
FedPAQ: A Communication-Efficient Federated Learning Method with
Periodic Averaging and Quantization

Amirhossein Reisizadeh Aryan Mokhtari Hamed Hassani

UC Santa Barbara UT Austin UPenn

Ali Jadbabaie Ramtin Pedarsani

MIT UC Santa Barbara

Abstract

Federated learning is a distributed framework
according to which a model is trained over
a set of devices, while keeping data local-
ized. This framework faces several systems-
oriented challenges which include (i) commu-
nication bottleneck since a large number of
devices upload their local updates to a pa-
rameter server, and (ii) scalability as the fed-
erated network consists of millions of devices.
Due to these systems challenges as well as
issues related to statistical heterogeneity of
data and privacy concerns, designing a prov-
ably efficient federated learning method is of
significant importance yet it remains chal-
lenging. In this paper, we present FedPAQ,
a communication-efficient Federated Learn-
ing method with Periodic Averaging and
Quantization. FedPAQ relies on three key
features: (1) periodic averaging where mod-
els are updated locally at devices and only
periodically averaged at the server; (2) par-
tial device participation where only a frac-
tion of devices participate in each round
of the training; and (3) quantized message-
passing where the edge nodes quantize their
updates before uploading to the parameter
server. These features address the commu-
nications and scalability challenges in feder-
ated learning. We also show that FedPAQ
achieves near-optimal theoretical guarantees
for strongly convex and non-convex loss
functions and empirically demonstrate the
communication-computation tradeoff pro-
vided by our method.

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

1 Introduction

In many large-scale machine learning applications,
data is acquired and processed at the edge nodes of
the network such as mobile devices, users’ devices, and
IoT sensors. Federated Learning is a novel paradigm
that aims to train a statistical model at the “edge”
nodes as opposed to the traditional distributed com-
puting systems such as data centers [Konečnỳ et al.,
2016, Li et al., 2019a]. The main objective of federated
learning is to fit a model to data generated from net-
work devices without continuous transfer of the mas-
sive amount of collected data from edge of the network
to back-end servers for processing.

Federated learning has been deployed by major tech-
nology companies with the goal of providing privacy-
preserving services using users’ data [Bonawitz et al.,
2019]. Examples of such applications are learning from
wearable devices [Huang et al., 2018], learning senti-
ment [Smith et al., 2017], and location-based services
[Samarakoon et al., 2018]. While federated learning is
a promising paradigm for such applications, there are
several challenges that remain to be resolved. In this
paper, we focus on two significant challenges of feder-
ated learning, and propose a novel federated learning
algorithm that addresses the following two challenges:

(1) Communication bottleneck. Communication
bandwidth is a major bottleneck in federated learn-
ing as a large number of devices attempt to communi-
cate their local updates to a central parameter server.
Thus, for a communication-efficient federated learning
algorithm, it is crucial that such updates are sent in a
compressed manner and infrequently.

(2) Scale. A federated network typically consists of
thousands to millions of devices that may be active,
slow, or completely inactive during the training proce-
dure. Thus, a proposed federated learning algorithm
should be able to operate efficiently with partial device
participation or random sampling of devices.

FedPAQ: A Communication-Efficient Federated Learning Method

The goal of this paper is to develop a provably effi-
cient federated learning algorithm that addresses the
above-mentioned systems challenges. More precisely,
we consider the task of training a model in a feder-
ated learning setup where we aim to find an accurate
model over a collection of n distributed nodes. In this
setting, each node contains m independent and identi-
cally distributed samples from an unknown probability
distribution and a parameter server helps coordination
between the nodes. We focus on solving the empirical
risk minimization problem for a federated architecture
while addressing the challenges mentioned above. In
particular, we consider both strongly convex and non-
convex settings and provide sharp guarantees on the
performance of our proposed algorithm.

Contributions. In this work, we propose FedPAQ, a
communication-efficient Federated learning algorithm
with Periodic Averaging and Quantization, which ad-
dresses federated learning systems’ bottlenecks. In
particular, FedPAQ has three key features that enable
efficient federated learning implementation:

(1) FedPAQ allows the nodes (users) of the network to
run local training before synchronizing with the pa-
rameter server. In particular, each node iteratively
updates its local model for a period of iterations us-
ing the stochastic gradient descent (SGD) method and
then uploads its model to the parameter server where
all the received models are averaged periodically. By
tuning the parameter which corresponds to the num-
ber of local iterations before communicating to the
server, periodic averaging results in slashing the num-
ber of communication rounds and hence the total com-
munication cost of the training process.

(2) FedPAQ captures the constraint on availability of
active edge nodes by allowing a partial node partic-
ipation. That is, in each round of the method, only
a fraction of the total devices–which are the active
ones–contribute to train the model. This procedure
not only addresses the scalability challenge, but also
leads to smaller communication load compared to the
case that all nodes participate in training the learning
model.

(3) In FedPAQ, nodes only send a quantized version
of their local information to the server at each round
of communication. As the training models are of
large sizes, quantization significantly helps reducing
the communication overhead on the network.

While these features have been proposed in the lit-
erature, to the best of our knowledge, FedPAQ is the
first federated learning algorithm that simultaneously
incorporates these features and provides near-optimal
theoretical guarantees on its statistical accuracy, while

being communication-efficient via periodic averaging,
partial node participation and quantization.

In particular, we analyze our proposed FedPAQ method
for two general class of loss functions: strongly-convex
and non-convex. For the strongly-convex setting,
we show that after T iterations the squared norm
of the distance between the solution of our method
and the optimal solution is of O(1/T) in expecta-
tion. We also show that FedPAQ approaches a first-
order stationary point for non-convex losses at a rate of
O(1/

p
T). This demonstrates that our method signifi-

cantly improves the communication-efficiency of fed-
erated learning while preserving the optimality and
convergence guarantees of the baseline methods. In
addition, we would like to highlight that our theoreti-
cal analysis is based on few relaxed and customary as-
sumptions which yield more technical challenges com-
pared to the existing works with stronger assumptions
and hence acquires novel analytical techniques. More
explanations will be provided in Section 4.

Related Work. The main premise of federated learn-
ing has been collective learning using a network of com-
mon devices such as phones and tablets. This frame-
work potentially allows for smarter models, lower la-
tency, and less power consumption, all while ensuring
privacy. Successfully achieving these goals in prac-
tice requires addressing key challenges of federated
learning such as communication complexity, systems
heterogeneity, privacy, robustness, and heterogene-
ity of the users. Recently, many federated methods
have been considered in the literature which mostly
aim at reducing the communication cost. McMahan
et al. [2016] proposed the FedAvg algorithm, where the
global model is updated by averaging local SGD up-
dates. Guha et al. [2019] proposed one-shot federated
learning in which the master node learns the model
after a single round of communication.

Optimization methods for federated learning are nat-
urally tied with tools from stochastic and distributed
optimization. Minibatch stochastic gradient descent
distributed optimization methods have been largely
studied in the literature without considering the com-
munication bottleneck. Addressing the communica-
tion bottleneck via quantization and compression in
distributed learning has recently gained considerable
attention for both master-worker [Alistarh et al., 2017,
Bernstein et al., 2018, Seide et al., 2014, Smith et al.,
2016] and masterless topologies [Koloskova et al., 2019,
Reisizadeh et al., 2019a, Wang et al., 2019, Zhang
et al., 2018]. Moreover, Wang et al. [2019] reduces
the communication delay by decomposing the graph.

Local updates, as another approach to reduce the com-
munication load in distributed learning has been stud-

Reisizadeh, Mokhtari, Hassani, Jadbabaie, Pedarsani

ied in the literature, where each learning node car-
ries out multiple local updates before sharing with the
master or its neighboring nodes. Stich [2018] consid-
ered a master-worker topology and provides theoreti-
cal analysis for the convergence of local-SGD method.
Lin et al. [2018] introduced a variant of local-SGD
namely post-local-SGD which demonstrates empirical
improvements over local-SGD. Wang and Joshi [2018]
provided a general analysis of such cooperative method
for decentralized settings as well.

Statistical heterogeneity of users’ data points is an-
other major challenge in federated learning. To ad-
dress this heterogeneity, other methods such as mul-
titask learning and meta learning have been proposed
to train multiple local models [Li et al., 2019b, Nichol
et al., 2018, Smith et al., 2017]. Many methods have
been proposed to address systems heterogeneity and in
particular stragglers in distributed learning using cod-
ing theory, e.g., [Dutta et al., 2016, Lee et al., 2018,
Reisizadeh et al., 2019b, Tandon et al., 2016, Yu et al.,
2017]. Another important challenge in federated learn-
ing is to preserve privacy in learning [Duchi et al.,
2014]. Agarwal et al. [2018], McMahan et al. [2017]
proposed privacy-preserving methods for distributed
and federated learning using differential privacy tech-
niques. Federated heavy hitters discovery with differ-
ential privacy was proposed in [Zhu et al., 2019].

Robustness against adversarial devices is another chal-
lenge in federated learning and distributed learning
that has been studied in [Chen et al., 2017, Ghosh
et al., 2019, Yin et al., 2018]. Finally, several works
have considered communication-efficient collaborative
learning where there is no master node, and the com-
puting nodes learn a model collaboratively in a decen-
tralized manner [Doan et al., 2018, Koloskova et al.,
2019, Lalitha et al., 2019, Reisizadeh et al., 2019a,
Zhang et al., 2018]. While such techniques are related
to federated learning, the network topology in master-
less collaborative learning is fundamentally different.

2 Federated Learning Setup

In this paper, we focus on a federated architecture
where a parameter server (or server) aims at finding
a model that performs well with respect to the data
points that are available at different nodes (users) of
the network, while nodes exchange their local informa-
tion with the server. We further assume that the data
points for all nodes in the network are generated from
a common probability distribution. In particular, we
consider the following stochastic learning problem

min
x

f(x) := min
x

1

n

nX

i=1

fi(x), (1)

where the local objective function of each node i is
defined as the expected loss of its local sample distri-
butions

fi(x) := E⇠⇠Pi [`(x, ⇠)]. (2)

Here ` : Rp
⇥ Ru

! R is a stochastic loss function,
x 2 Rp is the model vector, and ⇠ 2 Ru is a ran-
dom variable with unknown probability distribution
P

i. Moreover, f : Rp
! R denotes the expected

loss function also called population risk. In our con-
sidered federated setting, each of the n distributed
nodes generates a local loss function according to a
distribution P

i resulting in a local stochastic function
fi(x) := E⇠⇠Pi [`(x, ⇠)]. A special case of this formu-
lation is when each node i maintains a collection of
m samples from distribution P

i which we denote by
D

i = {⇠i1, · · · , ⇠
i
m} for i 2 [n]. This results in the fol-

lowing empirical risk minimization problem over the
collection of nm samples in D := D

1
[· · · [D

n:

min
x

L(x) = min
x

1

nm

X

⇠2D
`(x, ⇠), (3)

We denote the optimal model x⇤ as the solution to the
expected risk minimization problem in (1) and denote
the minimum loss f⇤ := minx f(x) = f(x⇤) as the
optimal objective function value of the expected risk
minimization problem in (1). In this work, we focus on
the case that the data over the n nodes is independent
and identically distributed (i.i.d.), which implies the
local distributions are common.

As stated above, our goal is to minimize the expected
loss f(x). However, due to the fact that we do not
have access to the underlying distribution P, there
have been prior works that focus on minimizing the
empirical risk L(x) which can be viewed as an ap-
proximation of the expected loss f(x). The accu-
racy of this approximation is determined by the num-
ber of samples N = nm. It has been shown that
for convex losses `, the population risk f is at most
O(1/

p
nm) distant from the empirical risk L, uni-

formly and with high probability [Bottou and Bous-
quet, 2008]. That is, supx |f(x)�L(x)|  O(1/

p
nm)

with high probability. This result implies that if each
of the n nodes separately minimizes its local empiri-
cal loss function, the expected deviation from the lo-
cal solution and the solution to the population risk
minimization problem is of O(1/

p
m) (note that each

node has access to m data samples). However, if
the nodes manage to somehow share or synchronize
their solutions, then a more accurate solution can be
achieved, that is a solution with accuracy of order
O(1/

p
nm). Therefore, when all the mn available sam-

ples are leveraged, one can obtain a solution x̂ that
satisfies E[L(x̂)� L(x⇤)]  O(1/

p
nm). This also im-

plies that E[f(x̂)�minx f(x)]  O(1/
p
nm).

FedPAQ: A Communication-Efficient Federated Learning Method

For the case of non-convex loss function `, however,
finding the solution to the expected risk minimiza-
tion problem in (1) is hard. Even further, finding (or
testing) a local optimum is NP-hard in many cases
[Murty and Kabadi, 1987]. Therefore, for non-convex
losses we relax our main goal and instead look for
first-order optimal solutions (or stationary points) for
(1). That is, we aim to find a model x̂ that sat-
isfies

��rf(x̂)
��  ✏ for an arbitrarily small approxi-

mation error ✏. Mei et al. [2018] characterized the
gap for the gradients of the two expected risk and
empirical risk functions. That is, if the gradient
of loss is sub-Gaussian, then with high probability
supx

��rL(x)�rf(x)
��  O(1/

p
nm). This result fur-

ther implies that having all the nodes contribute in
minimizing the empirical risk results in better approx-
imation for a first-order stationary point of the ex-
pected risk L. In summary, our goal in non-convex set-
ting is to find x̂ that satisfies

��rf(x)
��  O(1/

p
nm)

which also implies
��rL(x)

��  O(1/
p
nm).

3 Proposed FedPAQ Method

In this section, we present our proposed
communication-efficient federated learning method
called FedPAQ, which consists of three main modules:
(1) periodic averaging, (2) partial node participation,
and (3) quantized message passing.

3.1 Periodic averaging

As explained in Section 2, to leverage from all the
available data samples on the nodes, any training
method should incorporate synchronizing the interme-
diate models obtained at local devices. One approach
is to let the participating nodes synchronize their mod-
els through the parameter server in each iteration of
the training. This, however, implies many rounds of
communication between the federated nodes and the
parameter server which results in communication con-
tention over the network. Instead, we let the partici-
pating nodes conduct a number of local updates and
synchronize through the parameter server periodically.
To be more specific, once nodes pull an updated model
from the server, they update the model locally by run-
ning ⌧ iterations of the SGD method and then send
proper information to the server for updating the ag-
gregate model. Indeed, this periodic averaging scheme
reduces the rounds of communication between server
and the nodes and consequently the overall communi-
cation cost of training the model. In particular, for
the case that we plan to run T iterations of SGD at
each node, nodes need to communicate with the server
K = T/⌧ rounds, hence reducing the total communi-
cation cost by a factor of 1/⌧ .

Choosing a larger value of ⌧ indeed reduces the rounds

of communication for a fixed number of iterations T .
However, if our goal is to obtain a specific accuracy
", choosing a very large value for ⌧ is not necessar-
ily optimal as by increasing ⌧ the noise of the system
increases and the local models approach the local op-
timal solutions instead of the global optimal solution.
Hence, we might end up running more iterations T to
achieve a specific accuracy " comparing to a case that
⌧ is small. Indeed, a crucial question that we need to
address is finding the optimal choice of ⌧ for minimiz-
ing the overall communication cost of the process.

3.2 Partial node participation

In a federated network, often there is a large num-
ber of devices such as smart phones communicating
through a base station. On one hand, base stations
have limited download bandwidth and hence only a
few of devices are able to simultaneously upload their
messages to the base station. Due to this limitation
the messages sent from the devices will be pipelined at
the base station which results in a dramatically slow
training. On the other hand, having all of the devices
participate through the whole training process induces
a large communication overhead on the network which
is often costly. Moreover, in practice not all the devices
contribute in each round of the training. Indeed, there
are multiple factors that determine whether a device
can participate in the training [McMahan and Ram-
age, 2017]: a device should be available in the reach-
able range of the base station; a device should be idle,
plugged in and connected to a free wireless network
during the training; etc.

Our proposed FedPAQ method captures the restric-
tions mentioned above. In particular, we assume that
among the total of n devices, only r nodes (r  n) are
available in each round of the training. We can also
assume that due to the availability criterion described
before, such available devices are randomly and uni-
formly distributed over the network [Sahu et al., 2018].
In summary, in each period k = 0, 1, · · · ,K � 1 of the
training algorithm, the parameter server sends its cur-
rent model xk to all the r nodes in subset Sk, which
are distributed uniformly at random among the total
n nodes, i.e., Pr [Sk] = 1/

�n
r

�
.

3.3 Quantized message-passing

Another aspect of the communication bottleneck in
federated learning is the limited uplink bandwidth
at the devices which makes the communication from
devices to the parameter server slow and expensive.
Hence, it is critical to reduce the size of the uploaded
messages from the federated devices [Li et al., 2019a].
Our proposal is to employ quantization operators on
the transmitted massages. Depending on the accuracy

Reisizadeh, Mokhtari, Hassani, Jadbabaie, Pedarsani

of the quantizer, the network communication overhead
is reduced by exchanging the quantized updates.

In the proposed FedPAQ, each node i 2 Sk obtains the
model x(i)

k,⌧ after running ⌧ local iterations of an opti-
mization method (possibly SGD) on the most recent
model xk that it has received form the server. Then
each node i applies a quantizer operator Q(·) on the
difference between the received model and its updated
model, i.e., x(i)

k,⌧ � xk, and uploads the quantized vec-
tor Q(x(i)

k,⌧ � xk) to the parameter server. Once these
quantized vectors are sent to the server, it decodes the
quantized signals and combines them to come up with
a new model xk+1.

Next, we describe a widely-used random quantizer.

Example 1 (Low-precision quantizer [Alistarh et al.,
2017]). For any variable x 2 Rp, the low precision
quantizer QLP : Rp

! Rp is defined as below

QLP
i (x) =kxk · sign(xi) · ⇠i(x, s), i 2 [p], (4)

where ⇠i(x, s) is a random variable taking on value
l+1/s with probability |xi|

kxk s� l and l/s otherwise. Here,
the tuning parameter s corresponds to the number of
quantization levels and l 2 [0, s) is an integer such that
|xi|/kxk 2 [l/s, l+1/s).

3.4 Algorithm update

Now we use the building blocks developed in Sec-
tions 3.1-3.3 to precisely present FedPAQ. Our proposed
method consists of K periods, and during a period,
each node performs ⌧ local updates, which results in
total number of T = K⌧ iterations. In each period
k = 0, · · · ,K�1 of the algorithm, the parameter server
picks r  n nodes uniformly at random which we de-
note by Sk. The parameter server then broadcasts its
current model xk to all the nodes in Sk and each node
i 2 Sk performs ⌧ local SGD updates using its local
dataset. To be more specific, let x(i)

k,t denote the model
at node i at t-th iteration of the k-th period. At each
local iteration t = 0, · · · , ⌧�1, node i updates its local
model according to the following rule:

x(i)
k,t+1 = x(i)

k,t � ⌘k,t erfi
⇣
x(i)
k,t

⌘
, (5)

where the stochastic gradient erfi is computed using
a random sample1 picked from the local dataset D

i.
Note that all the nodes begin with a common initial-
ization x(i)

k,0 = xk. After ⌧ local updates, each node
computes the overall update in that period, that is
x(i)
k,⌧�xk, and uploads a quantized update Q(x(i)

k,⌧�xk)
to the parameter server. The parameter server then

1The method can be easily made compatible with using
a mini-batch during each iteration.

Algorithm 1 FedPAQ
1: for k = 0, 1, · · · ,K � 1 do

2: server picks r nodes Sk uniformly at random
3: server sends xk to nodes in Sk

4: for node i 2 Sk do

5: x(i)
k,0 xk

6: for t = 0, 1, · · · , ⌧ � 1 do

7: compute stochastic gradient
8: erfi(x) = r`(x, ⇠) for a ⇠ 2 P

i

9: set x(i)
k,t+1 x(i)

k,t � ⌘k,t erfi(x(i)
k,t)

10: end for

11: send Q(x(i)
k,⌧ � xk) to the server

12: end for

13: server finds xk+1 xk+
1
r

P
i2Sk

Q(x(i)
k,⌧ �xk)

14: end for

aggregates the r received quantized local updates and
computes the next model according to

xk+1 = xk +
1

r

X

i2Sk

Q
⇣
x(i)
k,⌧ � xk

⌘
, (6)

and the procedure is repeated for K periods. The pro-
posed method is formally summarized in Algorithm 1.

4 Convergence Analysis

In this section, we present our theoretical results on
the guarantees of the FedPAQ method. We first con-
sider the strongly convex setting and state the con-
vergence guarantee of FedPAQ for such losses in The-
orem 1. Then, in Theorem 2, we present the overall
complexity of our method for finding a first-order sta-
tionary point of the aggregate objective function f ,
when the loss function ` is non-convex (All proofs are
provided in the supplementary material). Before that,
we first mention three customary assumptions required
for both convex and non-convex settings.

Assumption 1. The random quantizer Q(·) is unbi-
ased and its variance grows with the squared of l2-norm
of its argument, i.e.,

E
⇥
Q(x)|x

⇤
= x, E

h��Q(x)� x
��2 |x

i
 qkxk2 , (7)

for some positive real constant q and any x 2 Rp.
Assumption 2. The loss functions fi are L-smooth
with respect to x, i.e., for any x, x̂ 2 Rp, we have��rfi(x)�rfi(x̂)

��  Lkx� x̂k.

Assumption 3. Stochastic gradients erfi(x) are unbi-
ased and variance bounded, i.e., E⇠[erfi(x)] = rfi(x)
and E⇠[kerfi(x)�rfi(x)k2]  �2.

The conditions in Assumption 1 ensure that output of
quantization is an unbiased estimator of the input with
a variance that is proportional to the norm-squared of

FedPAQ: A Communication-Efficient Federated Learning Method

the input. This condition is satisfied with most com-
mon quantization schemes including the low-precision
quantizer introduced in Example 1. Assumption 2 im-
plies that the gradients of local functions rfi and the
aggregated objective function rf are also L-Lipschitz
continuous. The conditions in Assumption 3 on the
bias and variance of stochastic gradients are also cus-
tomary. Note that this is a much weaker assumption
compared to the one that uniformly bounds the ex-
pected norm of the stochastic gradient.

Challenges in analyzing the FedPAQ method.

Here, we highlight the main theoretical challenges in
proving our main results. As outlined in the descrip-
tion of the proposed method, in the k-th round of
FedPAQ, each participating node i updates its local
model for ⌧ iterations via SGD method in (5). Let
us focus on a case that we use a constant stepsize for
the purpose of this discussion. First consider the naive
parallel SGD case which corresponds to ⌧ = 1. The
updated local model after ⌧ = 1 local update is

x(i)
k,⌧ = x(i)

k,0 � ⌘ erfi
⇣
x(i)
k,0

⌘
. (8)

Note that x(i)
k,0 = xk is the parameter server’s model

sent to the nodes. Since we assume the stochastic gra-
dients are unbiased estimators of the gradient, it yields
that the local update x(i)

k,⌧ �xk is an unbiased estima-
tor of �⌘rf(xk) for every participating node. Hence,
the aggregated updates at the server and the updated
model xk+1 can be simply related to the current model
xk as one step of parallel SGD. However, this is not
the case when the period length ⌧ is larger than 1.
For instance, in the case that ⌧ = 2, the local updated
model after ⌧ = 2 iterations is

x(i)
k,⌧ =xk�⌘ erfi (xk)�⌘ erfi

⇣
xk�⌘ erfi (xk)

⌘
. (9)

Clearly, x(i)
k,⌧ � xk is not an unbiased estimator of

�⌘rf(xk) or �⌘rf(xk � ⌘rf(xk)). This demon-
strates that the aggregated model at server cannot be
treated as ⌧ iterations of parallel SGD, since each local
update contains a bias. Indeed, this bias gets propa-
gated when ⌧ gets larger. For our running example
⌧ = 2, the variance of the bias, i.e. Ek⌘ erfi(xk �

⌘ erfi(xk))k2 is not uniformly bounded either (As-
sumption 3), which makes the analysis even more chal-
lenging compared to the works with bounded gradient
assumption (e.g. [Stich, 2018, Yu et al., 2019]).

4.1 Strongly convex setting

Now we proceed to establish the convergence rate of
the proposed FedPAQ method for a federated setting
with strongly convex and smooth loss function `. We
first formally state the strong convexity assumption.

Assumption 4. The loss functions fi are µ-strongly
convex, i.e., for any x, x̂ 2 Rp we have that hrfi(x)�
rfi(x̂),x� x̂i � µkx� x̂k2 .

Theorem 1 (Strongly convex loss). Consider the se-
quence of iterates xk at the parameter server gener-
ated according to the FedPAQ method outlined in Algo-
rithm 1. Suppose the conditions in Assumptions 1–4
are satisfied. Further, let us define the constant B1 as

B1 = 2L2

✓
q

n
+

n� r

r(n� 1)
4(1 + q)

◆
, (10)

where q is the quantization variance parameter defined
in (7) and r is the number of active nodes at each
round of communication. If we set the stepsize in
FedPAQ as ⌘k,t = ⌘k = 4µ�1/k⌧+1, then for any k � k0
where k0 is the smallest integer satisfying

k0 � 4max

⇢
L

µ
, 4

✓
B1

µ2
+ 1

◆
,
1

⌧
,
4n

µ2⌧

�
, (11)

the expected error E[kxk � x⇤
k]2 is bounded above by

Ekxk � x⇤
k
2


(k0⌧ + 1)2

(k⌧ + 1)2
kxk0 � x⇤

k
2

+ C1
⌧

k⌧ + 1
+ C2

(⌧ � 1)2

k⌧ + 1
+ C3

⌧ � 1

(k⌧ + 1)2
, (12)

where the constants in (12) are defined as

C1=
16�2

µ2n

✓
1+2q +8(1+q)

n(n�r)

r(n�1)

◆
, C2=

16eL2�2

µ2n
,

C3=
256eL2�2

µ4n

✓
n+ 2q + 8(1 + q)

n(n� r)

r(n� 1)

◆
. (13)

Remark 1. Under the same conditions as in Theo-
rem 1 and for a total number of iterations T = K⌧ �
k0⌧ we have the following convergence rate

EkxK � x⇤
k
2
 O

✓
⌧

T

◆
+O

✓
⌧2

T 2

◆

+O

✓
(⌧ � 1)2

T

◆
+O

✓
⌧ � 1

T 2

◆
. (14)

As expected, the fastest convergence rate is attained
when the contributing nodes synchronize with the pa-
rameter server in each iteration, i.e. when ⌧ = 1.
Theorem 1 however characterizes how large the pe-
riod length ⌧ can be picked. In particular, any pick
of ⌧ = o(

p
T) ensures the convergence of the FedPAQ

to the global optimal for strongly convex losses.
Remark 2. By setting ⌧ = 1, q = 0 and r = n, Theo-
rem 1 recovers the convergence rate of vanilla parallel
SGD, i.e., O(1/T) for strongly-convex losses. Our re-
sult is however more general since we remove the uni-
formly bounded assumption on the norm of stochastic
gradient. For ⌧ � 1, Theorem 1 does not recover the
result in [Stich, 2018] due to our weaker condition in
Assumption 3. Nevertheless, the same rate O(1/T) is
guaranteed by FedPAQ for constant values of ⌧ .

Reisizadeh, Mokhtari, Hassani, Jadbabaie, Pedarsani

4.2 Non-convex setting

We now present the convergence result of FedPAQ for
smooth non-convex loss functions.
Theorem 2 (Non-convex Losses). Consider the se-
quence of iterates xk at the parameter server gener-
ated according to the FedPAQ method outlined in Algo-
rithm 1. Suppose the conditions in Assumptions 1–3
are satisfied. Further, let us define the constant B2 as

B2 :=
q

n
+

4(n� r)

r(n� 1)
(1 + q), (15)

where q is the quantization variance parameter defined
in (7) and r is the number of active nodes at each
round. If the total number of iterations T and the pe-
riod length ⌧ satisfy the following conditions,

T � 2, ⌧ 

p
B2

2 + 0.8�B2

8

p

T , (16)

and we set the stepsize as ⌘k,t = 1/L
p
T , then the fol-

lowing first-order stationary condition holds

1

T

K�1X

k=0

⌧�1X

t=0

E
��rf(xk,t)

��2


2L(f(x0)� f⇤)

p
T

+N1
1
p
T

+N2
⌧ � 1

T
, (17)

where the constants in (17) are defined as

N1 := (1 + q)
�2

n

✓
1 +

n(n� r)

r(n� 1)

◆
, N2 :=

�2

n
(n+ 1).

Remark 3. The result in Theorem 2 implies the fol-
lowing order-wise rate

1

T

K�1X

k=0

⌧�1X

t=0

E
��rf(xk,t)

��2  O

✓
1
p
T

◆
+O

✓
⌧�1

T

◆
.

Clearly, the fastest convergence rate is achieved for the
smallest possible period length, i.e., ⌧ = 1. This how-
ever implies that the edge nodes communicate with the
parameter server in each iteration, i.e. T rounds of
communications which is costly. On the other hand,
the conditions (16) in Theorem 2 allow the period
length ⌧ to grow up to O(

p
T) which results in an over-

all convergence rate of O(1/
p
T) in reaching an sta-

tionary point. This result shows that with only O(
p
T)

rounds of communication FedPAQ can still ensure the
convergence rate of O(1/

p
T) for non-convex losses.

Remark 4. Theorem 2 recovers the convergence rate
of the vanilla parallel SGD [Yu et al., 2019] for non-
convex losses as a special case of ⌧ = 1, q = 0 and
r = n. Nevertheless, we remove the uniformly bounded
assumption on the norm of the stochastic gradient in
our theoretical analysis. We also recover the result in
[Wang and Joshi, 2018] when there is no quatization
q = 0 and we have a full device participation r = n.

It is worth mentioning that for Theorems 1 and 2, one
can use a batch of size m for each local SGD update
and the same results hold by changing �2/n to �2/mn.

5 Numerical Results and Discussions

The proposed FedPAQ method reduces the communi-
cation load by employing three modules: periodic av-
eraging, partial node participation, and quantization.
This communication reduction however comes with a
cost in reducing the convergence accuracy and hence
requiring more iterations of the training, which we
characterized in Theorems 1 and 2. In this section,
we empirically study this communication-computation
trade-off and evaluate FedPAQ in comparison to other
benchmarks. To evaluate the total cost of a method,
we first need to specifically model such cost. We con-
sider the total training time as the cost objective which
consists of communication and computation time [Be-
rahas et al., 2018, Reisizadeh et al., 2019c]. Consider
T iterations of training with FedPAQ that consists of
K = T/⌧ rounds of communication. In each round, r
workers compute ⌧ iterations of SGD with batchsize
B and send a quantized vector of size p to the server.

Communication time. We fix a bandwidth BW and
define the communication time in each round as the
total number of uploaded bits divided by BW. Total
number of bits in each round is r · |Q(p, s)|, where
|Q(p, s)| denotes the number of bits required to en-
code a quantized vector of dimension p according to a
specific quantizer with s levels. In our simulations, we
use the low-precision quantizer described in Example
1 and assume it takes pF bits to represent an unquan-
tized vector of length p, where F is typically 32 bits.

Computation time. We consider the well-known
shifted-exponential model for gradient computation
time [Lee et al., 2017]. In particular, we assume that
for any node, computing the gradients in a period with
⌧ iterations and using batchsize B takes a determinis-
tic shift ⌧ · B · shift plus a random exponential time
with mean value ⌧ · B · scale�1, where shift and
scale are respectively shift and scale parameters of
the shifted-exponential distribution. Total computa-
tion time of each round is then the largest local com-
putation time among the r contributing nodes. We
also define a communication-computation ratio

Ccomm

Ccomp
=

pF/BW
shift+ 1/scale

as the communication time for a length-p-vector over
the average computation time for one gradient vector.
This ratio captures the relative cost of communication
and computation, and since communication is a major
bottleneck, we have Ccomm/Ccomp � 1. In all of our

FedPAQ: A Communication-Efficient Federated Learning Method

Figure 1: Training Loss vs. Training Time: Logistic Regression on MNIST (top). Neural Network on CIFAR-10 (bottom).

experiments, we use batchsize B = 10 and finely tune
the stepsize’s coefficient.

5.1 Logistic Regression on MNIST

In Figure 1, the top four plots demonstrate the train-
ing time for a regularized logistic regression problem
over MNIST dataset (‘0’ and ‘8’ digits) for T = 100
iterations. The network has n = 50 nodes each loaded
with 200 samples. We set Ccomm/Ccomp = 100/1 to
capture the communication bottleneck. Among the
three parameters quantization levels s, number of ac-
tive nodes in each round r, and period length ⌧ , we fix
two and vary the third one. First plot demonstrates
the relative training loss for different quantization lev-
els s 2 {1, 5, 10} and the case with no quantization
which corresponds to the FedAvg method [McMahan
et al., 2016]. The other two parameters are fixed to
(⌧, r) = (5, 25). Each curve shows the training time
versus the achieved training loss for the aggregated
model at the server for each round k = 1, · · · , T/⌧ .
In the second plot, (s, ⌧) = (1, 5) are fixed. The
third plot demonstrates the effect of period length ⌧ in
the communication-computation tradeoff. As demon-
strated, after T/⌧ rounds, smaller choices for ⌧ (e.g.
⌧ = 1, 2) result in slower convergence while the larger
ones (e.g. ⌧ = 50) run faster though providing less
accurate models. Here ⌧ = 10 is the optimal choice.
The last plot compares the training time of FedPAQ
with two other benchmarks FedAvg and QSGD. For
both FedPAQ and FedAvg, we set ⌧ = 2 while FedPAQ
and QSGD use quantization with s = 1 level. All three
methods use r = n = 50 nodes in each round.

5.2 Neural Network training over CIFAR-10

We conduct another set of numerical experiments to
evaluate the performance of FedPAQ on non-convex

and smooth objectives. Here we train a neural net-
work with four hidden layers consisting of n = 50
nodes and more thatn 92K parameters, where we use
10K samples from CIFAR-10 dataset with 10 labels.
Since models are much larger than the previous setup,
we increase the communication-computation ratio to
Ccomm/Ccomp = 1000/1 to better capture the commu-
nication bottleneck for large models. The bottom
four plots in Figure 1 demonstrate the training loss
over time for T = 100 iterations. In the first plot,
(⌧, r) = (2, 25) are fixed and we vary the quantiza-
tion levels. The second plot shows the effect of r
while (s, ⌧) = (1, 2). The communication-computation
tradeoff in terms of period length ⌧ is demonstrated in
the third plot, where picking ⌧ = 10 turns out to attain
the fastest convergence. Lastly, we compare FedPAQ
with other benchmarks in the forth plot. Here, we
set (s, r, ⌧) = (1, 20, 10) in FedPAQ, (r, ⌧) = (20, 10) in
FedAvg and (s, r, ⌧) = (1, 50, 1) for QSGD.

6 Conclusion
In this paper, we addressed some of the communica-
tion and scalability challenges of federated learning
and proposed FedPAQ, a communication-efficient feder-
ated learning method with provable performance guar-
antees. FedPAQ is based on three modules: (1) periodic
averaging in which each edge node performs local it-
erative updates; (2) partial node participation which
captures the random availability of the edge nodes;
and (3) quantization in which each model is quantized
before being uploaded to the server. We provided rig-
orous analysis for our proposed method for two gen-
eral classes of strongly-convex and non-convex losses.
We further provided numerical results evaluating the
performance of FedPAQ, and discussing the trade-off
between communication and computation.

Reisizadeh, Mokhtari, Hassani, Jadbabaie, Pedarsani

References
Naman Agarwal, Ananda Theertha Suresh, Felix Xin-

nan X Yu, Sanjiv Kumar, and Brendan McMahan.
cpsgd: Communication-efficient and differentially-
private distributed sgd. In Advances in Neural Infor-
mation Processing Systems, pages 7564–7575, 2018.

Dan Alistarh, Demjan Grubic, Jerry Li, Ry-
ota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantiza-
tion and encoding. In Advances in Neural Informa-
tion Processing Systems, pages 1709–1720, 2017.

Albert Berahas, Raghu Bollapragada, Nitish Shirish
Keskar, and Ermin Wei. Balancing communication
and computation in distributed optimization. IEEE
Transactions on Automatic Control, 2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Aziz-
zadenesheli, and Anima Anandkumar. signsgd:
Compressed optimisation for non-convex problems.
arXiv preprint arXiv:1802.04434, 2018.

Keith Bonawitz, Hubert Eichner, Wolfgang
Grieskamp, Dzmitry Huba, Alex Ingerman,
Vladimir Ivanov, Chloe Kiddon, Jakub Konecny,
Stefano Mazzocchi, H Brendan McMahan, et al.
Towards federated learning at scale: System design.
arXiv preprint arXiv:1902.01046, 2019.

Léon Bottou and Olivier Bousquet. The tradeoffs of
large scale learning. In Advances in neural informa-
tion processing systems, pages 161–168, 2008.

Yudong Chen, Lili Su, and Jiaming Xu. Distributed
statistical machine learning in adversarial settings:
Byzantine gradient descent. Proceedings of the ACM
on Measurement and Analysis of Computing Sys-
tems, 1(2):44, 2017.

Thinh T Doan, Siva Theja Maguluri, and Justin
Romberg. Accelerating the convergence rates of dis-
tributed subgradient methods with adaptive quan-
tization. arXiv preprint arXiv:1810.13245, 2018.

John C Duchi, Michael I Jordan, and Martin J Wain-
wright. Privacy aware learning. Journal of the ACM
(JACM), 61(6):38, 2014.

Sanghamitra Dutta, Viveck Cadambe, and Pulkit
Grover. Short-dot: Computing large linear trans-
forms distributedly using coded short dot products.
In Advances In Neural Information Processing Sys-
tems, pages 2092–2100, 2016.

Avishek Ghosh, Justin Hong, Dong Yin, and Kan-
nan Ramchandran. Robust federated learning
in a heterogeneous environment. arXiv preprint
arXiv:1906.06629, 2019.

Neel Guha, Ameet Talwlkar, and Virginia Smith.
One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019.

Li Huang, Yifeng Yin, Zeng Fu, Shifa Zhang, Hao
Deng, and Dianbo Liu. Loadaboost: Loss-based ad-
aboost federated machine learning on medical data.
arXiv preprint arXiv:1811.12629, 2018.

Anastasia Koloskova, Sebastian U Stich, and Martin
Jaggi. Decentralized stochastic optimization and
gossip algorithms with compressed communication.
arXiv preprint arXiv:1902.00340, 2019.

Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Pe-
ter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: Strategies for im-
proving communication efficiency. arXiv preprint
arXiv:1610.05492, 2016.

Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and
Farinaz Koushanfar. Peer-to-peer federated learning
on graphs. arXiv preprint arXiv:1901.11173, 2019.

Kangwook Lee, Maximilian Lam, Ramtin Pedarsani,
Dimitris Papailiopoulos, and Kannan Ramchan-
dran. Speeding up distributed machine learning us-
ing codes. IEEE Transactions on Information The-
ory, 64(3):1514–1529, 2017.

Kangwook Lee, Maximilian Lam, Ramtin Pedarsani,
Dimitris Papailiopoulos, and Kannan Ramchan-
dran. Speeding up distributed machine learning us-
ing codes. IEEE Transactions on Information The-
ory, 64(3):1514–1529, 2018.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and
Virginia Smith. Federated learning: Challenges,
methods, and future directions. arXiv preprint
arXiv:1908.07873, 2019a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen
Wang, and Zhihua Zhang. On the conver-
gence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189, 2019b.

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and
Martin Jaggi. Don’t use large mini-batches, use local
sgd. arXiv preprint arXiv:1808.07217, 2018.

Brendan McMahan and Daniel Ramage. Fed-
erated learning: Collaborative machine
learning without centralized training data.
https://ai.googleblog.com/2017/04/
federated-learning-collaborative.html,
2017. Accessed: 2019-09-13.

H Brendan McMahan, Eider Moore, Daniel Ramage,
Seth Hampson, et al. Communication-efficient learn-
ing of deep networks from decentralized data. arXiv
preprint arXiv:1602.05629, 2016.

H Brendan McMahan, Daniel Ramage, Kunal Tal-
war, and Li Zhang. Learning differentially pri-
vate recurrent language models. arXiv preprint
arXiv:1710.06963, 2017.

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html

FedPAQ: A Communication-Efficient Federated Learning Method

Song Mei, Yu Bai, Andrea Montanari, et al. The land-
scape of empirical risk for nonconvex losses. The
Annals of Statistics, 46(6A):2747–2774, 2018.

Katta G Murty and Santosh N Kabadi. Some np-
complete problems in quadratic and nonlinear pro-
gramming. Mathematical programming, 39(2):117–
129, 1987.

Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed
Hassani, and Ramtin Pedarsani. An exact quantized
decentralized gradient descent algorithm. IEEE
Transactions on Signal Processing, 67(19):4934–
4947, 2019a.

Amirhossein Reisizadeh, Saurav Prakash, Ramtin
Pedarsani, and Amir Salman Avestimehr. Code-
dreduce: A fast and robust framework for gradient
aggregation in distributed learning. arXiv preprint
arXiv:1902.01981, 2019b.

Amirhossein Reisizadeh, Hossein Taheri, Aryan
Mokhtari, Hamed Hassani, and Ramtin Pedarsani.
Robust and communication-efficient collaborative
learning. arXiv preprint arXiv:1907.10595, 2019c.

Anit Kumar Sahu, Tian Li, Maziar Sanjabi, Manzil
Zaheer, Ameet Talwalkar, and Virginia Smith. On
the convergence of federated optimization in hetero-
geneous networks. arXiv preprint arXiv:1812.06127,
2018.

Sumudu Samarakoon, Mehdi Bennis, Walid Saady,
and Merouane Debbah. Distributed federated learn-
ing for ultra-reliable low-latency vehicular commu-
nications. arXiv preprint arXiv:1807.08127, 2018.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and
Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of
speech dnns. In Fifteenth Annual Conference of
the International Speech Communication Associa-
tion, 2014.

Virginia Smith, Simone Forte, Chenxin Ma, Mar-
tin Takac, Michael I Jordan, and Martin Jaggi.
Cocoa: A general framework for communication-
efficient distributed optimization. arXiv preprint
arXiv:1611.02189, 2016.

Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi,
and Ameet S Talwalkar. Federated multi-task learn-
ing. In Advances in Neural Information Processing
Systems, pages 4424–4434, 2017.

Sebastian U Stich. Local sgd converges fast and com-
municates little. arXiv preprint arXiv:1805.09767,
2018.

Rashish Tandon, Qi Lei, Alexandros G Dimakis, and
Nikos Karampatziakis. Gradient coding. arXiv
preprint arXiv:1612.03301, 2016.

Jianyu Wang and Gauri Joshi. Cooperative sgd:
A unified framework for the design and analysis
of communication-efficient sgd algorithms. arXiv
preprint arXiv:1808.07576, 2018.

Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri
Joshi, and Soummya Kar. Matcha: Speeding up
decentralized sgd via matching decomposition sam-
pling. arXiv preprint arXiv:1905.09435, 2019.

Dong Yin, Yudong Chen, Kannan Ramchandran,
and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. arXiv
preprint arXiv:1803.01498, 2018.

Hao Yu, Sen Yang, and Shenghuo Zhu. Parallel
restarted sgd with faster convergence and less com-
munication: Demystifying why model averaging
works for deep learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33,
pages 5693–5700, 2019.

Qian Yu, Mohammad Ali Maddah-Ali, and A Salman
Avestimehr. Polynomial codes: an optimal design
for high-dimensional coded matrix multiplication.
arXiv preprint arXiv:1705.10464, 2017.

Xin Zhang, Jia Liu, Zhengyuan Zhu, and Elizabeth S
Bentley. Compressed distributed gradient descent:
Communication-efficient consensus over networks.
arXiv preprint arXiv:1812.04048, 2018.

Wennan Zhu, Peter Kairouz, Haicheng Sun, Brendan
McMahan, and Wei Li. Federated heavy hitters
discovery with differential privacy. arXiv preprint
arXiv:1902.08534, 2019.

	Introduction
	Federated Learning Setup
	Proposed FedPAQ Method
	Periodic averaging
	Partial node participation
	Quantized message-passing
	Algorithm update

	Convergence Analysis
	Strongly convex setting
	Non-convex setting

	Numerical Results and Discussions
	Logistic Regression on MNIST
	Neural Network training over CIFAR-10

	Conclusion
	Proof of Theorem 1
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Equation (43)
	Discussion on stepsize k
	Skipped lemmas and proofs

	Proof of Theorem 2
	Discussion on stepsize
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8
	Proof of Lemma 9

	Additional Numerical Results

