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Appendix A Optimization of task-specific
last layers alone fails to
fine-tune

Optimization of only task-specific layers does not lead to
successful fine-tuning. For instance, for the MRPC task,
freezing parameter weights in the pre-trained model and
optimizing the task-specific last layer alone yields a non-
performing model. Across 10 independent runs, the model
consistently predicts all 1’s for the paraphrase classifica-
tion task, yielding an F1 score of 81.2. This is a signifi-
cant degradation compared to the baseline performance of
89.4+0.7 across multiple runs (Table E]) Thus, it is critical
to fine-tune layers in the pre-trained model and not just the
task-specific layers alone.

Appendix B Learning rate of supermask
training

Supermask training requires a much larger learning rate
compared to typical training (Zhang et al., [2019). While
a learning rate of 2 x 107° is used for optimizing weights,
a learning rate of 2 x 10~ is used for optimizing masks.
We notice a degradation in performance at smaller learning
rates for supermask training (Table [5). This pattern holds
true across GLUE tasks.

Table 5: MRPC low-sparsity supermask performance at
learning rates from 2 x 107° and 2 x 1071,

Learning-rate  F1 score
2x107Y 91.3+04
2x1072 82.0+0.2
2x1073 0.0
2x107* 0.0
2x107° 0.0

Appendix C Correlation between initial and
final sparsities of supermasks

There is no straightforward control of the amount of
weights pruned in previous reports of supermask train-
ing (Zhang et al., 2019; |[Mallya et al., 2018). We find that
setting the initial sparsity through a soft magnitude-based
pruning mask controls the final sparsity level, which we use
to produce supermasks of varied sparsity levels. Figure
shows this correlation between initial and final sparsities
of supermasks for different GLUE tasks. We note that, at
lower initial sparsity levels, the supermask is pushed to a
greater sparsity level, whereas at higher sparsity levels, the
supermask is pushed to a lower sparsity level. This pattern
is similar across GLUE tasks but is most prominent in the
MNLI task, scaling with the number of fine-tuning steps

(Table[I).
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Figure 7: Initial versus final sparsity levels of supermasks.

Appendix D Correlation of parameter
distance with fine-tuning steps

In order to understand how distance in parameter space in-
creases as a function of fine-tuning steps, we study this
relationship across GLUE tasks. We find that parameter
distance scales with the number of fine-tuning steps by a
power law with exponent close to 0.5 (Figure§).
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Figure 8: Correlation of parameter distance with the num-
ber of fine-tuning iterations. Shown are angular distances.
Each data point corresponds to a different GLUE task.

Appendix E Fine-tuning with iterative
pruning

We also use iterative pruning (Zhu and Gupta,|2017)) during
fine-tuning to produce sparse models. Pruning is based on
weight magnitudes in each layer and is performed periodi-
cally during fine-tuning with sparsity gradually increasing
from 0% to a final level according to a cubic schedule.

Iterative pruning during fine-tuning (Figure Q) outperforms
supermask training (Figure at higher sparsity levels.
While supermask training remains successful up to 40%
sparsity, iterative pruning produces binary masks up to 50%
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Figure 9: Iterative pruning during fine-tuning. We plot
the evaluation performance at sparsity levels from 10% to
90% across GLUE tasks. Note the baseline performance
for each task marked by the leftmost end of each curve (0%
sparsity).
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Figure 10: Pruned weight distributions, compared between
supermask and magnitude-based pruning. Shown for the
RTE and MNLI fine-tuning tasks.

sparse and for some tasks even sparser without significant
performance degradation. Though iterative pruning pro-
duces sparse models, the fine-tuned models do not share
parameters—one still needs to store all parameters for each
task. Fine-tuned supermasks, on the other hand, store only
a binary mask of certain layers for each task, with all tasks
sharing a same set of underlying pre-trained weights.

Appendix F  Fine-tuned supermasks are not
trivial

How does the learning of a supermask actually work? Does
a supermask simply learn to prune away the weights with
smallest magnitudes? Since pure magnitude-based pruning
of pre-trained weights does not perform any task-specific
learning, we reason that the weight entries being set to zero
by the supermask must have significant values. Here, we
inspect the magnitudes of the pre-trained weights zeroed
by the supermasks (Figure[T0] Table[6). These weights turn
out to have remarkably higher magnitudes than the smallest

entries, suggesting the learning of supermasks is not trivial
magnitude-based pruning.

Appendix G Learning curves of
low-sparsity supermask
fine-tuning

Our results suggest that supermask fine-tuning, if initial-
ized at 0% sparsity, gradually increases sparsity during op-
timization, reaching a final sparsity level that correlates
with the number of fine-tuning steps (Table ). For MNLI,
the GLUE task with the most fine-tuning steps, the spar-
sity level reaches 12.9%. We ask how prediction accuracy
grows with sparsity during fine-tuning. As shown in Fig-
ure[T1] like model performance, sparsity rapidly grows dur-
ing the initial phase of fine-tuning. This makes model per-
formance increase roughly linearly with sparsity.
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Figure 11: Learning curves of MNLI low-sparsity super-
mask fine-tuning.
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Table 6: Comparison between weights pruned with low-sparsity supermasks (initialized at 0% sparsity) and weights
pruned with magnitude-based pruning at the same final sparsity. We report the maximum and mean magnitude of the
pruned weights. The last row shows percentages of the overlap between the supermask and the magnitude-based pruning
mask, i.e. the percentages of weights zeroed by the supermask that are also the smallest weights.

GLUE task MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

Pruned max 0.0093 0.0093 0.0075 0.0059 0.0022 0.0018 0.0009 0.0007
Supermask max 1.7 6.4 2.5 1.7 1.1 2.8 1.8 2.8

Pruned mean 0.0033 0.0032 0.0026 0.0020 0.0008 0.0006 0.0003 0.0002
Supermask mean 0.032 0.033 0.033 0.035 0.037 0.036 0.038 0.036

Overlap 11.1% 10.0% 6.7% 3.6% 0.7% 0.7% 0.7% 0.7%
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