2]
⌘�

 E
⇣
E
⇥
�̇(y1, tx

>
1 �̂/1 + (1� t)x>

1 �̂/1,2)
2 | D/1

⇤
E
⇥�
x
>
1 (�̂/1 � �̂/1,2)

�2 | D/1

⇤⌘

 c̃21 E
⇣
E
⇥�
x
>
1 (�̂/1 � �̂/1,2)

�2 | D1

⇤⌘

= c̃21 E
⇣�

x
>
1 (�̂/1 � �̂/1,2)

�2⌘

= c̃21 E
⇣
(�̂/1 � �̂/1,2)

>
⌃(�̂/1 � �̂/1,2)

⌘

 c̃21
⇢

p
Ek�̂/1 � �̂/1,2k22.

However, the way we would like to bound Ek�̂/1 � �̂/1,2k22 here is slightly di↵erent from the approach used in the
proof of Lemma 4. According to Lemma 6 we have:

k�̂/1 � �̂/1,2k22 
 

˙̀
j(�̂/1)

inft2[0,1] �min(J/1,2(t�̂/1 + (1� t)�̂/1,2))

!2

kx2k22.

Hence, by using the Cauchy-Schwarz inequality twice we obtain:

E k�̂/1 � �̂/1,2k22  E |( ˙̀j(�̂/1))|8 E
"

1

(inft2[0,1] �min(J/1,2(t�̂/1 + (1� t)�̂/1,2)))8

#
E kx2k42  c̃0⌫̃c4.

Using the fact that � = n/p, x1 ⇠ N(0,⌃) and �max(⌃) = ⇢/p, we get

E
h⇣

�(y1,x
>
1 �̂/1)� E[�(y1,x>

1 �̂/1) | D/1]
⌘⇣

�(y2,x
>
2 �̂/2)� E[�(y2,x>

2 �̂/2) | D/2]
⌘i

 1

n
(c̃0c̃

2
1⇢�ṽc4).

The second Lemma aims to obtain an upper bound for the second moment of V2. This corresponds to Lemma 5
in the proof of Theorem 1.

Lemma 8. Under the assumptions of Theorem 2, we have

E
 
1

n

nX

i=1

E[�(yi,x>
i
�̂/i) | D/i]� E[�(yo,x>

o
�̂) | D]

!2

 c21
⇢

p
Ek�̂/1 � �̂k22  c21⇢�0c̃0ṽc4.

Proof. Again the proof follows very similar to the steps as the proof of Lemma 5. In fact, we follow exactly the
same steps until it is proved that

E
 
1

n

nX

i=1

E[�(yi,x>
i
�̂/i) | D/i]� E[�(yo,x>

o
�̂) | D]

!2

 c21
⇢

p
Ek�̂/1 � �̂k22.

Then, in order to bound Ek�̂/1 � �̂k22 we use a slightly di↵erent strategy. According to Lemma 6 we have

k�̂/1 � �̂k22 
 

˙̀
1(�̂)

inft2[0,1] �min(J/1(t�̂ + (1� t)�̂/1))

!2

kx1k22.

Hence, by using Cauchy-Schwarz inequality we have:

1

p
E
⇣
k�̂/1 � �̂k22

⌘
 �oc̃0ṽc4,

from which we deduce:

E
 
1

n

nX

i=1

E[�(yi,x>
i
�̂/i) | D/i]� E[�(yo,x>

o
�̂) | D]

!2

 c21
⇢

p
Ek�̂/1 � �̂k22  c21⇢�0c̃0ṽc4.
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H Proof of Corollary 3

As is clear, we would like to use Theorem 2 to prove our claim. Toward this goal, we have to prove that
Assumptions 10, 20, and 30 hold. Furthermore, we have to obtain an upper bound for the constant C̃v, which in
turn requires us to bound EVar[�(yo,x>

o
�̂/1) | D/1]. Given that xi is Gaussian, Assumption 10 is automatically

satisfied. Furthermore, since the regularizer is elastic-net, it is straightforward to prove Assumption 30. To see
this, first note that, for all i, j, we have almost surely:

At,/i , X
>
/i
diag[῭/i(t�̂/i + (1� t)�̂)]X/i + �r2

r(t�̂/i + (1� t)�̂),

At,/i,j , X
>
/ij

diag[῭/ij(t�̂/ij + (1� t)�̂/i)]X/ij + �r2
r(t�̂/ij + (1� t)�̂/i),

where r(�) = ��2 + (1� �)r↵(�). Hence, it is straightforward to see that

�min(At,/i) � ��,

�min(At,/i,j) � ��.

Hence, the only remaining steps are to prove Assumption 20 and bound the term EVar[�(yo,x>
o
�̂/1) | D/1]. Given

that �(yo,x>
o
�̂/1) =

1
2 (yo � x

>
o
�̂/1)

2, we have

Var[�(yo,x
>
o
�̂/1) | D/1] 

1

4
E[(yo � x

>
o
�̂/1)

4 | D/1].

Hence,

EVar[�(yo,x
>
o
�̂/1) | D/1] 

1

4
E[(yo � x

>
o
�̂/1)

4]  1

4

⇣
E[(yo � x

>
o
�̂/1)

8]
⌘0.5

.

Hence, if we prove Assumption 20, we have also proved that

EVar[�(yo,x
>
o
�̂/1) | D/1] 

1

4

⇣
E[(yo � x

>
o
�̂/1)

8]
⌘0.5

 c̃0.50

4
.

In the rest of this section, we focus on the proof of Assumption 20. Note that ˙̀(y,x>
i
�̂) = yi � x

>
i
�̂. Under these

assumptions, we prove that there exists a fixed number c̃0 such that E(yi �x
>
i
�̂)8  c̃0, and E(yo �x

>
o
�̂/i)

8  c̃0.

Consider the following definitions:

�̂ = argmin
�

f(�) = argmin
�

nX

j=1

(yj � x
>
j
�)2

2
+ �

pX

i=1

r(�i),

�̂/i = argmin
�

f/i(�) = argmin
�

nX

j=1,j 6=i

(yj � x
>
j
�)2

2
+ �

pX

i=1

r(�i) (17)

Furthermore, define r0.5(�) =
�

2�
2 + (1� �)r↵(�). Our optimization problem can be written as

�̂ = argmin
�

f(�) = argmin
�

nX

j=1

(yj � x
>
j
�)2

2
+ �

pX

i=1

r0.5(�i) +
��

2

pX

i=1

�2
i
.

Since y = X�
⇤ + ✏, where ✏ ⇠ N(0,�2

✏
I), the optimality conditions yield

X
>(X�̂ � y) + ���̂ + �ṙ0.5(�̂) = 0.

Hence,
�̂ = (X>

X + ��I)�1
X

>
y � �(X>

X + ��I)�1
ṙ0.5(�̂).

It is then straightforward to prove that

y �X�̂ = (I �X(X>
X + ��I)�1

X
>)y+�X(X>

X + ��I)�1
ṙ0.5(�̂)

= (I �X(X>
X + ��I)�1

X
>)X�

⇤ + (I �X(X>
X + ��I)�1

X
>)✏

+�X(X>
X + ��I)�1

ṙ0.5(�̂). (18)
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Our goal is to show that all the “finite” moments of the elements of yi �x
>
i
�̂, including the 8th moment required

in our example, are O(1). From (18) we have

E|yi � x
>
i
�̂|k  3k�1

⇣
E(1� x

>
i
(X(X>

X + ��I)�1
X

>)X�
⇤)k + E|1� x

>
i
(X>

X��I)�1
X

>)✏|k

+�kE|x>
i
(X>

X + ��I)�1
ṙ0.5(�̂)|k

⌘
(19)

Hence, we bound each of the above three terms separately in the following lemmas:

Lemma 9. Under the assumptions of Example 3 we have

E(1� x
>
i
(X(X>

X + ��I)�1
X

>)X�
⇤)k 

✓
⇢

p�2�2
k�⇤k2

◆2k

k!!.

Proof. First note that

(I �X(X>
X + ��I)�1

X
>)X�

⇤ = ��X(X>
X + ��I)�1

�
⇤. (20)

Hence,
1� x

>
i
(X(X>

X + ��I)�1
X

>)X�
⇤ = ��x>

i
(X>

X + ��I)�1
�
⇤.

Define Di = (X>
/i
X/i + ��I)�1. According to the matrix inversion lemma we have

x
>
i
(X>

X + ��I)�1
�
⇤ = x

>
i
Di�

⇤ � x
>
i
Dixix

>
i
Di�

⇤

1 + x
>
i
Dixi

=
x
>
i
Di�

⇤

1 + x
>
i
Dixi

. (21)

Note that conditioned on X/i the distribution of x>
i
Di�

⇤ is a zero mean Gaussian random variable with variance

vi = k⌃1/2
Di�

⇤k22  ⇢

p�2�2 k�⇤k22. Hence, (21) and the moments of a Gaussian random variable (see Lemma 2)
lead to

E(|x>
i
(X>

X + ��I)�1
�
⇤|k | X/i)  ⌫k

i
(k � 1)!!. (22)

Hence, by the law of iterated expectation, we obtain

E(|x>
i
(X>

X + ��I)�1
�
⇤|k)  ⌫k

i
(k � 1)!! 

✓
⇢

p�2�2
k�⇤k2

◆2k

k!!.

Lemma 10. Under the assumptions of Example 3, if ✏ ⇠ N(0,�2
✏
I), then

E|1� x
>
i
(X>

X + ��I)�1
X

>)✏|k  �k

✏
(k � 1)!!.

Proof. Note that conditioned on X, the distribution of v = (I�X(X>
X+��I)�1

X
>)✏ is multivariate Gaussian

with mean zero and covariance matrix �2
✏
(I �X(X>

X + ��I)�1
X

>)2. We have

(I �X(X>
X + ��I)�1

X
>)2 = I �X(X>

X + ��I)�1
X

> � ��X(X>
X + ��I)�2

X
>. (23)

We define �2
i
(X) =

�
1� x

>
i
(X>

X + ��I)�1
xi � ��x>

i
(X>

X + ��I)�2
xi

�
�2
✏
. Clearly �2

i
(X)  �2

✏
, hence,

E(|vi|k | X)  �k

i
(X)(k � 1)!!  �k

✏
(k � 1)!!, (24)

where the first inequality is due to Lemma 2. Hence, again by the law of iterated expectation, we have

E(|vi|k)  �k

✏
(k � 1)!!.
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Lemma 11. Under the assumptions of Example 3 we have

E|x>
i
(X>

X +
��

2
I)�1

ṙ0.5(�̂)|k

 22k�
3
2 1.5

k
2

✓
1

�2�

✓
1 +

↵(1� �)

2�

◆◆k ✓
⇢
�
>
�

p
+ �2

✏

◆ k
2

s

(2k)!!(1 +
⇣ 1.5cp

2��

⌘2k
) + ⇣

k
2

⌘
. (25)

Proof. Since f/i(�̂/i)  f/i(0), we have

2��k�̂/ik22  ky/ik22. (26)

Furthermore, due to r̈0.5(�)  � + ↵(1��)
2 , ṙ0.5(0) = 0, and (26), we have

kṙ0.5(�̂/i)k22 
✓
� +

↵(1� �)

2

◆
k�̂/ik22 

✓
1

2�
+

↵(1� �)

4��

◆
ky/ik22. (27)

The first order optimality condition yields

X
>
X(�̂/i � �̂) + �ṙ(�̂/i)� �ṙ(�̂) = �xi(yi � x

>
i
�̂/i).

Since the minimum eigenvalue of the Hessian of r(�) is 2�, therefore the minimum eigenvalue ofX>
X+� diag[r̈(�)]

(for all �) is greater than 2��, leading to

k�̂/i � �̂k2 
|yi � x

>
i
�̂/i|

2��
kxik2.

This together with r̈0.5(�)  � + ↵(1��)
2 yields

kṙ0.5(�̂/i)� ṙ0.5(�̂)k2 
✓
� +

↵(1� �)

2

◆
k�̂/i � �̂k2 

✓
1

2�
+

↵(1� �)

4��

◆
|yi � x

>
i
�̂/i|kxik2.

Define Di = (X>
/i
X/i + ��I)�1. According to the matrix inversion lemma we have

x
>
i
(X>

X + ��I)�1
ṙ0.5(�̂) = x

>
i
Diṙ0.5(�̂)�

x
>
i
Dixix

>
i
Diṙ0.5(�̂)

1 + x
>
i
Dixi

=
x
>
i
Diṙ0.5(�̂)

1 + x
>
i
Dixi

. (28)

Furthermore, we have

|x>
i
Diṙ0.5(�̂)|  |x>

i
Diṙ0.5(�̂/i)|+ |x>

i
Di(ṙ0.5(�̂)� ṙ0.5(�̂/i))|. (29)

Note that for two random variables a and b we have

E(a+ b)k  2k�1E(ak + bk).

Hence,

E(|x>
i
Diṙ0.5(�̂)|)k  2k�1

⇣
E|x>

i
Diṙ0.5(�̂/i)|k + E|x>

i
Di(ṙ0.5(�̂)� ṙ0.5(�̂/i))|k

⌘
. (30)

First note that, since the maximum eigenvalue of Di is �� we have

|x>
i
Di(ṙ0.5(�̂)� ṙ0.5(�̂/i))|

 1

��
kxik2kṙ0.5(�̂)� ṙ0.5(�̂/i)k2  1

2�2�
kxik22

✓
1 +

↵(1� �)

2�

◆
|yi � x

>
i
�̂/i|

 1

2�2�

✓
1 +

↵(1� �)

2�

◆
kxik22(|yi|+ |x>

i
�̂/i|). (31)

Hence,

E(|x>
i
Di(ṙ0.5(�̂)� ṙ0.5(�̂/i))|)k 

✓
1

�2�

✓
1 +

↵(1� �)

2�

◆◆k q
E(kxik2)2kE(|yi|+ |x>

i
�̂/i|)2k


✓

1

2�2�

✓
1 +

↵(1� �)

2�

◆◆k

2(2k�1)/2
q
E(kxik2)2k(E|yi|2k + E|x>

i
�̂/i|2k) (32)

Furthermore, we have
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1. According to Lemma 3, Ekxik`2 = p(p+2)...(p+`�2)

p
`
2


⇣
1 + `�2

p

⌘ `
2  1.5

`
2 , where the last inequality is according

to the assumption p > 2(`� 2).

2. Note that yi ⇠ N(0,�>
⌃�+ �2

✏
). Furthermore, �>

⌃�+ �2
✏
 ⇢�>�

p
+ �2

✏
. Hence, using the the moments of

Gaussian (see Lemma 2), we have

E|yi|` 
✓
⇢
�
>
�

p
+ �2

✏

◆`/2

`!!. (33)

3. Given X/i,y/i, the distribution of x>
i
�̂/i is N(0, �̂>

/i
⌃�̂/i). Furthermore, �̂>

/i
⌃�̂/i  c�̂>

/i�̂/i

n
 cky/ik2

2

2n�� ,

where the last inequality is due to (26). Hence, we have

E(|x>
i
�̂/i|` | X/i,y/i) 

✓
cky/ik22
2n��

◆`/2

`!!. (34)

Since yi
i.i.d.⇠ N(0,�>

⌃� + �2
✏
), and �

>
⌃� + �2

✏
 ⇢�>�

p
+ �2

✏
, we have

E(|x>
i
�̂/i|`) 

 
c`E(ky/ik`2)
(2n��)`/2

!
`!! 

c`
⇣

⇢k�>�k2
2

p
+ �2

✏

⌘`

(2��)
`
2

`!!
n(n+ 2) . . . (n+ `� 2)

n`/2


c`
⇣

⇢k�>�k2
2

p
+ �2

✏

⌘`

(2��)
`
2

1.5``!!, (35)

where for the last inequality we assumed that n > 2`.

Finally, we compute an upper bound on |x>
i
Diṙ0.5(�̂/i)|. Since xi is independent of y/i and X/i, we conclude

that given X/i and y/i, x
>
i
Diṙ0.5(�̂/i) is a Gaussian random variable with mean zero and variance

k⌃1/2
Diṙ0.5(�̂/i)k22  4⇢max

�2�2
kṙ0.5(�̂/i)k22  2⇢max

�3�2

✓
1 +

↵(1� �)

2�

◆
ky/ik22 =

⇣ky/ik22
n

,

where ⇣ = 2c
�3�2

⇣
1 + ↵(1��)

2�

⌘
, and the second inequality is due to (27). Hence,

Ek⌃1/2
Diṙ0.5(�̂/i)k`2  ⇣`/2

n(n+ 2) . . . (n+ `

2 � 2)

n`/2
 (1.5⇣)`/2.

I Proof of Corollary 4

The goal of this section is to use Theorem 2 to prove corollary 4. Hence, we have to confirm that Assumptions
10, 20, and 30 hold, and that EVar[�(yo,x>

o
�̂/1) | D/1] is bounded. Similar to what we did at the beginning of

Section H, it is straightforward to check the validity of Assumptions 10 and 30. Hence, we only focus on proving
Assumption 20 and finding an upper bound for EVar[�(yo,x>

o
�̂/1) | D/1].

Regarding Assumption 20, we first prove that under the assumptions of this corollary, there exists a fixed number
c̃0, such that E( ˙̀(yi | x>

i
�̂))8  c̃0 and E( ˙̀(y0 | x>

0 �̂/i))
8  c̃0. Since `(y | z) = f(z)� y log f(z), we have

˙̀(yi | x>
i
�̂) = f 0(x>

i
�̂)� yif

0(x>
i
�̂)/f(x>

i
�̂),

where f 0(z) = 1/(1 + e�z). We have that, for all z 2 R, f 0(z)  1 and 0  f 0(z)/f(z)  1, from which we deduce
that:

| ˙̀(yi | x>
i
�̂)|  1 + yi. (36)
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In particular, we have that:

E| ˙̀(yi | x>
i
�̂)|8  E(1 + yi)

8

 E e8yi = EE[e8yi | x>
i
�
⇤]

(a)
= E exp{(e8 � 1)x>

i
�
⇤}

(b)
 exp

� ⇢

2p
k�⇤k22(e8 � 1)2

 

= exp
� (e8 � 1)2

2

⇢

p
k�⇤k22

 
,

 exp
� (e8 � 1)2

2
⇢b
 
.

To obtain equality (a) we have used the moment generating function of the Poisson distribution with yi ⇠
Poisson(f(x>

i
�
⇤)). To obtain inequality (b) we have used the moment generating function of a Gaussian

distribution and the fact that E(x>
i
�
⇤)2  ⇢

p
k�⇤k22. Given that the upper bound we derived in (36) for the

derivative of the loss function does not depend on the second input argument of the loss, that is x>
i
�̂, the proof

that Poisson loss satisfies the other conditions of Assumption 20 for �(y, z) = `(y | z) will be exactly similar and
hence is skipped. In particular, we have verified the conditions of Assumption 20 for any convex regularizer.

Now we turn our attention to bounding EVar[`(yo | x>
o
�̂/1) | D/1]. First note that

Var[`(yo|x>
o
�̂/1) | D/1]  E[`2(yo|x>

o
�̂/1) | D/1]. (37)

Furthermore, from the mean value theorem we have:

`(yo|x>
o
�̂/1) = `(yo | x>

o
�
⇤) + ˙̀(yo|z̃)(x>

o
�̂/1 � x

>
o
�
⇤),

Hence, we have:

`2(yo | x>
o
�̂/1)  2`2(yo | x>

o
�
⇤) + 2(1 + y2

o
)(x>

o
�̂/1 � x

>
o
�
⇤)2. (38)

To complete the proof we have to show that both E `2(yo,x>
o
�
⇤) and E(1 + y2

i
)(x>

o
�̂/1 � x

>
o
�
⇤)2 are bounded.

First note that, using `(y | z) = f(z)� y log f(z) and, for any a, b 2 R, (a+ b)2  2a2 + 2b2, yields

`2(yo | x>
o
�
⇤)  2f2(x>

o
�
⇤) + 2y2

o
log2 f(x>

o
�
⇤). (39)

Hence,

E `2(yo | x>
o
�
⇤)  2E f2(x>

o
�
⇤) + 2E(f(x>

o
�
⇤) + f2(x>

o
�
⇤)) log2 f(x>

o
�
⇤). (40)

The following facts will help us bound these terms:

f(x>
o
�
⇤) � 0

f(x>
o
�
⇤)  1 + |x>

o
�
⇤|,

(41)

On the other hand, it is straightforward to check that for any � > 0 we have

� log2 �  1 + �2,

�2 log2 �  1 + �3. (42)

By combining these equations we obtain:

E `2(yo | x>
o
�
⇤)  2E f2(x>

o
�
⇤) + 2E(1 + f2(x>

o
�
⇤)) + 2E(1 + f3(x>

o
�
⇤))

 4 + 4E f2(x>
o
�
⇤) + 2E f3(x>

o
�
⇤)

 4 + 4E(1 + |x>
o
�
⇤|)2 + 2E(1 + |x>

o
�
⇤|)3. (43)
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Note that x>
o
�
⇤ is a Gaussian random variable with mean zero and variance (�⇤)>⌃�

⇤  ⇢b. Hence, E `2(yo,x>
o
�
⇤)

is bounded by a constant.

For the second term in (38) we have

E(1 + y2
o
)(x>

o
�̂/1 � x

>
o
�
⇤)2 = E

�
1 + f(x>

o
�
⇤) + f2(x>

o
�
⇤)
�
(x>

o
�̂/1 � x

>
o
�
⇤)2

 E
�
1 + (1 + |x>

o
�
⇤|) + (1 + |x>

o
�
⇤|2)

�
(x>

o
�̂/1 � x

>
o
�
⇤)2. (44)

Note that in order to show that this term is bounded from above by a constant, we only need to show that terms
of the form:

E |x>
o
�̂/1|k1 |x>

o
�
⇤|k2  (E |x>

o
�̂/1|2k1 E |x>

o
�
⇤|2k2)1/2

are bounded for k1  2 and k1 + k2  4. As previously, we note that x>
0 �

⇤ is a Gaussian random variable with
variance �

⇤>
⌃�

⇤  ⇢

p
k�⇤k22  ⇢b, and hence (E |x>

o
�
⇤|2k2)1/2 is bounded. Hence, the only remaining step is to

prove the boundedness of E |x>
o
�̂/1|2k1 , where k1 is at most 2. Note that conditioned on D/1 the random variable

x
>
o
�̂/1 is Gaussian with the variance that is bounded by ⇢

p
�̂
>
/1�̂/1. Hence, using Lemma 2 we have

E |x>
o
�̂/1|2k1  (2k1 � 1)!!E

✓
⇢

p
�̂
>
/1�̂/1

◆k1

.

The definition of �̂/1 (and comparing it with �
⇤) yields

X

j 6=i

`(yj | x>
j
�̂/1) + �r(�̂/1) 

X

j 6=i

`(yj | x>
j
�
⇤) + �r(�⇤),

The �-strong convexity of the smoothed elastic-net regularizer r, and the fact that ` � 0, leads to

��k�̂/1k22 
X

j 6=i

`(yj | x>
j
�
⇤) + �r(�⇤).

Since k1  2, we only prove that E |x>
o
�̂/1|4 is bounded. Toward this goal we have:

E
⇣��

p
k�̂/1k22

⌘2
 1

p2
E
⇣X

j 6=i

`(yj | x>
j
�
⇤) + �r(�⇤)

⌘2

 2

p2
E(
X

j 6=i

`(yj | x>
j
�
⇤))2 + E(�r(�⇤))2

 2n(n� 1)

p2
E `2(y1 | x>

1 �
⇤) +

�2r2(�⇤)

p2

 2�2 E `2(y1 | x>
1 �

⇤) +
�2r2(�⇤)

p2
. (45)

Hence, we have to prove that E `2(y1 | x>
1 �

⇤) and �
2
r
2(�⇤)
p2 are bounded. First note we proved in (43) that:

`2(yo | x>
o
�
⇤)  4 + 4(1 + |x>

o
�
⇤|)2 + 2(1 + |x>

o
�
⇤|)3. (46)

Note that x>
0 �

⇤ is a Gaussian random variable with variance �⇤>
⌃�

⇤  ⇢

p
k�⇤k22  ⇢b, and hence E `2(yo | x>

o
�
⇤)

is bounded. On the other hand,

r(�⇤) = �(�⇤)>�⇤ + (1� �)
pX

i=1

r↵(�⇤
i
). (47)

It is straightforward to prove that ṙ↵(z) = e↵z�e�↵z

e↵z+e�↵z+1 < 1. Hence,

r(�⇤) = �(�⇤)>�⇤ + (1� �)
pX

i=1

r↵(�⇤
i
) < �(�⇤)>�⇤ + (1� �)

pX

i=1

(
2 log 2

↵
+ |�⇤

i
|), (48)
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where to obtain the last inequality we used the mean value theorem

r↵(|z|) = r↵(0) + ṙ↵(z̃)|z|,

where z̃ 2 (0, |z|), and the facts that ṙ↵(z̃)  1 and r↵(0) = 2 log 2
↵

. Using (48) we obtain:

1

p
r(�⇤)  �(�⇤)>�⇤

p
+

(1� �)2 log 2

↵
+

1� �

p

pX

i=1

|�⇤
i
|

 �(�⇤)>�⇤

p
+

(1� �)2 log 2

↵
+ (1� �)

sP
p

i=1 |�⇤
i
|2

p

 �b+
(1� �)2 log 2

↵
+ (1� �)

p
b. (49)

J Proof of Corollary 5

Similar to the proofs of Corollaries 4, 3, we would like to use Theorem 2 to prove our claim. Toward this goal,
We have to prove that Assumptions 10, 20, and 30 hold. Furthermore, we have to obtain an upper bound for the
constant C̃v, which in turn requires us to bound EVar[�(yo,x>

o
�̂/1) | D/1]. Again, the proofs of Assumptions 10

and 30 are exactly the same as we presented in the last two sections. Hence, we only focus on Assumption 20

and EVar[�(yo,x>
o
�̂/1) | D/1]. We would like to prove that the conditions of Assumption 20 are satisfied with

c̃0 = c̃1 = 28(+ ↵�8).

It we compute the derivative of the log-likelihood, we will obtain

| ˙̀(y | z)| =
�����y + (y + ↵�1)

↵ez

1 + ↵ez

����  y + ↵�1. (50)

We thus deduce that:
E| ˙̀(y1 | x>

1 �̂)|8  E(y + ↵�1)8  28(+ ↵�8).

As the bound (50) is free of z, the same argument above applies to the other requirements in Assumption 20.

Now we turn our attention to the calculation of EVar[`(yo,x>
o
�̂/1) | D/1]. Note that

EVar[`(yo,x
>
o
�̂/1) | D/1]  E `2(yo,x

>
o
�̂/1).

Note that by removing the constant from the log-likelihood we obtain

|`(yo | x>
o
�̂/1)| = |(yo + ↵�1) log(1 + ↵ex

>
o �̂/1)� yo(x

>
o
�̂/1)|  |yo + ↵�1|(1 + | log↵|+ |x>

o
�̂/1|) + yo|x>

o
�̂/1|

 2yo|x>
o
�̂/1|+ ↵�1(1 + | log↵|+ |x>

o
�̂/1|). (51)

The rest of the proof is very similar to the proof that we presented for Corollary 4. Hence, we skip it.


