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Abstract

Given a loss function F : X → R+ that can
be written as the sum of losses over a large
set of inputs a1, . . . , an, it is often desirable
to approximate F by subsampling the input
points. Strong theoretical guarantees require
taking into account the importance of each
point, measured by how much its individual
loss contributes to F (x). Maximizing this im-
portance over all x ∈ X yields the sensitivity
score of ai. Sampling with probabilities pro-
portional to these scores gives strong guaran-
tees, allowing one to approximately minimize
of F using just the subsampled points.

Unfortunately, sensitivity sampling is diffi-
cult to apply since (1) it is unclear how to effi-
ciently compute the sensitivity scores and (2)
the sample size required is often impractically
large. To overcome both obstacles we intro-
duce local sensitivity, which measures data
point importance in a ball around some cen-
ter x0. We show that the local sensitivity
can be efficiently estimated using the lever-
age scores of a quadratic approximation to
F and that the sample size required to ap-
proximate F around x0 can be bounded. We
propose employing local sensitivity sampling
in an iterative optimization method and an-
alyze its convergence when F is smooth and
convex.

1 Introduction

In this work we consider finite sum minimization prob-
lems of the following form.

Definition 1 (Finite Sum Problem). Given data
points a1, . . . , an ∈ Rd, nonnegative functions
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f1, . . . , fn : R → R+, and a nonnegative function
γ : Rd → R+, minimize over x ∈ X ⊆ Rd

F (x) :=
1

n

n∑
i=1

fi(a
T
i x) + γ(x). (1)

Definition 1 captures a number of important prob-
lems, including penalized empirical risk minimization
(ERM) for linear regression, generalized linear mod-
els, and support vector machines. When n is large,
minimizing F (x) can be expensive. In some cases, for
example, it may be impossible to load the full dataset
a1, . . . , an into memory.

1.1 Function Approximation via Data
Subsampling

To reduce the burden of solving a finite sum prob-
lem, one commonly minimizes an approximation to F
formed by independently subsampling data points ai
(and hence summands fi(a

T
i x)) with some fixed prob-

ability weights. More formally:

Definition 2 (Subsampled Finite Sum Problem).
Consider the setting of Definition 1. Given a tar-
get sample size m and a probability distribution P =
{p1, . . . , pn} over [n] , {1, . . . , n}, select i1, ..., im i.i.d.
from P and minimize over x ∈ X ⊆ Rd

F (P,m)(x) :=
1

mn

m∑
j=1

fij (a
T
ij
x)

pij
+ γ(x). (2)

We can see that for any x, E[F (P,m)(x)] = F (x). If the
sampled function concentrates well around F (x), then
it can serve effectively as a surrogate for minimizing F .
Most commonly, P is set to the uniform distribution.
Unfortunately, if F (x) is dominated by the values of
a relatively few large fi(a

T
i x), unless m is very large,

uniform subsampling will miss these important data
points and F (P,m)(x) will often underestimate F (x).
This can happen, for example, when a1, ..., an fall into
clusters of non-uniform size. Data points in smaller
clusters are important in selecting an optimal x but
are often underrepresented in a uniform sample.



Importance Sampling via Local Sensitivity

1.2 Importance Sampling via Sensitivity

A remedy to the weakness of uniform subsampling is to
apply importance sampling: preferentially sample the
functions fi(a

T
i x) that contribute most significantly to

F (x). If, for example, we set pi ∝ fi(a
T
i x)∑n

i=1 fi(a
T
i x)+γ(x)

for each i ∈ [n], then a standard concentration argu-
ment would imply that (1 − ε)F (x) ≤ F (P,m)(x) ≤
(1 + ε)F (x) with probability at least 1 − δ if m =

Θ
(

log(1/δ)
ε2

)
. However, typically the relative the im-

portance of each point,
fi(a

T
i x)∑n

i=1 fi(a
T
i x)+γ(x)

, will depend

on the choice of x. This motivates the definition of
sensitivity [Langberg and Schulman, 2010].

Definition 3 (Sensitivity). For a1, . . . , an ∈ Rd, the
sensitivity of point ai with respect to a finite sum func-
tion F (Definition 1) with domain X ⊆ Rd is

σF,X (ai) = sup
x∈X

fi(a
T
i x)∑n

j=1 fj(a
T
j x) + nγ(x)

.

The total sensitivity is defined as GF,X =∑n
i=1 σF,X (ai).

A standard concentration argument yields the follow-
ing approximation guarantee for sensitivity sampling.

Lemma 4. Consider the setting of Definition 1. For
all i ∈ [n], let si ≥ σF,X (ai), S =

∑n
i=1 si, and P ={

s1
S , . . . ,

sn
S

}
. There is a fixed constant c such that, for

any ε, δ ∈ (0, 1), any fixed x ∈ X , and m ≥ c·S log(2/δ)
ε2 ,

(1− ε)F (x) ≤ F (P,m)(x) ≤ (1 + ε)F (x)

with probability ≥ 1− δ.

That is, subsampling data points by their sensitivities
approximately preserves the value of F for any fixed
x ∈ X with high probability. It can thus be argued
that F can be approximately minimized by minimizing
the sampled function F (P,m). We first define:

Definition 5 (Range Space). A range space is a pair
R = (F , ranges), where F is a set and ranges is a set
of subsets of F . The VC dimension ∆(R) is the size of
the largest G ⊆ F such that G is shattered by ranges:
i.e., |{G ∩R|R ∈ ranges}| = 2|G|.

Let F be a finite set of functions mapping Rd → R+.
For every x ∈ Rd and r ∈ R+, let rangeF (x, r) =
{f ∈ F|f(x) ≥ r} and ranges(F) = {rangeF (x, r)|x ∈
Rd, r ∈ R+}. We say RF = (F , ranges(F)) is the
range space induced by F .

With the notion of range space in place, we can recall
the following general approximation theorem.

Theorem 6 (Theorem 9 [Munteanu et al., 2018]).
Consider the setting of Definition 1. For all i ∈ [n], let

si ≥ σF,X (ai), S =
∑n
i=1 si, and P =

{
s1
S , . . . ,

sn
S

}
.

For some finite c and all ε, δ ∈ (0, 1/2), if

m ≥ c · S
ε2

(
∆ logS + log

(
1

δ

))
,

then, with probability at least 1− δ,

(1− ε)F (x) ≤ F (P,m)(x) ≤ (1 + ε)F (x),∀x ∈ X

Here, ∆ is an upper bound on the VC-dimension

∆(RF ) where F is the set
{
f1(aT1 x)
mn·p1 , . . . ,

fn(aTnx)
mn·pn

}
.

Munteanu et al. [2018] show that ∆ = d + 1 suffices
for logistic regression where d is the dimension of the
input points. If all fi are from the class of invertible
functions, then a similar bound on ∆ can be expected.

1.2.1 Barriers to the Sensitivity Sampling in
Practice

Theorem 6 is quite powerful: it can be used to achieve
sensitivity-sampling-based approximation algorithms
with provable guarantees for a wide range of problems
[Feldman and Langberg, 2011, Huggins et al., 2016,
Lucic et al., 2016, Munteanu et al., 2018]. However,
there are two major barriers that have hindered more
widespread practical adoption of sensitivity sampling:

1. Computability: It is difficult to compute or
even approximate the sensitivity σF,X (ai) since
it is not clear how to take the supremum over all
x ∈ X in the expression of Definition 3. Closed
form expressions for the sensitivity are known
only in a few special cases, such as least squares
regression (where the sensitivity is closely related
to the well-studied statistical leverage scores).

2. Pessimistic Bounds: The sensitivity score is a
very ‘worst case’ importance metric, since it con-

siders the supremum of
fi(a

T
i x)∑n

j=1 fj(a
T
j x)+nγ(x)

over all

x ∈ X , including, e.g., x that may be very far from
the true minimizer of F . In many cases, it is pos-
sible to construct, for each ai, some worst case x
that forces this ratio to be high. Thus, all sensi-
tivities are large and the total sensitivity GF,X is
large. The sample complexities in Lemma 4 and
Theorem 6 depend on S ≥ GF,X and so will be
too large to be useful in practice. See Figure 1 for
a simple example of when this issue can arise.

1.3 Our Approach: Local Sensitivity

We propose to overcome the above barriers via a sim-
ple idea: local sensitivity. Instead of sampling with
the sensitivity over the full domain X as in Defini-
tion 3, we consider the sensitivity over a small ball.
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Figure 1: Consider a classification problem with two
classes A1, A2, shown in blue and green. Let fi(a

T
i x)

be any loss function with fi(a
T
i x) = 0 if ai is correctly

classified by the hyperplane defined by x. Since for
each ai, there is some x (e.g., corresponding to the
black line shown) that misclassifies only ai, we have
σF,Rd(ai) = 1 for all ai. Thus, the total sensitivity is
GF,X = n and so the sampling results of Lemma 4 and
Theorem 6 are vacuous – they require sampling ≥ n
points, even for this simple task.

Specifically, for some radius r and center y we let
B(r, y) = {x ∈ Rd : ‖x− y‖ < r} and consider
σF,X∩B(r,y)(ai). Sampling by this local sensitivity will

give us a function F (P,m) that approximates F well on
the entire ball B(r, y). Thus, we can approximately
minimize F on this ball. We can approximately mini-
mize F globally via an iterative scheme: at each step
we set xi to the approximate optimum of F over the
ball B(ri, xi−1) (computed via local sensitivity sam-
pling). This approach has two major advantages:

1. We can often locally approximate each F by a sim-
ple function, for which we can compute the local sen-
sitivities in closed form. This will yield an approxima-
tion to the true local sensitivities. Specifically, we will
consider a local quadratic approximation to F , whose
sensitivities are given by the leverage scores of an ap-
propriate matrix.

2. By definition, the local sensitivity σF,X∩B(r,y) is
always upper bounded by the global sensitivity σF,X ,
and typically the sum of local sensitivities will be much
smaller than the total sensitivity GF,X . This allows us
to take fewer samples to approximately minimize F
locally over B(r, y).

1.4 Related Work

The sensitivity sampling framework has been success-
fully applied to a number of problems, including clus-
tering [Bachem et al., 2015, Feldman and Langberg,
2011, Lucic et al., 2016], logistic regression [Huggins
et al., 2016, Munteanu et al., 2018], and least squares
regression, in the form of leverage score sampling [Co-
hen et al., 2015, Drineas et al., 2006, Mahoney, 2011].
In these works, upper bounds are given on the sensi-

tivity of each data point, and it is shown that the sum
of these bounds, and thus the required sample size for
approximate optimization, is small. We aim to expand
the applicability of sensitivity-based methods to func-
tions for which a bound on the sensitivity cannot be
obtained or for which the total sensitivity is inherently
large.

The local-sensitivity-based iterative method that we
will discuss is closely related to quasi-Newton meth-
ods [Dennis and Moré, 1977], especially those that ap-
proximate the Hessian via leverage score sampling [Xu
et al., 2016, Ye et al., 2017]. In each iteration, we esti-
mate local sensitivities by considering the sensitivities
of a local quadratic approximation to F . As shown in
Section 2, these sensitivities can be bounded using the
leverage scores of the Hessian, and thus our sampling
probabilities are closely related to those used in the
above works. Unlike a quasi-Newton method however,
we use the sensitivities to directly optimize F locally,
rather than the quadratic approximation itself. In this
way, our method is closer to a trust region method
[Chen et al., 2018] or an approximate proximal point
method [Frostig et al., 2015].

Recently, [Agarwal et al., 2017] and [Chowdhury et al.,
2018] have suggested iterative algorithms for regular-
ized least squares regression and ERM for linear mod-
els that sample a subset of data points by their lever-
age scores (closely related to sensitivities) in each step.
These works employ this sampling in a different way
than us, using the subsample to precondition each it-
erative step. While they give strong theoretical guar-
antees for the problems studied, this technique applies
to a less general class of problems than our method.

The sensitivity scores for `2 regression are commonly
known as leverage scores, and a long line of work
[Altschuler et al., 2018, Rudi et al., 2018, see, e.g.,] has
focused on approximating these scores more quickly.
These approximation techniques do not extend to gen-
eral sensitivity score approximation however. Addi-
tionally, our paper in no way attempts to develop a
faster algorithm for leverage score sampling. We focus
on introducing the notion of local sensitivity, which
allows leverage score based methods to be applied to
optimization problems well beyond `2 regression.

1.5 Road Map

Our contributions are presented as follows. In Section
2 we show that the sensitivity scores of a quadratic
approximation to a function are given by the leverage
scores of an appropriate matrix. We use these scores
to bound the local sensitivity scores of the true func-
tion. In Section 3 we discuss how to subsample using
these approximate local sensitivities with the aim of
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approximately minimizing the function over a small
ball. We describe how to use this approach to itera-
tively optimize the function. In Section 4 we give an
analysis of this iterative method for convex functions.

2 Leverage Scores as Sensitivities of
Quadratic Functions

We start by showing how to approximate the local sen-
sitivity σF,X∩B(r,y) over some ball by approximating F
with a quadratic function on this ball. F ’s sensitivi-
ties can be approximated by those of this quadratic
function, which we in turn bound in closed form by
the leverage scores of an appropriate matrix (a rank-1
perturbation of F ’s Hessian at y). The leverage scores
are given by:

Definition 7 (Leverage Scores [Alaoui and Mahoney,
2015, Cohen et al., 2017]). For any C ∈ Rn×p with ith

row ci, the ith λ-ridge leverage score is the sensitivity
of F (z) = ‖Cz‖22 + λ‖z‖22:

`λi (C) := max
{z∈Rp:‖z‖2>0}

[Cz]2i

‖Cz‖22 + λ‖z‖22
.

We have `λi (C) = cTi (CTC + λI)−1ci. (See Lemma 17
in Appendix A).

Our eventual iterative method will employ a proximal
function, and thus in this section we consider this func-
tion, which reduces to F when λ = 0:

Definition 8 (Proximal Function). For a function F :

X → R, define Fλ,y(x) = F (x) + λ‖x− y‖22.

Using Definition 7 and the associated Lemma 17 we
establish the following in Appendix A.

Theorem 9 (Sensitivity of Quadratic Approxima-
tion). Consider F as in Def. 1 along with the
quadratic approximation to the proximal function Fλ,y
(Def. 8) around y ∈ X . If A ∈ Rn×d is the data
matrix with ith row equal to ai, then

F̃λ,y(x) :=
1

n

n∑
i=1

[
fi(a

T
i y) + aTi (x− y) · f ′(aTi y)

+
1

2
(aTi (x− y))2 · f ′′(aTi y)

]
+ γ(x) + λ‖x− y‖22

:= F (y) + (x− y)TATαy +
1

2
(x− y)TATHyA(x− y)

+ γ(x) + λ‖x− y‖22
(3)

where [αy]i = 1
nf
′
i(a

T
i y), and Hy is the diagonal ma-

trix with [Hy]i,i = 1
nf
′′(aTi y). Assuming that Hy is

nonnegative, the sensitivity scores of F̃λ,y with respect

to B(r, y) can be bounded as

σF̃λ,y,B(r,y)(ai) ≤ β · `
λ
i (C) +

fi(a
T
i y)

η
, (4)

where C = [H
1/2
y A, 1

δH
−1/2
y αy], `λi (C) is the leverage

score of Def. 7, η = min
x∈B(r,y)

F̃λ,y(x), δ = min
x∈B(r,y)

γ(x),

and β = max

(
1, 1−

F (y)− 1
n

∑n
i=1

f′(aTi y)
2

4f′′(aT
i
y)

η

)
.

Note that if we consider a small enough ball,
where F̃λ,y well approximates Fλ,y, we expect η =

min
x∈B(r,y)

F̃λ,y(x) = Θ(F (y)). Thus, the additive

fi(a
T
i y)
η term on each sensitivity will contribute only

a
∑
fi(a

T
i y)

Θ(F (y)) = O(1) additive factor to the total sensi-

tivity bound and sample size.

2.1 Efficient Computation of Leverage Score
Sensitivities

The sensitivity upper bound (4) of Theorem 9 can be
approximated efficiently as long as we can efficiently
approximate the leverage scores `λi (C) = cTi (CTC +

λI)−1ci, where C = [H
1/2
y A, 1

δH
−1/2
y αy]. We can use

a block matrix inversion formula to find that

(CTC + λI)−1 =

[
ATHyA+ λI 1

δA
Tαy

1
δα

T
y A ‖αy‖22 + λ

]−1

=

[
A1 A2

A>2
1
k

]
where A1 = (ATHyA + λI)−1 + 1

k (ATHyA +

λI)−1ATαyα
T
y A(ATHyA+ λI)−1, k = ‖αy‖22 + δ2λ−

αTy A(ATHyA+λI)−1ATαy , and A2 = − δ
k (ATHyA+

λI)−1ATαy.

Thus, if we have a fast algorithm for applying
(ATHyA + λI)−1 to a vector we can quickly apply
(CTC + λI)−1 to a vector and compute the lever-
age scores `λi (C) = cTi (CTC + λI)−1ci. Via standard
Johnson-Lindenstrauss sketching techniques [Spielman
and Srivastava, 2011] it in fact suffices to apply this in-
verse to O(log n/δ) vectors to approximate each score
up to constant factor with probability ≥ 1−δ. In prac-
tice, one can use traditional iterative methods such as
conjugate gradient, iterative sampling methods such
as those presented in [Cohen et al., 2015, 2017], or
fast sketching methods [Clarkson and Woodruff, 2017,
Drineas et al., 2012].

2.2 True Local Sensitivity from Quadratic
Approximation

As long as the quadratic approximation F̃λ,y approxi-
mates Fλ,y sufficiently well on the ball B(r, y), we can
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use Theorem 9 to approximate the true local sensi-
tivity σFλ,y,X∩B(r,y)(ai). We start by discussing our
approximation assumptions.

Defining αy as in Theorem 9, for some By(x) which
itself is a function of x we have:

F (x) = F (y) + (x− y)>A>αy + (x− y)>A>HyA(x− y)

+ γ(x) +By(x)‖x− y‖32.

Without loss of generality, we assume that By(x) > 0
for x in the above equation or we just shift the over-
all function vertically by adjusting γ(·) to have the
quadratic appropriator be an under approximation of
the true function. If the function F has a C Lipschitz-
Hessian then we have:

F (x) ≤ F (y) + (x− y)>A>αy + (x− y)>A>HyA(x− y)

+ γ(x) +
C

6
‖x− y‖32. (5)

For simplicity, we also assume that (5) holds compo-
nentwise with Lipschitz Hessian constant Ci for i ∈ [n].
Adding the second order approximation of F (x) to
λ‖x − y‖22 gives the approximate function F̃λ,y(x) as
defined in (3). Theorem 9 shows how to bound the
sensitivities of F̃λ,y(x). Using (5) we prove a bound on
the local sensitivities of Fλ,y(x) itself in Appendix B:

Theorem 10. Consider Fλ,y as in Defs. 1, 8, y ∈ X ,
a radius r, and α = min

x∈B(r,y)
Fλ,y(x). Then, ∀ i ∈ [n],

σFλ,y,B(r,y)(ai) ≤ σF̃λ,y,B(r,y)(ai) + min

(
Cir

6nλ
,
Cir

3

6nα

)
.

Using this sensitivity bound, we can independently
sample components with the computed scores as in
Definition 2, obtaining a (1 + ε) approximation of
the function Fλ,y(x). That is, letting F sλ,y(x) rep-
resent the subsampled empirical loss function (sam-
pled as in Theorem 6), for Õ

(
∆
ε2

)
samples, we have

F sλ,y(x) ∈ (1±ε)Fλ,y(x) ∀ x ∈ B(y,R) with high prob-
ability.

3 Optimization via Local Sensitivity
Sampling

In Theorem 10 we showed how to bound the local sen-
sitivities of a function F :=

∑n
i=1 fi(a

T
i x)+γ(x) using

the local sensitivities of a quadratic approximation to
F , which are given by the leverage scores of an appro-
priate matrix (Theorem 9). These sensitivities are only
valid in a sufficiently small ball around some starting
point y, roughly, where the quadratic approximation
is accurate. In this section we show how they can be
used to optimize F beyond this ball, specifically as

part of an iterative method that locally optimizes F
until convergence to a global optimum.

In the optimization literature, there are two popular
techniques that iteratively optimize a function via lo-
cal optimizations over a ball: (i) trust region methods
[Conn et al., 2000] and (ii) proximal point methods
[Parikh et al., 2014]. Local sensitivity sampling can
be combined with both of these classes of methods.
We first focus on proximal point methods, discussing
a related trust region approach in Section 5. In the
proximal point method, the idea is in each step to ap-
proximate a regularized minimum:

x?λt,y = arg minFλt,y(x) = arg min
[
F (x) + λt‖x− y‖22

]
and F ?λt,y = Fλt,y(x?λt,y).

(6)

Here λt is a regularization parameter depending on
the iteration t. As discussed below, minimizing this
regularized function is equivalent to minimizing F on
a ball of a given radius.

3.1 Equivalence between Constrained and
Penalized Formulation

When F is convex it is well known that for any λ
minimizing the proximal function Fλ,y is equivalent
to minimizing F constrained to some ball around y.
Consider the constrained optimization problem given
in equation (7) where B(r, y) is the ball of radius r
centered at y:

x?r,y = arg min
x∈B(r,y)

F (x). (7)

Lemma 11. Let x? = arg minx∈Rd F (x) for a convex
function F . If x? does not lie inside B(r, y) then x?r,y
also solves the following optimization problem:

x?r,y = arg min
x∈Rd

F (x) +
‖∇F (x?r,y)‖

2r
· ‖x− y‖22. (8)

Comparing equations (6) and (8), se see that λ =
‖∇F (x?r,y)‖

2r ⇒ r =
‖∇F (x?r,y)‖

2λ . While it is not directly
possible to compute radius r in closed form without
computing x?r,y itself, we can give a computable upper
bound on r which will be crucial for our analysis.

Lemma 12. Consider the optimization problem (6)
and its corresponding constrained counterpart (7)
where F is a µ strongly convex function. Then, x?λ,y
falls within a ball of radius r = ‖∇F (y)‖

2λ+µ around y.

Proofs for this sections are provided in the Ap-
pendix C.

Using the local sensitivity bound of Section 2.2 we can
approximate Fλ,y on a ball of small enough radius.
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In applying sensitivity sampling to a proximal point
method, it will be critical to ensure that λt is not too
small. This will ensure that, by Lemma 12, x?λy falls
in a sufficiently small radius, and so an approximate
minimum can be found via local sensitivity sampling.

3.2 Algorithmic Intuition

By Theorem 6 if we subsample the proximal function
Fλt,y using the local sensitivity bound of Theorem 10
for a sufficiently large radius r (as a function of λt
via Lemma 12), optimizing this function will return a
value within a 1 + ε factor of the true minimum x?λt,y
with high probability. Abstracting away the sensitiv-
ity sampling technique, our goal becomes to analyze
the convergence of the approximate proximal point
method (APPM) when the optimum is computed up
to 1 + ε error in each iteration. We give pseudocode
for this general method in Algorithm 1.

Algorithm 1 APPM

1: input x0 ∈ Rd, λt > 0 ∀t ∈ [T ].
2: input Black-box ε-oracle PFλ1,x0
3: for t = 1 . . . T do
4: xt ← PFλt,xt−1

(x)
5: end for
6: output xT

Definition 13. An algorithm Pf is called multi-
plicative ε-oracle for a given function F if F (x?) ≤
F
(
PF (x)

)
≤ (1 + ε)F (x?) where x? if the true mini-

mizer of F .

In Algorithm 1, we provide the pseudocode for APPM
under the access of a multiplicative ε-oracle at each
iterate. In our setting, PF employs local sensitivity
sampling.

4 Convergence Analysis for Smooth
Convex Functions

In this section, we analyze the convergence of Algo-
rithm 1 with an ε oracle obtained via local sensitivity
sampling. We demonstrate how to set the regulariza-
tion parameters λt in each step and then in the end
provide a complete algorithm. Let F ? denote F (x?).
Throughout we make the following assumption about
F (x):

• F is µ-strongly convex, i.e., for all x, y ∈ Rd,
F (y) ≥ F (x) + 〈∇F (x), y − x〉+ µ

2 ‖y − x‖
2
2.

4.1 Approximate Proximal Point Method
with Multiplicative Oracle

We first state convergence bounds for Approximate
Proximal Point Method (Algorithm 1) with a black-
box multiplicative ε-oracle. Our first bound assumes
strong convexity, our second does not. Proofs are given
in Appendix D.

Theorem 14. For µ-strongly convex F , consider
ε1, . . . εT ∈ (0, 1) and x0, . . . , xT ∈ Rd such that
xt = PFλt,xt−1

(xt−1) where PFλt,xt−1
is an εt-oracle

(see Algorithm 1). Then if εt ≤ µ
µ+λt

∀t ∈ [T ], we have

F (xt)−F ? ≤ 1
1−εt

λt
µ+λt

(F (xt−1)− F ?)+ εt
1−εtF

? ∀t ∈
[T ] and

F (xT )− F ? ≤ ρ(F (x0)− F ?) + δF ?

where ρ =
∏T
t=1

1
1−εt

λt
µ+λt

and δ =∑T

t=1

(
εt

1−εt
∏T
j=t+1

1
1−εt

λj
µ+λj

)
.

Theorem 15. For a smooth convex function F , let
ε1, . . . , εT = ε where ε ∈ (0, 1/2) and x0, . . . , xT ∈ Rd
be as in Theorem 14. Then, we have

F (xT )− F ? ≤ 2

(1− ε)
‖x? − x0‖22∑T

t=1
2
λt

+
3ε

1− ε
F ?.

4.2 Local Sensitivity Sampling

We now discuss how to choose the parameters for Algo-
rithm 1 when using local sensitivity sampling to imple-
ment the ε-oracle in each step. From Lemmas 11 and
12 it is clear that if λt goes down, the corresponding
radius rt goes up. However, in Theorem 10, we bound
the true local sensitivity at iteration t by a quantity
depending on rt

λt
, which comes from the error in the

quadratic approximation. Thus, if we choose λt very
small, the term rt

λt
will dominate in the local sensitivity

approximation, and we won’t see any advantage from
local sensitivity sampling over, e.g., uniform sampling.
Making λt large will improve the local sensitivity ap-
proximation but slow down convergence.

To balance these factors, we will choose λt of the or-
der of rt. In particular, considering Lemma 12, we
choose λt =

√
‖∇F (xt−1)‖

2
. The lemma then gives

that rt ≤ ‖∇F (xt−1)‖√
‖∇F (xt−1)‖+µ

≤
√
‖∇F (xt−1)‖

2
. We here

now provide an end to end algorithm which utilizes lo-
cal sensitivity sampling in the approximate proximal
point method framework presented in Algorithm 1.
The pseudo-code and details of the algorithm are given
in Algorithm 2 where we denote F sλt,xt−1

(x) as the im-

portance sampled subset of Fλt,xt−1(x) which has been
obtained via local sensitivity sampling. Line 9 of Al-
gorithm 2 can be considered as a black-optimization
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problem which is apparently a strongly-convex opti-
mization problem and can be optimized exponentially
fast.

On Convergence: With this choice of λt, the con-
vergence rate of APPM under our strong convex-

ity assumption will be O
(
‖
√
∇̃F (x)‖2
µ log(1/ε)

)
where√

‖∇̃F (x)‖
2

represents 1
T

∑T−1
i=0

√
‖∇F (xi)‖2. If F

is smooth with smoothness parameter L, we have:
‖∇F (x)‖2 ≤ L‖x − x?‖2. For the smooth but non-
strongly convex problem, if we assume λt ≤ ε for
some ε for all t then, ‖∇F (xt)‖22 ∈ O(1/T ) in the
worst case. Hence, the rate of for non-strongly convex
smooth function will behave like O(1/T 5/4).

Algorithm 2 APPM with Local Sensitivity Sampling

1: input x0 ∈ Rd, εt, and µ.
2: Compute ‖∇F (x0)‖2, F (x0), and C0

3: for t = 1 . . . T do
4: Compute regularizer λt ←

√
‖∇f(xt−1)‖

2
.

5: Compute radius rt ← ‖∇f(xt−1)‖2√
‖∇f(xt−1)‖

2
+µ

.

6: Get F̃λt,xt−1
via Taylor Expansion.

7: Compute the local sensitivity for Fλt,xt−1 using
Theorem 10.

8: Local sensitivity based sampling of F sλt,xt−1
(x)

from Fλt,xt−1
(x).

9: xt ← arg minx∈B(rt,xt−1) F
s
λt,xt−1

(x).

10: Compute ‖∇F (xt)‖2.
11: end for
12: output xT

5 An Adaptive Stochastic Trust
Region Method

Related to the proximal point approach, sensitivity
sampling can be used to obtain an adaptive stochas-
tic trust region. In each iteration t, we approximately
minimize a quadratic approximation to F over a ball,
using local sensitivity sampling and directly applying
the sensitivity score bound of Theorem 9. At itera-
tion t the center of the ball is at xt−1 and the radius

is set to rt = ‖∇F (xt−1)‖2
λt+µ

. We provide pseudocode in
Algorithm 4 and a proof of a convergence bound in
Appendix E. Here we just state the main result.

Theorem 16. For a given set of constants Ck,
δk ∈ (0, 1), and ε̃k = δk

µ
λk+µ which is an er-

ror tolerance for the quadratic approximation of the
function Fλk,xk−1

(x) for all k, if λk+1 is chosen of

O(
√
‖∇F (xk)‖2) then at iteration k + 1 Algorithm 4

satisfies:

F (xk+1)− F ? ≤ (1 + 2εk+1)
2λk+1

2λk+1 + µ
(F (xk)− F ?)

+ 2εk+1F
?, (9)

where εk+1 = 2ε̃k+1

(
1 + 1

m

)
, m and c are positive con-

stants.

Comparing equation (9) in Theorem 16 with the bound
in Theorem 14, we can see that we have obtained a
similar recursive relation in both equations, and hence
the trust region method will have a similar convergence
rate to APPM in the presence of an ε-multiplicative
oracle.

6 Experiments

We conclude by giving some initial experimental evi-
dence to justify the performance of our proposed al-
gorithm in practice. We provide the experiments for
Approximate Proximal Point Method with Local Sensi-
tivity Sampling (Algorithm 2). We run our algorithm
on the following four datatsets1 : (a) Synthetic Data
(b) Letter Binary [Frey and Slate, 1991] (c) Magic04
[Bock et al., 2004] and (d) MNIST Binary [LeCun
et al., 1998]. Prefix ‘Train’ or ‘Test’ denotes if the
train or test split was used for the experiment. The
Synthetic Data was generated by first generating a ma-
trix A of size 3000×300 drawn from a 300 dimensional
standard normal random variable. Then another vec-
tor x0 of size 300 was fixed which is also drawn from a
normal random variable to obtain ŷ = Ax0 + η where
η ∼ 0.1∗N (0, 1). Finally, the classification label vector
y was chosen as sign(ŷ). We perform all our experi-
ments for logistic regression with an `22 regularization
parameter of 0.001. For the experiments plotted in
the Figure 2, we have considered a fixed sample size
of 100 data points for every iteration of the proximal
algorithm. In the first four subfigures of Figure 2, we
compare compare local sensitivity sampling with two
base lines: uniform random sampling and sampling
using the leverage scores of the data matrix A. On
the horizontal axis, we report the total number of it-
erations which is the number of times the sampling
oracle is called (outer loop in Algorithm 2) multiplied
by number of times the gradient call to solve the opti-
mization problem given in Line 9 in Algorithm 2. We
report the optimization error on vertical axis.

From the plots in Figures 2a, 2b, 2c and 2d, it is ev-
ident that our method outperforms uniform random
sampling with a large margin on the synthetic and
real datasets. It also often performs much better than

1Datasets can be downloaded from:
manikvarma.org/code/LDKL/download.html.

http://manikvarma.org/code/LDKL/download.html
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(a) Synthetic Data (b) Letter-Binary Train (c) Magic04 Test

(d) MNIST Test (e) Synthetic Data (f) Letter-Binary Test

Figure 2: (a-d) Local sensitivity sampling vs. uniform random sampling and leverage score sampling on four
datasets: (a) Synthetic Data (3000 points), (b) Letter Binary Train (12000 points), (c) Magic04 Test (4795
points), and (d) MNIST Test (10000 points). (e-f) Local Sampling Method is compared with Full Batch Gradient
for (e) Synthetic and (f) Letter Binary Test.

leverage score sampling. Since the local sensitively ap-
proximations of Theorems 9 and 10 are the leverage
scores of a matrix with essentially the same dimensions
as A, these methods have the same order of computa-
tional cost.

We perform a second set of experiments to compare
our sampling technique with full batch gradient itera-
tion for each proximal point iteration on Synthetic and
Letter Binary Test which we plot in Figures 2e and 2f.
We can see in Figures 2e and 2f that our sampling
method outperforms the full gradient just with 10%
of total points. In both plots, the sampling method
needs just half of the number of iterations taken by
full gradient to saturate to similar value.

In both of the experiments, we set the number of inner
loop iteration (number of calls to the gradient oracle
for solving Line 9 in Algorithm 2) in advance to let the
optimization error saturate for that particular outer
loop; however the plots demonstrate that it can be set
to a much smaller number or can be set adaptively to
achieve gains of multiple folds.

7 Conclusion

In this work, we study how the elegant approach of
function approximation via sensitivity sampling can
be made practical. We overcome two barriers: (1) the
difficulty of approximating the sensitivity scores and
(2) the high sample complexities required by theoret-
ical bounds. We handle both by considering a local
notion of sensitivity, which we can efficiently approx-
imate and bound. We demonstrate that this notion
can be combined with methods that globally optimize
a function via iterative local optimizations, including
proximal point and trust region methods.

Our work leaves open a number of questions. Most im-
portantly, since local sensitivity approximation incurs
some computational overhead (a leverage score com-
putation along with some derivative computations),
we believe it will be especially useful for functions
that are difficult to optimize, e.g., non-strongly-convex
functions. Understanding how our theory extends and
how our method performs in practice on such func-
tions would be very interesting. It would be espe-
cially interesting to compare performance to related
approaches, such as quasi-Newton and other trust re-
gion approaches.
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stebeck, M. Jǐrina, J. Klaschka, E. Kotrč, P. Sav-
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M. W. Mahoney. Sub-sampled Newton methods
with non-uniform sampling. In Advances in Neu-
ral Information Processing Systems 29 (NeurIPS),
2016.

H. Ye, L. Luo, and Z. Zhang. Approximate Newton
methods and their local convergence. In Proceed-
ings of the 34th International Conference on Ma-
chine Learning (ICML), 2017.



Anant Raj, Cameron Musco, Lester Mackey

Appendix

A Leverage Scores as Sensitivities of Quadratic Functions

We here start by stating Lemma 17 and giving its proof. This lemma is helpful in proving Theorem 9. Lemma 17
is a relatively well known characterization of the leverage scores of a matrix, see e.g, Avron et al. [2017]; however
for completeness we give a proof here.

Lemma 17 (Leverage Scores as Sensitivities). For any C ∈ Rn×p with ith row ci,

`λi (C) = max
{z∈Rp:‖z‖>0}

[Cz]2i

‖Cz‖22 + λ‖z‖22
= cTi (CTC + λI)−1ci.

Proof. Write σ(z) =
[Cz]2i

‖Cz‖22+λ‖z‖22
, f(z) = [Cz]2i = (cTi z)

2, g(z) = ‖Cz‖22 + λ‖z‖22 = zT (CTC + λI)z. We can

compute the gradient of σ(z) as:

∇jσ(z) =
∇jf(z) · g(z)−∇jg(z) · f(z)

g(z)2
.

At the minimium this must equal 0 and so since g(z) > 0 for z with ‖z‖2 > 0, we must have ∇f(z) · g(z) −
∇g(z) · f(z) = 0. We have ∇f(z) = 2cTi z · ci and ∇g(z) = 2(CTC + λI)z. We thus have at optimum:

ci ·
(
2cTi z · zT (CTC + λI)z

)
− 2(CTC + λI)z · (cTi z)2 = 0.

Dividing by 2(cTi z)
2 we must have:

−ci ·
zT (CTC + λI)z

cTi z
= (CTC + λI)z.

For this to hold we must have (CTC + λI)z equal to a multiple of ci and so z = α · (CTC + λI)−1ci for some α.
Note that the value of α does not change the value of σ(z) since it simply scales the numerator and denominator
in the same way. So we have that

z? = arg max
{z∈Rd:‖z‖2>0}

[Cz]2i

‖Cz‖22 + λ‖z‖22
= (CTC + λI)−1zi.

Plugging in we have:

max
{z∈Rd:‖z‖2>0}

[Cz]2i

‖Cz‖22 + λ‖z‖22
=

(
cTi (CTC + λI)−1ci

)2
cTi (CTC + λI)−1(CTC + λI)(CTC + λI)−1ci

= cTi (CTC + λI)−1ci,

which completes the proof.

Proof of Theorem 9. Letting z = x− y and η = minx∈B(r,y) F̃λ,y(x) we can write:

F̃λ,y(x) =

[
1

2

∥∥∥H1/2
y Az +H−1/2

y αy

∥∥∥2

+ λ‖z‖2 + γ(z + y)

]
︸ ︷︷ ︸

:G(z)=
∑n
i=1 gi(z)+λ‖z‖

2+γ(z+y)

+

[
F (y)− 1

4

∥∥∥H−1/2αy

∥∥∥2
]

︸ ︷︷ ︸
∆=

∑n
i=1 ∆i

. (10)

where gi(z) = 1
2 (H

1/2
y Az +H

−1/2
y αy)2

i and ∆i = fi(a
T
i y)− 1

4

(
H
−1/2
y αy

)2

i
. Noting that G(z) is nonnegative, we

can write the sensitivity as:

σF̃λ,y,B(r,y)(ai) = max
{z:‖z‖≤r}

gi(z) + ∆i

G(z) + ∆
= max
{z:‖z‖<r}

[
gi(z)

G(z)
· G(z)

G(z) + ∆
+

∆i

G(z) + ∆

]
≤ max
z∈Rd

[
gi(z)

G(z)
· G(z)

G(z) + ∆

]
+
fi(a

T
i y)

η
(11)
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since G(z) + ∆ = F̃λ,y(y+ z) ≥ η for η = minx∈B(r,y) F̃λ,y(x) and since fi(a
T
i y) ≥ ∆i. When ∆ ≥ 0, G(z)

G(z)+∆ ≤ 1.

When ∆ < 0:

G(z)

G(z) + ∆
= 1− ∆

G(z) + ∆
= 1− ∆

F̃λ,y(x)
≤ 1− ∆

η
.

Overall we have:

σF̃λ,y,Wη
(ai) ≤ max

(
1, 1− ∆

η

)
· max
{z:z+y∈Wη}

[
gi(z)

G(z)

]
+
fi(a

T
i y)

η
. (12)

Letting δ = min
x∈B(r,y)

γ(x) = min
z:‖z‖≤r

γ(z + y), C ∈ Rn×d+1 be the matrix [H
1/2
y A, 1

δH
−1/2
y αy] and z̄ = [z,−δ] we

have:

gi(z)

G(z)
=

(Cz̄)2
i

‖Cz̄‖2 + λ‖z‖2 + γ(z + y)
=

(Cz̄)2
i

‖Cz̄‖2 + λ‖z̄‖2 − δ + γ(z + y)
(13)

We can bound this ratio using Lemma 17. Specifically, since γ(z + y)− δ ≥ 0 the ratio by `λi (C). Plugging back
into (12) we have:

σF̃λ,y,Wη
(ai) ≤ max

(
1, 1− ∆

η

)
· `λi (C) +

fi(a
T
i y)

η
,

which completes the proof.

B Local Sensitivity Bound via Quadratic Approximation

We next prove Theorem 10, which bounds the local sensitivities of a function in terms of the sensitivities of
a quadratic approximation to that function, which can in term be bounded using the leverage scores of an
appropriate matrix (Theorem 9).

Theorem’ 10. Consider Fλ,y as in Defs. 1 and 8, y ∈ X , radius r, and α = min
x∈B(r,y)

Fλ,y(x). We have:

σFλ,y,B(r,y)(ai) ≤ σF̃λ,y,B(r,y)(ai) + min

(
Cir

6nλ
,
Cir

3

6nα

)
, ∀ i ∈ [n].

Proof. From the local quadratic approximation, we have :

Fλ,y(x) = F̃λ,y(x) +By(x)‖x− y‖3, where F̃λ,y(x) =
1

n

n∑
i=1

f̃i(a
>
i x) + γ(x) + λ‖x− y‖2.

From the previous Theorem 9, we have a bound on the sensitivity for quadratic approximation,

σF̃λ,y,B(r,y)(ai) = sup
x∈B(r,y)

1
n f̃i(a

>
i x)

F̃λ,y(x)

We can bound the local sensitivity of the true function Fλ,y by:

σFλ,y,B(r,y)(ai) = sup
x∈B(r,y)

1
nfi(a

>
i x)

Fλ,y(x)
= sup
x∈B(r,y)

1
n

[
f̃i(a

>
i x) +B

(i)
y (x)‖x− y‖3

]
Fλ,y(x)
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We have assumed that By(x) = 1
n

∑n
i=1B

(i)
y (x) is positive for x ∈ B(r, y) and that B

(i)
y (x) ≤ 1

6Ci for all i. This
gives:

σFλ,y,B(r,y)(ai) = sup
x∈B(r,y)

1
n

[
f̃i(a

>
i x) +B

(i)
y (x)‖x− y‖3

]
Fλ,y(x)

≤ sup
x∈B(r,y)

1
n

[
f̃i(a

>
i x)

]
Fλ,y(x)︸ ︷︷ ︸

:= term 1

+ sup
x∈B(r,y)

Ci
6n

‖x− y‖3

Fλ,y(x)︸ ︷︷ ︸
:=term 2

.

For term 1 we have:

sup
x∈B(r,y)

1
n

[
f̃i(a

>
i x)

]
Fλ,y(x)

= sup
x∈B(r,y)

1
n

[
f̃i(a

>
i x)

]
F̃λ,y(x) +By(x)‖x− y‖3

≤ σF̃λ,y,B(r,y)(ai),

where the inequality comes from assumption that By(x) > 0 for x ∈ B(r, y). For term 2 we simply bound

Fλ,y(x) ≥ α := minx∈B(r,y) Fλ,y(x) or alternatively, Fλ,y(x) ≥ λ‖x− y‖2 giving:

Ci
6n

‖x− y‖3

Fλ,y(x)
≤ min

(
Cir

6nλ
,
Cir

3

6nα

)
,

which completes the theorem.

C Constrained Penalized Connection

Proof of Lemma 11. Given, x? = arg minx∈Rd F (x). We assume that F is a convex function. From KKT
conditions, if x? does not lie inside the ball than the optimal solution will exist on the boundary of the ball.
Hence, the inequality in the equation can be replaced with the equality given that x? doesn’t lie inside the ball
represented by the equations ‖x− y‖2 = r2. The optimization problem then becomes:

x?r,y = arg min
x∈rd

F (x) such that ‖x− y‖2 = r2 (14)

The Lagrangian of equation (14) is: L(x, ν) = F (x) + ν
2

(
‖x− y‖2 − r2

)
. First order optimality condition for

the above equation implies ∇F (x?r,y) + ν?(x?r,y − y) = 0 ⇒ x?r,y − y = −1
ν?∇F (x?r,y). Now from the constrained

we have, ‖−1
ν?∇F (x?r,y)‖ = r ⇒ ν? =

‖∇F (x?r,y)‖
r . Hence, it is clear from the above arguement that x?r,y also

optimize the following optimization problem:

x?r,y = arg min
x∈Rd

[
F (x) +

‖∇F (x?
R̂,y

)‖
2r

‖x− y‖2
]

(15)

Proof of Lemma 12. As we have:

Fλ,y(x) = F (x) + λ‖x− y‖2

From the property of strongly convex function:

‖∇Fλ,y(y)‖ = ‖∇F (y)‖ ≥ (µ+ 2λ)‖y − x?λ,y‖ (16)

Now from the first order optimality of Fλ,y, we have:

∇Fλ,y(x?λ,y) = ∇F (x?λ,y) + 2λ(x?λ,y − y) = 0

Hence,

‖∇F (x?λ,y)‖ = 2λ‖x?λ,y − y‖ (17)
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From the equations (16) and (17), we have:

‖∇F (x?λ,y)‖ ≤ 2λ

µ+ 2λ
‖∇F (y)‖

From the equation (15), we know that

R =
‖∇F (x?λ,y)‖

2λ
≤ ‖∇F (y)‖

2λ+ µ

If the optimal point x? of the function F lie in the ball then the radius will be further less.

Corollary 18. After running one step of line 4 of the Algorithm 1 for the parameters xt−1, λt, εt and µ, we
have the following bound:

‖xt − xt−1‖ ≤
√

2εt
2λt + µ

F (xt−1) +
‖∇F (xt−1)‖

2λt + µ

‖xt − xt−1‖ ≥ r?t −
√

2εt
2λt + µ

F (xt−1)

where r?t = ‖xt−1 − x?λt‖.

Proof. As from Lemma 12, we have

‖x?2λt,xt−1
− xt−1‖ ≤

‖∇F (xt−1)‖
2λt + µ

.

Let us denote ‖x?λt,xt−1
− xt−1‖ as rt. Now, let us try to bound ‖xt − x?λt,xt−1

‖. From the strong convexity and
aproximation argument:

‖xt − x?λt,xt−1
‖2 ≤ 2

2λt + µ

(
Fλt,xt−1

(xt)− f?λt,xt−1

)
l ≤ 2εt

2λt + µ
f?λt,xt−1

Now we can apply strong convexity argument one more time.

f?λt,xt−1
≤ F (xt−1)− 2λt + µ

2
r2
t

Hence finally we have:

‖xt − x?λt,xt−1
‖2 ≤ 2εt

2λt + µ
F (xt−1)− εtr2

t (18)

Hence finally:

rt −
√

2εt
2λt + µ

F (xt−1) ≤ ‖xt − xt−1‖ ≤
√

2εt
2λt + µ

F (xt−1) + rt ≤
√

2εt
2λt + µ

F (xt−1) +
‖∇F (xt−1)‖

2λt + µ

D Approximate Proximal Point Method

The following Lemma from 19 is useful in proving the Theorem 14.

Lemma 19 (Lemma 2.7 Frostig et al. [2015]). For all y ∈ Rd and λ ≥ 0:

F (x?λ,y)− F ? ≤ F ?λ,y − F ? ≤
2λ

µ+ 2λ
(F (y)− F ?) .
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Proof of Theorem 14. Let us assume that x?λ,x = arg miny∈Rd Fλ,x(y), then from the Lemma 19,

F ?λ,x − F ? ≤
2λ

µ+ 2λ
(F (x)− F ?)

⇒ F (x?λ,x)− F ? ≤ 2λ

µ+ 2λ
(F (x)− F ?)

(19)

Last equation comes from the fact that F ?λ,x = F (x?λ,x) + λ‖x? − x‖2.

We know that
Fλ,y(x?λ,y) ≤ f

(
PFλ,y (x)

)
≤ (1 + ε)Fλ,y(x?λ,y) ∀ y ∈ Rd.

We can get the upper bound on the true minimizer using this black-box oracle in terms of the approximate
solution. We have:

F ?λT ,xt−1
≤ FλT ,xt−1

(xt) (20)

From Lemma 19 and black-box oracle , for any t ∈ [T ] we have

Fλt,xt−1
(xt)− F ? = Fλt,xt−1

(xt)− F ?λt,xt−1
+ F ?λt,xt−1

− F ?

≤ εt F ?λ,xt−1
+

2λt
µ+ 2λt

(F (xt−1)− F ?)

≤ εt Fλt,xt−1
(xt) +

2λt
µ+ 2λt

(F (xt−1)− F ?)

(21)

which leads us to

(1− εt)Fλt,xt−1
(xt)− F ? ≤

2λt
µ+ 2λt

(F (xt−1)− F ?)

⇒ (1− εt)Fλt,xt−1(xt)− (1− εt)F ? ≤
2λt

µ+ 2λt
(F (xt−1)− F ?) + εtF

?

⇒ Fλt,xt−1
(xt)− F ? ≤

1

1− εt
2λt

µ+ 2λt
(F (xt−1)− F ?) +

εt
1− εt

F ?

(22)

Now since,
Fλt,xt−1(xt) = F (xt) + λt‖xt − xt−1‖2 ≥ F (xt)

Hence, finally we have:

F (xt)− F ? ≤
1

1− εt
2λt

µ+ 2λt
(F (xt−1)− F ?) +

εt
1− εt

F ?

≤ (1 + 2εt)
2λt

µ+ 2λt
(F (xt−1)− F ?) + 2εtF

? (23)

whenever εt ≤ 1/2. Now we can do recursion on the equation (23):

F (xT )− F ? ≤

[
T∏
t=1

(1 + 2εt)
2λt

µ+ 2λt

]
︸ ︷︷ ︸

:linear rate

(F (x0)− F ?) + F ?

 T∑
t=1

2εt

T∏
j=t+1

(1 + 2εj)
2λj

µ+ 2λj


︸ ︷︷ ︸

:=δ

(24)

Algorithm 3 Proximal-Point Method

1: input x0 ∈ Rd, λt > 0 ∀ t ∈ [T ].
2: for t = 1 . . . T do
3: x?λt,xt−1

← arg minF (x) + λt‖x− xt−1‖2
4: xt ← x?λt,xt−1

5: end for
6: output xT
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Lemma 20 (Proposition 3.1.6 Tichatschke). Let F be lower semi-continuous convex function then for any x in
the domain and for any t ≥ 1 following relation holds for iterates in Algorithm 3:

1

λt

(
F (x)− F (x?λt,xt−1

)
)
≥ ‖xt−1 − x?λt,xt−1

‖2 + ‖x− x?λt,xt−1
‖2 − ‖x− xt−1‖2.

In the next lemma, we characterize the result provided in lemma 20 for the ε-approximate oracle.

Lemma 21. Let F be lower semi-continuous convex function then for x?, the minimizer of F and for any t ≥ 1
and ε ≤ 1/2, following relation holds for iterates in Algorithm 1:

1

λt

(
Fλt,xt−1

(xt)− F ?
)
≤ 2

λt

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

)
+

εt
(1− εt)λt

F ?

≤ 2‖x? − xt−1‖2 − 2‖x? − x?λt,xt−1
‖2 +

εt
(1− εt)λt

F ?

Proof. We have xt = Pfλt,xt−1
(x) as defined in line 3 of Algorithm 1 where Pf is multiplicative εt-oracle.

From the oracle we know that Fλ,xt−1
(x?λt,xt−1

) ≤ Fλ,xt−1
(xt) ≤ (1 + εt)Fλ,xt−1

(x?λt,xt−1
). Next we use the result

from Lemma 20 where we use x = x? = arg minx F (x). We denote F ? with F (x?).

1

λt

(
F ? − F (x?λt,xt−1

)
)
≥ ‖xt−1 − x?λt,xt−1

‖2 + ‖x? − x?λt,xt−1
‖2 − ‖x? − xt−1‖2

≥ ‖xt−1 − x?λt,xt−1
‖2 + ‖x? − xt + xt − x?λt,xt−1

‖2 − ‖x? − xt−1‖2
(25)

The last equation essentially tells us the following:

1

λt

(
F ? − Fλt,xt−1

(x?λt,xt−1
)
)
≥ ‖x? − x?λt,xt−1

‖2 − ‖x? − xt−1‖2 (26)

From the εt-oracle we do have:(
Fλt,xt−1

(xt)− Fλ,xt−1
(x?λt,xt−1

)
)
≤ εtFλ,xt−1

(x?λt,xt−1
)

Hence

1

λt

(
Fλt,xt−1

(xt)− F ?
)

=
1

λt

(
Fλt,xt−1

(xt)− Fλt,xt−1
(x?λt,xt−1

) + Fλt,xt−1
(x?λt,xt−1

)− F ?
)

=
1

λt

[ (
Fλt,xt−1(xt)− Fλt,xt−1(x?λt,xt−1

)
)

+
(
Fλt,xt−1(x?λt,xt−1

)− F ?
) ]

≤ 1

λt

[
εtFλt,xt−1

(x?λt,xt−1
) +

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

) ]
≤ 1

λt

[
εtFλt,xt−1

(xt) +
(
Fλt,xt−1

(x?λt,xt−1
)− F ?

) ]
(27)

From equations (26) and (27), we have:

1

λt

(
(1− εt)Fλt,xt−1(xt)− F ?

)
≤ 1

λt

(
Fλt,xt−1(x?λt,xt−1

)− F ?
)

⇒ 1(1− εt)
λt

(
Fλt,xt−1

(xt)− F ?
)
≤ 1

λt

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

)
+
εt
λt
F ?

⇒ 1

λt

(
Fλt,xt−1

(xt)− F ?
)
≤ 1

(1− εt)λt

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

)
+

εt
(1− εt)λt

F ?

If εt ≤ 1/2, then from equations (26) and (27), we have:

1

λt

(
Fλt,xt−1

(xt)− F ?
)
≤ 2

λt

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

)
+

εt
(1− εt)λt

F ?

≤ 2‖x? − xt−1‖2 − 2‖x? − x?λt,xt−1
‖2 +

εt
(1− εt)λt

F ?



Anant Raj, Cameron Musco, Lester Mackey

Lemma 22. For a lower semi-continuous convex function F at any and for any t ≥ 1 and ε ≤ 1/2, following
relation holds for iterates after T iterations in Algorithm 1:

T∑
t=1

1

λt

(
Fλt,xt−1

(xt)− F ?
)
≤ 2

(1− ε)
‖x? − x0‖2 +

T∑
t=1

3ε

((1− ε))λt
F ?

Proof. We know that:

1

λt

(
Fλt,xt−1(x?λt,xt−1

)− F ?
)
≤ ‖x? − xt−1‖2 − ‖x? − x?λt,xt−1

‖2 (28)

We can however sum the equation (28) for t = 1 till T and we get:

T∑
t=1

1

λt

(
Fλt,xt−1(x?λt,xt−1

)− F ?
)
≤

T∑
t=1

[
‖x? − xt−1‖2 − ‖x? − x?λt,xt−1

‖2
]

= ‖x? − x0‖2 +
T−1∑
t=1

[
‖x? − xt‖2 − ‖x? − x?λt,xt−1

‖2
]

− ‖x? − x?λt,xT−1
‖2

≤ ‖x? − x0‖2 +

T∑
t=1

[
‖x? − xt‖2 − ‖x? − x?λt,xt−1

‖2
]

(29)

In equation (29), we can use Corollary 18,

‖x? − xt‖2 − ‖x? − x?λt,xt−1
‖2 ≤ εt

λt
Fλt,xt−1

(x?λt,xt−1
).

Hence,

T∑
t=1

1

λt

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

)
≤ ‖x? − x0‖2 +

T∑
t=1

εt
λt
Fλt,xt−1

(x?λt,xt−1
)

⇒
T∑
t=1

1

λt

(
(1− εt)Fλt,xt−1

(x?λt,xt−1
)− F ?

)
≤ ‖x? − x0‖2

⇒
T∑
t=1

(1− εt)
λt

(
Fλt,xt−1(x?λt,xt−1

)− F ?
)
≤ ‖x? − x0‖2 +

T∑
t=1

εt
λt

F ?

Now, if we choose εt = ε for all t then we have:

T∑
t=1

1

λt

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

)
≤ 1

(1− ε)
‖x? − x0‖2 +

T∑
t=1

ε

((1− ε))λt
F ? (30)

From the previous lemma 21, we have

1

λt

(
Fλt,xt−1

(xt)− F ?
)
≤ 2

λt

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

)
+

εt
(1− εt)λt

F ? (31)

Summing up the equation (31) for t = 1 to T and for εt = ε, we have:

T∑
t=1

1

λt

(
Fλt,xt−1(xt)− F ?

)
≤

T∑
t=1

2

λt

(
Fλt,xt−1(x?λt,xt−1

)− F ?
)

+

T∑
t=1

ε

(1− ε)λt
F ? (32)
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Now from equations (30) and (32),

T∑
t=1

1

λt

(
Fλt,xt−1

(xt)− F ?
)
≤

T∑
t=1

2

λt

(
Fλt,xt−1

(x?λt,xt−1
)− F ?

)
+

T∑
t=1

ε

(1− ε)λt
F ? (33)

≤ 2

(1− ε)
‖x? − x0‖2 +

T∑
t=1

3ε

((1− ε))λt
F ? (34)

Proof of Theorem 15. From the previous Lemma 22, we have:

T∑
t=1

1

λt

(
Fλt,xt−1

(xt)− F ?
)
≤ 2

(1− ε)
‖x? − x0‖2 +

T∑
t=1

3ε

((1− ε))λt
F ?

We assume that F (xt) ≤ F (xt−1) for all t. This is fine to assume as we can always do the resampling if failed
once. And also:

1

λt
(F (xt)− F ?) ≤

1

λt

(
Fλt,xt−1

(xt)− F ?
)

for all t.

Hence,

F (xT )− F ? ≤ 2

(1− ε)
‖x? − x0‖2∑T

t=1
1
λt

+
3ε

1− ε
F ?.

E Adaptive Stochastic Trust Region Method

Algorithm 4 Adaptive Stochastic Trust Region Method

1: input x0 ∈ Rd, ε0, µ and m > 0.
2: Compute ‖∇F (x0)‖, F (x0) and C0

3: for t = 1 . . . T do
4: Compute regularizer λt using ‖∇f(xt−1)‖, λt and µ.
5: Compute radius rt using ‖∇f(xt−1)‖, f(xt−1) and Ct−1.
6: Computer error parameter εt using λt and µ, the strong convexity of F .
7: Get F̃λt,xt−1

via Taylor Expansion.

8: Compute the sensitivity for F̃λt,xt−1
using Theorem 9.

9: Local sensitivity based sampling of F̃ sλt,xt−1
(x) from F̃λt,xt−1(x).

10: xt ← arg minx∈B(rt,xt−1) F
s
λt,xt−1

(x).

11: Compute ‖∇F (xt)‖, F (xt) and Ct.
12: end for
13: output xT

We here now provide the detailed statemnt of Theorem 16 and then provide the proof for it.

Theorem’ 10. For a given set of constants Ck, δk and ε̃k = δk
µ

λk+µ which is error tolerance for the square

approximation of the function Fλk,xk−1
(x) for all k ∈ [T ], if λk+1 is chosen as :

2λk+1 = max

(√
4Ck‖∇F (xk)‖3

1
4c2 ‖∇F (xk)‖2 + 4δ̃k+1µ

F (xk)
3m

− µ, µ

)
,
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then with probability ≥ 1/2 the following holds:

F (xk+1)− F ? ≤ (1 + 2εk+1)
2λk+1

2λk+1 + µ
(F (xk)− F ?) + 2εk+1F

?, (35)

where εk+1 = 2ε̃k+1

(
1 + 1

m

)
∀ k, m and c are positive constants.

Proof of Theorem 16. Let us first reiterate the notations:

F̃λk+1,xk(x) = f(xk) + (x− xk)>A>αxk +
γ

2
‖x‖2 + (x− xk)>A>HxkA(x− xk) + λ‖x− xk‖2.

and Fλk+1,xk(x) = F̃λk+1,xk(x) +Bxk(x)‖x− xk‖3. We can write F̃λk+1,xk(x) = 1
n

∑n
i=1 f̃i(x

Tai) where f̃i(x
Tai)

is the quadratic approximation of fi(x
Tai) around the point xk. We also define the upper bound on the radius

rk+1 = ‖∇F (xk)‖
2λk+1+µ . Contribution in Bxk comes from each term fi i.e. Bxk(x) = 1

n

∑n
i=1B

(i)
xk (x). Let us assume

that xk+1 is the point, we get after minimizing the subset after sampling from the sensitivity of the quadratic

approximation. To make proof simpler in this section, we assume C
(i)
k as the upper bound on the absolute value

of B
(i)
xk (x) ∀ i ∈ [n] in the ball B(xk, rk+1) i.e. C

(i)
k · r3

k+1 ≥ maxx∈B(xk,rk+1)

∣∣∣fi(xTai)− f̃i(xTai)∣∣∣ ∀ i ∈ [n]

where C
(i)
k is a positive real number. We have Ck = 1

n

∑n
i=1 C

(i)
k .

As we have already defined for all x:∣∣∣F̃λk+1,xk(x)− Fλk+1,xk(x)
∣∣∣ ≤ Ck‖x− xk‖3.

So if F̃ sλk+1,xk
(x) is sampled by sensitivities with error parameter ε̃k+1 we have by triangle inequality:

∣∣∣F̃ sλk+1,xk
(x)− Fλk+1,xk(x)

∣∣∣ ≤ ∣∣∣F̃ sλk+1,xk
(x)− F̃λk+1,xk(x)

∣∣∣+
∣∣∣F̃λk+1,xk(x)− Fλk+1,xk(x)

∣∣∣
≤ Ck‖x− xk‖3 + ε̃k+1F̃λk+1,xk(x)

≤ Ck‖x− xk‖3 +
ε̃k+1

1− ε̃k+1
· F̃ sλk+1,xk

(x). (36)

Hence, with very high probability, we do have :

Fλk+1,xk(x) ≤ Ck‖x− xk‖3 +
ε̃k+1

1− ε̃k+1
· F̃ sλk+1,xk

(x) + F̃ sλk+1,xk
(x)

= Ck‖x− xk‖3 +
1

1− ε̃k+1
F̃ sλk+1,xk

(x)

(37)

Now, we would like to show that letting xsk = arg minx∈B(xk,rk+1) F̃
s
λk+1,xk

(x), the error can still be controlled.

If, we let xsk be the minimizer of F̃ sλk+1,xk
(x) and x?λk+1,xk

be the minimizer of Fλk+1,xk(x). We assume that
rk+1

c ≤ ‖x̃sk − xk‖ ≤ rk+1 and ‖x?λk+1,xk
− xk‖ ≤ rk+1 for some positive real constant c > 1. We have :

Fλk+1,xk(xsk) ≤ 1

1− ε̃k+1
F̃ sλk+1,xk

(x) + Ck‖xsk − xk‖3

≤ 1

1− ε̃k+1
F sλk+1,xk

(x?λk+1,xk
) + Ck‖xsk − xk‖3 (38)

where the second line follows the fact that xsk minimizes F̃ sλk+1,xk
(x).

Hence, if we set ε̃k+1 ≤ 1/2 plugging back everything together:

Fλk+1,xk(xsk) ≤ (1 + 4ε̃k+1)F ?λk+1,xk
+ 4Ckr

3
k+1. (39)
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where in the last line we use that both ‖x̃sk − xk‖ ≤ rk+1 and ‖x?λk+1,xk
− xk‖ ≤ rk+1.

We have from Lemma 19 that:

F ?λk+1,xk
≤ 2λk+1

µ+ 2λk+1
(F (xk)− F ?) + F ?.

Plugging this bound into (39) gives:

Fλk+1,xk(xsk) ≤ (1 + 4ε̃k+1)2λk+1

µ+ 2λk+1
(F (xk)− F ?) + F ? + 4Ckr

3
k+1. (40)

Now consider if we make the update xsk = xk+1. Then we have using the simple bound that F (x) ≤ Fλk+1,xk(x)
for all x:

F (xk+1) = Fλk+1,xk(xk+1)− λk+1‖xk+1 − xk‖2

⇒ F (xk+1) ≤ (1 + 4ε̃k+1)2λk+1

µ+ 2λk+1
(F (xk)− F ?) + F ? + 4Ckr

3
k+1 − λk+1‖xk+1 − xk‖2

≤ (1 + 4ε̃k+1)2λk+1

µ+ 2λk+1
(F (xk)− F ?) + F ? + 4Ckr

3
k+1 −

λk+1

c2
r2
k+1

In the last line we have used ‖xk+1 − xk‖ ≥ rk+1

c . Now, we do want to choose our parameters such that the
following holds for some positive constant m > 0:

4Ckr
3
k+1 −

λk+1

c2
r2
k+1 ≤

2λk+1

2λk+1 + µ

4ε̃k+1

m
(F (xk)− F ?) + 4ε̃k+1

(
1 +

1

m

)
F ? (41)

We provide the condition on λ in the next lemma:

Now if the condition given in equation (41) holds then the following recursion holds:

F (xk+1)− F ? ≤
(

1 + 4ε̃k+1

(
1 +

1

m

))
2λk+1

2λk+1 + µ
(F (xk)− F ?) + 4ε̃k+1

(
1 +

1

m

)
F ? (42)

We can compare the recursion equations given in equations (43) and (23). If we choose εk+1 = 2ε̃k+1

(
1 + 1

m

)
,

then we have:

F (xk+1)− F ? ≤ (1 + 2εk+1)
2λk+1

2λk+1 + µ
(F (xk)− F ?) + 2εk+1F

? (43)

which also confirms coreset conditions for the original function F .

Lemma 23. For a given set of constants C
(i)
k ≥ |B(i)

xk (x)|, x ∈ B(xk, rk+1) such that Ck = 1
n

∑n
i=1 C

(i)
k , and

εk = δk
µ

2λk+µ for δk ∈ (0, 1/2) and ∀ k ∈ [T ], we have ,

4Ckr
3
k+1 −

λ

c2
r2
k+1 ≤

2λk+1

2λk+1 + µ

4ε̃k+1

m
(F (xk)− F ?) + 4ε̃k+1

(
1 +

1

m

)
F ?

is satisfied if for positive constants c and m:

2λk+1 = max

(√
4Ck‖∇F (xk)‖3

1
4c2 ‖∇F (xk)‖2 + 4δ̃k+1µ

F (xk)
3m

− µ, µ

)
.

Proof. We need to ensude the following condition:

4Ckr
3
k+1 −

λ

c2
r2
k+1 ≤

2λk+1

2λk+1 + µ

4ε̃k+1

m
(F (xk)− F ?) + 4ε̃k+1

(
1 +

1

m

)
F ? (44)

Let us assume that there exist a positive real number θk+1.
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• Consider the case when F (xk) ≥ θk+1F
?. Hence to ensure the condition given in equation (44), we can just

ensure that the following holds:

4Ckr
3
k+1 −

λk+1

c2
r2
k+1 ≤

2λk+1

2λk+1 + µ

4ε̃k+1

m

(
1− 1

θk+1

)
F (xk) (45)

• Consider the case when F (xk) ≤ θk+1F
?. Then, to ensure the condition given in equation (44), we can just

ensure that the following holds:

4Ckr
3
k+1 −

λk+1

c2
r2
k+1 ≤ 4ε̃k+1

(
1 +

1

m

)
F (xk)

θk+1
(46)

In equations (45) and (46), we use θk+1 = 1 + (m+ 1) 2λk+1+µ
2λk+1

then we get the following condition to be satisfied:

4Ckr
3
k+1 −

λk+1

c2
r2
k+1 ≤ 4ε̃k+1

(
1 +

1

m

)
F (xk)

θk+1

⇒ 4Ckr
3
k+1 ≤

λk+1

c2
r2
k+1 + 4ε̃k+1

(
1 +

1

m

)
F (xk)

θk+1

⇒ 4Ck
‖∇F (xk)‖3

(2λk+1 + µ)3
≤ 1

2c2
2λk+1

2λk+1 + µ

‖∇F (xk)‖2

2λk+1 + µ
+ 4ε̃k+1

(
1 +

1

m

)
F (xk)

θk+1

(47)

Now we assume that 2λk ≥ µ ∀ k ⇒ 2λk
2λk+µ ≥

1
2 and ε̃k+1 = δ̃k+1

µ
2λk+1+µ . Hence the condition given in the

equation (47) is satisfied when:

4Ck
‖∇F (xk)‖3

(2λk+1 + µ)3
≤ 1

4c2
‖∇F (xk)‖2

2λk+1 + µ
+ 4δ̃k+1

µ

2λk+1 + µ

(
1 +

1

m

)
F (xk)

θk+1

⇒ 2λk+1 + µ ≥

√√√√ 4Ck‖∇F (xk)‖3
1

4c2 ‖∇F (xk)‖2 + 4δ̃k+1µ
(
1 + 1

m

) F (xk)
θk+1

Now in the above equation we put the value of θk+1 = 1 + (m+ 1) 2λk+1+µ
2λk+1

≤ 2m+ 3. We also use the fact that

m+ 1 ≥ 1
3 (2m+ 3). That means the other conditions on λk+1 are satisfied when

2λk+1 + µ ≥
√

4Ck‖∇F (xk)‖3
1

4c2 ‖∇F (xk)‖2 + 4δ̃k+1µ
F (xk)

3m

Hence, given

2λk+1 = max

(√
4Ck‖∇F (xk)‖3

1
4c2 ‖∇F (xk)‖2 + 4δ̃k+1µ

F (xk)
3m

− µ, µ

)
,

the conditions mentioned in the lemma are satisfied.
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