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A Computing the derivatives
Let the Jacobian matrices of f(x,u;θ) with respect to x
and to θ evaluated at the point (xt,ut;θ) be denoted, re-
spectively, as At and Bt. Similarly, the Jacobian matrices
of g(x,ut;θ) are denoted as Ct and Ft. A direct appli-
cation of the chain rule to (1) gives a recursive formula
for computing the derivatives of the predicted output in
relation to the parameters in the interval 1 ≤ t ≤ N :

Dt+1 = AtDt +Bt for D0 = 0

Jt = CtDt + Ft, (S1)
where we denote the Jacobian matrices of ŷt and xt with
respect to θ respectively as Jt and Dt.
For the cost function V defined as in Eq. (2), its gradient
∇V is given by:

∇V = 1
N

N∑
t=1

Jt l′(ŷt,yt), (S2)

where l′(ŷt,yt) denotes the gradient of the loss function
with respect to its first argument, evaluated at (ŷt,yt).

B Proofs
B.1 Entropy lower bound

Theorem 2. Let f(·,ut;θ) in Eq. (1) be a one-to-one
continuous differentiable map, and let f(x,u;θ) be Lipschitz
in (x,θ) with constant Lf on a compact and convex set
Ω = (Ωx,Ωu,Ωθ). Then the entropy Ht in Eq. (3) with
xt ∈ RNx satisfies:

Ht +Nx logLf ≤ Ht+1. (S3)

Proof. Under the assumption that f(·,ut;θ) is a 1-1 con-
tinuous differentiable map (cf. Theorems 3-13 and 3-14
by Spivak (1998)), applying the change of variable xt+1 =
f(xt,ut;θ) we get:

Ht = −
∫
f(Ωx,ut;θ)

pt+1(xt+1) log

(
pt+1(xt+1)

∣∣∣∣det ∂xt+1

∂xt

∣∣∣∣) dxt+1

= Ht+1 −
∫
f(Ωx,ut;θ)

pt+1(xt+1) log

(∣∣∣∣det ∂xt+1

∂xt

∣∣∣∣) dxt+1,

where ∂xt+1

∂xt
is the Jacobian matrix of f(·,ut;θ). Using

Hadamard’s inequality:

log

∣∣∣∣det ∂xt+1

∂xt

∣∣∣∣ ≤ Nx∑
i=1

log ‖vi‖2, (S4)

where vi is the i-th column of the Jacobian matrix and
log ‖vi‖2 ≤ log

∥∥∥ ∂xt+1

∂xt

∥∥∥
2
≤ logLf . Hence, we have that

Ht +Nx logLf ≤ Ht+1. (S5)

B.2 Preliminary results

Lemma 1. For i = 1, · · · , n, let fi be a Lipschitz function
on Ω with constants Li. Then,

1.
∑n

i=1 fi is also a Lipschitz function on Ω with Lipschitz
constant upper bounded by

∑n
i=1 Li;

2. if, additionally, fi are bounded by Mi on Ω,
then

∏n
i=1 fi is also a Lipschitz function on Ω

with Lipschitz constant upper bounded by(∑n
i=1 M1 · · ·Mi−1LiMi+1 · · ·Mn

)
.

Lemma 2. Let us define the properties:

1. |l(ŷ,y)− l(ẑ,y)| < (K1‖y‖+K2 max(‖ŷ‖, ‖ẑ‖)) ‖ŷ−
ẑ‖,

2. l′(ŷ,y) = Ψ(ŷ)−K3y,

where l′(ŷ,y) denotes the first derivative of the loss function
with respect to its first argument, evaluated at (ŷ,y). There
exist constants K1, K2, and K3 and a function Ψ that is
Lipschitz continuous with constant K4 and for which Ψ such
that these properties hold for both: a) l(ŷ,y) = ‖ŷ−y‖2; b)
l(ŷ,y) = −yT log(σ(ŷ))−(1−y)T log(1−σ(ŷ)). In (b), the
sigmoid function, σ(x) = 1

1+exp(−x)
, and the logarithm are

evaluated element-wise. We assume in (b) that the elements
in y are either 0 or 1.

Proof. For (a) and (b), property 2 follows from differen-
tiating l(ŷ,y) with respect to its first argument. For (a),
φ(ŷ) = 2ŷ and K3 = 2; for (b), φ(ŷ) = σ(ŷ) and K3 = 1.

For loss function (a), property 1 holds due to the following
inequalities∣∣‖ŷ − y‖2 − ‖ẑ− y‖2

∣∣ = ∣∣∣‖ŷ‖2 − ‖ẑ‖2 − 2yT (ŷ − ẑ)
∣∣∣ ≤

≤
∣∣∣(‖ŷ‖ − ‖ẑ‖) (‖ŷ‖+ ‖ẑ‖)− 2yT (ŷ − ẑ)

∣∣∣ ≤
≤ (2‖y‖+ 2max (‖ŷ‖, ‖ẑ‖)) ‖ŷ − ẑ‖.

For loss function (b), let ŷ and ẑ be two scalar values.
Furthermore, consider, without loss of generality, that ŷ ≥ ẑ.
Then:

0 ≤ log(σ(ŷ))−log(σ(ẑ)) = (ŷ−ẑ)−log

(
exp(ŷ) + 1

exp(ẑ) + 1

)
≤ (ŷ−ẑ)

(S6)
The first inequality follows from the fact that log(σ(·)) is

a monotonically increasing function. The last inequality
holds because log

(
exp(ŷ)+1
exp(ẑ)+1

)
≥ 0. Analogously,

0 ≤ log(1− σ(ẑ))− log(1− σ(ŷ))

= (ŷ − ẑ)− log

(
exp(−ẑ) + 1

exp(−ŷ) + 1

)
≤ (ŷ − ẑ).

(S7)
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For l(y, ŷ) defined as in (b), it follows from Eq. (S6),
Eq. (S7), and the fact that y contains only values in the
set {0, 1}, that:

|l(ŷ,y)− l(ẑ,y)| ≤ ‖ŷ − ẑ‖1 ≤
√

Ny‖ŷ − ẑ‖2 (S8)
where ‖ · ‖1 and ‖ · ‖2 denote l1 and l2 norm of a vector and
Ny is the number of outputs.

B.3 Proof of Theorem 1 (a)

Assume two different trajectories resulting from simulating
the system in Eq (1) with parameters and initial conditions
(x0,θ) and (w0,φ), respectively. We denote the correspond-
ing trajectories by x and w. Let us call:

‖∆ŷt‖ = ‖g(xt,ut;θ)− g(wt,ut;φ)‖. (S9)

Since f and g are Lipschitz in (x,θ) we have:
‖f(x,ut,θ)− f(w,ut,φ)‖2 ≤ L2

f

(
‖x−w‖2 + ‖θ − φ‖2

)
,

‖g(x,ut,θ)− g(w,ut,φ)‖2 ≤ L2
g

(
‖x−w‖2 + ‖θ − φ‖2

)
,

for all (x,ut,θ) and (w,ut,φ) in (Ωx,Ωu,Ωθ). Applying
these relations recursively we get that:

‖∆ŷt‖2 ≤ L2
gL

2t
f ‖x0 −w0‖2 + L2

g

(
t∑

`=0

L2`
f

)
‖θ − φ‖2.

Since Lf is positive, the constant multiplying the second
term in the above equation is always larger than the constant
multiplying the first term. Hence, taking the square root
on both sides of the above inequality and after simple
manipulations, we obtain:

‖∆ŷt‖ ≤ LgS(t)‖[θ,x0]
T − [φ,w0]

T ‖, (S10)
where

S(t) =

√√√√ t∑
`=0

L2`
f =


√
t+ 1 if Lf = 1,√
L2t+2

f
−1

L2
f
−1

if Lf 6= 1.
(S11)

Since Ω is compact and ŷt is a (Lipschitz) continuous func-
tion of the parameters and initial conditions, then ŷt is
bounded in Ω, i.e. ‖ŷt‖ ≤ M(t). Furthermore, it follows
from Eq. (S10) and from the existence of an invariant set4

in Ω that M(t) = O(S(t)).

The following inequality follows from Eq. (2), and from
property 1 in Lemma 2:

|V (θ,x0)− V (φ,w0)| ≤ 1
N

N∑
t=1

(K1Ly +K2M(t))‖∆ŷt‖,

(S12)

where Ly = max1≤t≤N ‖yt‖. Now, assembling Eq. (S12)
and Eq. (S10) we obtain

|V (θ,x0)− V (φ,w0)| ≤ LV1

∥∥∥[x0,θ]
T − [w0,φ]

T
∥∥∥ ,

for LV =
(

Lg

N

∑N
t=1(K1Ly +K2M(t))S(t)

)
. The asymp-

totic analysis of this expression with respect to N yields
Eq. (6).

4There are multiple ways to guarantee the invariant set
premise will hold, but a very simple way is to just choose f
such that f(0,ut;0) = 0. In this case, {0} is an invariant set
and if Ωθ contains this point the premise is satisfied. For this
specific case, one can just choose [φ,w0] = 0 and it follows
from Eq. (S10) that ‖ŷt‖ ≤ LgS(t)‖[θ,x0]‖ = O(S(t)).
The more general case, for any invariant set, follows from a
similar deduction.

B.4 Proof of Theorem 1 (b)

It follows from Eq. (S2), and from property 2 in Lemma 2,
that:

‖∇V (θ,x0)−∇V (φ,w0)‖

≤ 1
N

N∑
t=1

K3Ly‖∆Jt‖+ ‖∆(JtΨ(ŷt)) ‖, (S13)

where we have used the notation ∆Jt to denote the differ-
ence between Jt evaluated at (θ,x0) and (φ,w0). Analo-
gously, ∆(JtΨ(ŷt)) denotes the difference between JtΨ(ŷt)
evaluated at the two distinct points, where Ψ is the Lipschitz
continuous function with constant K4 defined in Lemma 2.
From Eq. (S1) it follows that:

Jt = Ct

t∑
`=1

(
t−∏̀
j=1

At−j+1

)
B` + Ft; (S14)

Since the Jacobian of f is Lipschitz with Lipschitz constant
L′

f , it follows that:
‖∆Aj‖2 ≤ (L′

f )
2 (‖xj −wj‖2 + ‖θ − φ‖2

)
. (S15)

Using a procedure analogous to the one used to obtain
Eq. (S10), it follows that:

‖∆Aj‖ ≤ L′
fS(j) ‖[θ,x0]

T − [φ,w0]
T ‖, (S16)

where S(j) is defined as in Eq. (S11). An identical formula
holds for Bj and a similar formula, replacing L′

f with L′
g,

holds for Cj and Fj .
Since f and g are Lipschitz with Lipschitz constants Lf and
Lg it follows that ‖Aj‖ ≤ Lf , ‖Bj‖ ≤ Lf , ‖Cj‖ ≤ Lg and
‖Fj‖ ≤ Lg. Hence, it follows from Eq. (S10), Eq. (S14),
Eq. (S16) and the repetitive application of Lemma 1 that
‖∆Jt‖ and ‖∆(JtΨ(ŷt))‖ are upper bounded by ‖[θ,x0]

T −
[φ,w0]

T ‖ multiplied by the following constants:

LJ,t =

t∑
`=1

P (t, `) + L′
gS(t),

LJŷ,t =
t∑

`=1

Q(t, `) + T (t)S(t),

where T (t) = K4(L
′
gM(t) + L2

g) and:

P (t, `) = Lt−`
f

LgL
′
f

t∑
j=`

S(j) + LfL
′
gS(t)

 ,

Q(t, `) = Lt−`
f

K4M(t)LgL
′
f

t∑
j=`

S(j) + LfT (t)S(t)

 .

Hence,
‖∇V (θ,x0)−∇V (φ,w0)‖ ≤ L′

V ‖[θ,x0]
T − [φ,w0]

T ‖,

where:

L′
V = 1

N

N∑
t=1

(K3LyLJ,t + LJŷ,t) .

Combining the above, the asymptotic analysis of L′
V results

in Eq. (7).
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C Chaotic LSTM example
An LSTM with zero input and without bias terms is con-
sidered:
ct = σ (Whfht−1)︸ ︷︷ ︸

forget gate

∗ct−1 + σ (Whiht−1)︸ ︷︷ ︸
input gate

∗ tanh (Whght−1)︸ ︷︷ ︸
cell gate

(S17)
ht = σ (Whoht−1)︸ ︷︷ ︸

output gate

∗ tanh(ct). (S18)

The sigmoids σ(·) and hyperbolic tangents tanh(·) operate
element-wise. The symbol ∗ indicates an element-wise
product. The hidden and cell state have initial conditions
h0 = c0 = [0.5 0.5]T. The hidden state ht is also the
output of the model. The weight matrices are put equal to
Whi =

[−1 4
−3 −2

]
, Whf =

[−2 6
0 −6

]
, Whg =

[−1 −6
6 −9

]
,

and Who =
[
4 1
−9 7

]
to generate the data. The values in

the weight matrices are stacked on top of each other in a
parameter vector θtrue.
Figure 1 shows the mean-square loss evaluated on data
generated by the same LSTM model with the same initial
conditions, but with different parameter values. A two-
dimensional grid of parameter values θ(s1, s2) is used with
values interpolated (and extrapolated) between θtrue, zero
parameter values, and a randomly chosen parameter vector
θrandom, i.e. in this case, θ(s1, s2) = s1θtrue + s2θrandom.
Again, the region in the parameter space around θtrue is
intricate. There is an entire region where the cost function
is intricate and has many neighboring local minima.
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D Additional Experiments

Supplementary Figure 1: Chaotic LSTM. Mean-square cost function (2) for LSTM models with parameter
vectors θ(s1, s2) = s1θtrue + s2θrandom.
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Supplementary Figure 2: The effect of the initial conditions. Accuracy on training and validation data on
the symbol classification task for the LSTM model in identical scenarios but with different initial random
parameter initialization (from different random seeds). In (a), the optimization procedure abruptly finds a solution
that has good accuracy on both training and validation; while, in (b), the convergence is slow and steady towards
a solution that has good accuracy on the training set (above 90%) but is no better than random guessing on the
validation set.
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Supplementary Figure 3: The LSTM learns to classify sequences. Bifurcation diagram for the LSTM model
in symbol classification task for sequences of length 100. It shows the steady-state of the output yt and its first
difference yt − yt−1. The arrows point towards the evolution of the number of epochs, that vary from 0 to 400.
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Supplementary Figure 4: The oRNN learns to classify sequences. Bifurcation diagram for the oRNN model
in symbol classification task for sequences of length 100. It shows the steady-state of the output yt and its first
difference yt − yt−1. The arrows point towards the evolution of the number of epochs, that vary from 0 to 400.
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(a) average (b) average (c) average, with feedback (d) average, with feedback

(e) “is” (f) “is” (g) “is”, with feedback (h) “is”, with feedback

(i) “Valkyria” (j) “Valkyria” (k) “Valkyria”, with feedback (l) “Valkyria”, with feedback

Supplementary Figure 5: The LSTM mechanism for learning a language model. Bifurcation diagram for
the LSTM world-level language model. For each epoch, the plot shows values visited by the projections of the
internal state p(xt) and its first difference p(xt)− p(xt−1) after a burnout period of 1500 samples. This burnout
period is used to remove the transient response and yields a visualization of the system attractors, per epoch. The
arrow point towards the evolution of the number of epochs, that varies from 0 to 150. In (a) and (b), we have
two different realizations of the bifurcation diagram obtained from constant inputs. In (c) and (d), the diagram
is generated using as input the word predicted with the highest probability at the previous time instant, and
using as first input to the sequence the same input as in (a) and (b), respectively. The subplots (a) to (d) use the
average of internal states as projections, i.e. p(xt) = x̄t. The second row, (e) to (h), and third row, (i) to (l), show
the exact same experiments but for the projections in the direction of the tokens “is” and “Valkyria”, respectively.
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(a) average (b) “is” (c) “Valkyria” (d) “<unk>”

(e) average, with feedback (f) “is”, with feedback (g) “Valkyria”, with feedback (h) “<unk>”, with feedback

Supplementary Figure 6: The sLSTM mechanism for learning a language model. Bifurcation diagram
for the stable LSTM world-level language model. For each epoch, the plot shows values visited by the projections
of the internal state p(xt) after a burnout period of 1500 samples. This burnout period is used to remove the
transient response and yields a visualization of the system attractors, per epoch. In the displays (a) to (d), the
diagram is generated for the same constant input. In (e) to (h), the diagram is generated using as input the word
predicted with the highest probability at the previous time instant, and using as first input to the sequence the
same input as in the first row. The projections are: the average of internal states as projections, i.e. p(xt) = x̄t;
and, projections into the direction of the tokens “is”, “Valkyria” and “<unk>”.

(a) average (b) “is” (c) “Valkyria” (d) “<unk>”

(e) average, with feedback (f) “is”, with feedback (g) “Valkyria”, with feedback (h) “<unk>”, with feedback

Supplementary Figure 7: The oRNN mechanism for learning a language model. Bifurcation diagram for
the orthogonal RNN world-level language model. For each epoch, the plot shows values visited by the projections
of the internal state p(xt) after a burnout period of 1500 samples. This burnout period is used to remove the
transient response and yields a visualization of the system attractors, per epoch. In the displays (a) to (d), the
diagram is generated for the same constant input. In (e) to (h), the diagram is generated using as input the word
predicted with the highest probability at the previous time instant, and using as first input to the sequence the
same input as in the first row. The projections are: the average of internal states as projections, i.e. p(xt) = x̄t;
and, projections into the direction of the tokens “is”, “Valkyria” and “<unk>”.
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