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Abstract

We design a general framework for answering
adaptive statistical queries that focuses on
providing explicit confidence intervals along
with point estimates. Prior work in this area
has either focused on providing tight confi-
dence intervals for specific analyses, or pro-
viding general worst-case bounds for point es-
timates. Unfortunately, as we observe, these
worst-case bounds are loose in many settings
— often not even beating simple baselines like
sample splitting. Our main contribution is
to design a framework for providing valid,
instance-specific confidence intervals for point
estimates that can be generated by heuris-
tics. When paired with good heuristics, this
method gives guarantees that are orders of
magnitude better than the best worst-case
bounds. We provide a Python library imple-
menting our method.

1 Introduction

Many data analysis workflows are adaptive, i.e., they re-
use data over the course of a sequence of analyses, where
the choice of analysis at any given stage depends on
the results from previous stages. Such adaptive re-use
of data is an important source of overfitting in machine
learning and false discovery in the empirical sciences
[Gelman and Loken, 2014]. Adaptive workflows arise,
for example, when exploratory data analysis is mixed
with confirmatory data analysis, when hold-out sets are
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re-used to search through large hyper-parameter spaces
or to perform feature selection, and when datasets are
repeatedly re-used within a research community.

A simple solution to this problem—that we can view as
a naïve benchmark—is to simply not re-use data. More
precisely, one could use sample splitting: partitioning
the dataset into k equal-sized pieces, and using a fresh
piece of the dataset for each of k adaptive interactions
with the data. This allows us to treat each analysis as
nonadaptive, and allows many quantities of interest to
be accurately estimated with their empirical estimate,
and paired with tight confidence intervals that come
from classical statistics. This seemingly naive approach
is wasteful in its use of data, however: the sample size
needed to conduct a series of k adaptive analyses grows
linearly with k.

A line of recent work [Dwork et al., 2015c,a,b, Russo
and Zou, 2016, Bassily et al., 2016, Rogers et al., 2016,
Feldman and Steinke, 2017a,b, Xu and Raginsky, 2017,
Zrnic and Hardt, 2019, Mania et al., 2019] aims to
improve on this baseline by using mechanisms which
provide “noisy” answers to queries rather than exact
empirical answers. Methods coming from these works
require that the sample size grow proportional to the
square root of the number of adaptive analyses, dra-
matically beating the sample splitting baseline asymp-
totically. Unfortunately, the bounds proven in these
papers—even when optimized—only beat the naïve
baseline when both the dataset size n, and the number
of adaptive rounds k, are very large; see Figure 1.

The failure of these worst-case bounds to beat simple
baselines in practice — despite their attractive asymp-
totics — has been a major obstacle to the practical
adoption of techniques from this literature. There are
two difficulties with directly improving this style of
bounds. The first is that we are limited by what we
can prove: mathematical analyses can often be loose by
constants that are significant in practice. The more fun-
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damental difficulty is that these bounds are guaranteed
to hold even against a worst-case data analyst, who is
adversarially attempting to find queries which over-fit
the sample: one would naturally expect that when
applied to a real workload of queries, such worst-case
bounds would be extremely pessimistic. We address
both difficulties in this paper.

Contributions In this paper, we move the empha-
sis from algorithms that provide point estimates to
algorithms that explicitly manipulate and output con-
fidence intervals based on the queries and answers so
far, providing the analyst with both an estimated value
and a measure of its actual accuracy. At a technical
level, we have two types of contributions:

First, we give optimized worst-case bounds that care-
fully combine techniques from different pieces of prior
work—plotted in Figure 1. For certain mechanisms,
our improved worst-case bounds are within small con-
stant factors of optimal, in that we can come close to
saturating their error bounds with a concrete, adver-
sarial query strategy (Section 2). However, even these
optimized bounds require extremely large sample sizes
to improve over the naive sample splitting baseline,
and their pessimism means they are often loose.

Figure 1: Comparison of various worst-case bounds for
the Gaussian mechanism with the sample splitting base-
line. ‘DFHPRR’ and ‘BNSSSU’ refer to bounds given in
prior work (Dwork et al. [2015d], Bassily et al. [2016]).
The other lines plot improved worst-case bounds de-
rived in this paper, whereas ‘JLNRSS’ refers to bounds
in subsequent work (Jung et al. [2019]). (See Section 2
for the full model and parameter descriptions.)

Our main result is the development of a simple frame-
work called Guess and Check, that allows an analyst
to pair any method for “guessing” point estimates and
confidence interval widths for their adaptive queries,
and then rigorously validate those guesses on an addi-
tional held-out dataset. So long as the analyst mostly

guesses correctly, this procedure can continue indefi-
nitely. The main benefit of this framework is that it
allows the analyst to guess confidence intervals whose
guarantees exceed what is guaranteed by the worst-case
theory, and still enjoy rigorous validity in the event
that they pass the “check”. This makes it possible to
take advantage of the non-worst-case nature of natural
query strategies, and avoid the need to “pay for” con-
stants that seem difficult to remove from worst-case
bounds. Our empirical evaluation demonstrates that
our approach can improve on worst-case bounds by
orders of magnitude, and that it improves on the naive
baseline even for modest sample sizes: see Figure 2,
and Section 3 for details. We also provide a Python
library containing an implementation of our Guess and
Check framework.

Figure 2: Performance of Guess and Check with the
Gaussian mechanism providing the guesses (“GnC
Gauss”) for a plausible query strategy (see Section 3.1),
compared with the best worst-case bounds for the Gaus-
sian mechanism (“Gauss Bnd”), and the baseline.

Related Work Our “Guess and Check” (GnC)
framework draws inspiration from the Thresholdout
method of Dwork et al. [2015a], which uses a holdout
set in a similar way. GnC has several key differences,
which turn out to be crucial for practical performance.
First, whereas the “guesses” in Thresholdout are simply
the empirical query answers on a “training” portion of
the dataset, we make use of other heuristic methods
for generating guesses (including, in our experiments,
Thresholdout itself) that empirically often seem to pre-
vent overfitting to a substantially larger degree than
their worst-case guarantees suggest. Second, we make
confidence-intervals first-order objects: whereas the
“guesses” supplied to Thresholdout are simply point
estimates, the “guesses” supplied to GnC are point es-
timates along with confidence intervals. Finally, we use
a more sophisticated analysis to track the number of
bits leaked from the holdout, which lets us give tighter



Rogers, Roth, Smith, Srebro, Thakkar, Woodworth

confidence intervals and avoids the need to a priori set
an upper bound on the number of times the holdout is
used. Gossmann et al. [2018] use a version of Thresh-
oldout to get worst-case accuracy guarantees for values
of the AUC-ROC curve for adaptively obtained queries.
However, apart from being limited to binary classifica-
tion tasks and the dataset being used only to obtain
AUC values, their bounds require “unrealistically large”
dataset sizes. Our results are complementary to theirs;
by using appropriate concentration inequalities, GnC
could also be used to provide confidence intervals for
AUC values. Their technique could be used to provide
the “guesses” to GnC.

Our improved worst-case bounds combine a number of
techniques from the existing literature: namely the in-
formation theoretic arguments of Russo and Zou [2016],
Xu and Raginsky [2017] together with the “monitor”
argument of Bassily et al. [2016], and a more refined ac-
counting for the properties of specific mechanisms using
concentrated differential privacy (Dwork and Rothblum
[2016], Bun and Steinke [2016b]).

Feldman and Steinke [2017a,b] give worst-case bounds
that improve with the variance of the asked queries.
In Section 3.1, we show how GnC can be used to give
tighter bounds when the empirical query variance is
small.

Mania et al. [2019] give an improved union bound for
queries that have high overlap, that can be used to im-
prove bounds for adaptively validating similar models,
in combination with description length bounds. Zrnic
and Hardt [2019] take a different approach to going
beyond worst-case bounds in adaptive data analysis,
by proving bounds that apply to data analysts that
may only be adaptive in a constrained way. A difficulty
with this approach in practice is that it is limited to
analysts whose properties can be inspected and verified
— but provides a potential explanation why worst-case
bounds are not observed to be tight in real settings.
Our approach is responsive to the degree to which the
analyst actually overfits, and so will also provide rela-
tively tight confidence intervals if the analyst satisfies
the assumptions of Zrnic and Hardt [2019].

In very recent work (subsequent to this paper), Jung
et al. [2019] give a further tightening of the worst-case
bounds, improving the dependence on the coverage
probability β. Their bounds (shown in Figure 1) do
not significantly affect the comparison with our GnC
method since they yield only worst-case analysis.

1.1 Preliminaries

As in previous work, we assume that there is a dataset
X = (x1, · · · , xn) ∼ Dn drawn i.i.d. from an unknown
distribution D over a universe X . This dataset is the

input to a mechanismM that also receives a sequence
of queries φ1, φ2, ... from an analyst A and outputs, for
each one, an answer. Each φi is a statistical query, de-
fined by a bounded function φi : X → [0, 1]. We denote
the expectation of a statistical query φ over the data
distribution by φ(D) = Ex∼D [φ(x)], and the empirical
average on a dataset by φ(X) = 1

n

∑n
i=1 φ(xi).

The mechanism’s goal is to give estimates of φi(D) for
query φi on the unknown D. Previous work looked at
analysts that produce a single point estimate ai, and
measured error based on the distances |ai − φi(D)|. As
mentioned above, we propose a shift in focus: we ask
mechanisms to produce a confidence interval specified
by a point estimate ai and width τi. The answer (ai, τi)
is correct for φi on D if φi(D) ∈ (ai − τi, ai + τi).
(Note that the data play no role in the definition of
correctness—we measure only population accuracy.)

An interaction between randomized algorithmsM and
A on dataset X ∈ Xn (denotedM(X)
 A) consists
of an unbounded number of query-answer rounds: at
round i, A sends φi, and M(X) replies with (ai, τi).
M receives X as input. A receives no direct input, but
may select queries adaptively, based on the answers
in previous rounds. The interaction ends when either
the mechanism or the analyst stops. We say that the
mechanism provides simultaneous coverage if, with high
probability, all its answers are correct:
Definition 1.1 (Simultaneous Coverage). Given β ∈
(0, 1), we say thatM has simultaneous coverage 1− β
if, for all n ∈ N, all distributions D on X and all
randomized algorithms A,

Pr
X∼Dn,

{(φi,ai,τi)}ki=1←(M(X)
A)

[∀i ∈ [k] : φi(D) ∈ ai ± τi] ≥ 1−β

We denote by k the (possibly random) number of rounds
in a given interaction.
Definition 1.2 (Accuracy). We say M is (τ, β)-
accurate, ifM has simultaneous coverage 1− β and its
interval widths satisfy max

i∈[k]
τi ≤ τ with probability 1.

2 Confidence intervals from
worst-case bounds

Our emphasis on explicit confidence intervals led us
to derive worst-case bounds that are as tight as possi-
ble given the techniques in the literature. We discuss
the Gaussian mechanism here, and defer the applica-
tion to Thresholdout in Appendix B.3, and provide a
pseudocode for Thresholdout in Algorithm 4.

The Gaussian mechanism is defined to be an algorithm
that, given input dataset X ∼ Dn and a query φ :
X → [0, 1], reports an answer a = φ(X) +N

(
0, 1

2n2ρ

)
,
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where ρ > 0 is a parameter. It has existing analyses
for simultaneous coverage (see Dwork et al. [2015d],
Bassily et al. [2016]) — but these analyses involve large,
sub-optimal constants. Here, we provide an improved
worst-case analysis by carefully combining existing tech-
niques. We use results from Bun and Steinke [2016a]
to bound the mutual information of the output of the
Gaussian mechanism with its input. We then apply
an argument similar to that of Russo and Zou [2016]
to bound the bias of the empirical average of a sta-
tistical query selected as a function of the perturbed
outputs. Finally, we use Chebyshev’s inequality, and
the monitor argument from Bassily et al. [2016] to ob-
tain high probability accuracy bound. Figure 1 shows
the improvement in the number of queries that can be
answered with the Gaussian mechanism with (0.1, 0.05)-
accuracy. Our guarantee is stated below, with its proof
deferred to Appendix C.2.
Theorem 2.1. Given input X ∼ Dn, confi-
dence parameter β, and parameter ρ, the Gaus-
sian mechanism is (τ, β)-accurate, where τ =√

1
2nβ · min

λ∈[0,1)

(
2ρkn−ln(1−λ)

λ

)
+ 1

2n

√
1
ρ ln

(
4k
β

)
.

We now consider the extent to which our analyses
are improvable for worst-case queries to the Gaussian
and the Thresholdout mechanisms. To do this, we
derive the worst query strategy in a particular restricted
regime. We call it the “single-adaptive query strategy”,
and show that it maximizes the root mean squared
error (RMSE) amongst all single query strategies under
the assumption that each sample in the dataset is
drawn u.a.r. from {−1, 1}k+1, and the strategy is
given knowledge of the empirical correlations of each
of the first k features with the (k + 1)st feature (which
can be obtained e.g. with k non-adaptive queries asked
prior to the adaptive query). We provide a pseudocode
for the strategy in Algorithm 5, and prove that our
single adaptive query results in maximum error, in
Appendix C.1. To make the bounds comparable, we
translate our worst-case confidence upper bounds for
both the mechanisms to RMSE bounds in Theorem C.8
and Theorem B.10. Figure 3 shows the difference
between our best upper bound and the realized RMSE
(averaged over 100 executions) for the two mechanisms
using n = 5, 000 and various values of k. (For the
Gaussian, we set ρ separately for each k, to minimize
the upper bound.) On the top, we see that the two
bounds for the Gaussian mechanism are within a factor
of 2.5, even for k = 50, 000 queries. Our bounds are
thus reasonably tight in one important setting. For
Thresholdout (bottom side), however, we see a large
gap between the bounds which grows with k, even for
our best query strategy1. This result points to the

1We tweak the adaptive query in the single-adaptive

promise for empirically-based confidence intervals for
complex mechanisms that are harder to analyze.

Figure 3: Worst-case upper (proven) and lower RMSE
bounds (realized via the single-adaptive query strategy)
with n = 5, 000 for Gaussian (top) and Thresholdout
(bottom).

3 The Guess and Check Framework

In light of the inadequacy of worst-case bounds, we
here present our Guess and Check (GnC) framework
which can go beyond the worst case. It takes as inputs
guesses for both the point estimate of a query, and a
confidence interval width. If GnC can validate a guess,
it releases the guess. Otherwise, at the cost of widening
the confidence intervals provided for future guesses, it
provides the guessed confidence width along with a
point estimate for the query using the holdout set such
that the guessed width is valid for the estimate.

An instance of GnC,M, takes as input a dataset X,

query strategy to result in maximum error for Thresholdout.
We also tried “tracing” attack strategies (adapted from the
fingerprinting lower bounds of Bun et al. [2014], Hardt and
Ullman [2014], Steinke and Ullman [2015]) that contained
multiple adaptive queries, but gave similar results.
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desired confidence level 1− β, and a mechanismMg

which operates on inputs of size ng < n. M randomly
splits X into two, giving one part Xg toMg, and re-
serving the rest as a holdout Xh. For each query φi,
mechanismMg uses Xg to make a “guess” (ag,i, τi) to
M, for whichM conducts a validity check. If the check
succeeds, thenM releases the guess as is, otherwiseM
uses the holdout Xh to provide a response containing
a discretized answer that has τi as a valid confidence
interval. This is closely related to Thresholdout. How-
ever, an important distinction is that the width of the
target confidence interval, rather than just a point es-
timate, is provided as a guess. Moreover, the guesses
themselves can be made by non-trivial algorithms.

Algorithm 1 Guess and Check
Require: Data X ∈ Xn, confidence parameter β, ana-

lyst having mechanismMg with inputs of size ng < n

Randomly split X into a guess set Xg of size ng to
input intoMg, and a holdout Xh of size nh = n−ng
f ← 0
cj ← 6

π2(j+1)2 for j ≥ 0 //should just satisfy
∑
j≥0

cj ≤ 1

for i = 1 to ∞ do
//Compute # possible transcripts
if f > 0 then
νi,f,γf1

←
(
i−1
f

)∏
j∈[f ]

(
1
γj

)
else
νi,f,γf1

← 1
βi ← (β · ci−1 · cf )/νi,f,γf1
Receive query φi and guess (ag,i, τi) ←
Mg(Xg, φi) from analyst
ah,i ← φi(Xh) //holdout answer
τh ← HoldoutTol(βi, ag,i, τi, ah,i) //HoldoutTol
returns a valid tolerance for ah,i
if |ag,i − ah,i| ≤ τi − τh then

Output (ag,i, τi) to analyst
else
f ← f + 1
γf ← max

[0,τi)
γ s.t. 2e−2(τi−γ)2nh ≤ βi //max.

discretization parameter with validity
if γf > 0 then
Output

(
bah,icγf , τi

)
to analyst, where bycγ

denotes y discretized to multiples of γ
else
Output ⊥ to analyst
break //Terminate for loop

Depending on how long one expects/requires GnC to
run, the input confidence parameter β can guide the
minimum value of the holdout size nh that will be re-
quired for GnC to be able to get a holdout width τh
smaller than the desired confidence widths τi,∀i ≥ 1.

Note that this can be evaluated before starting GnC.
Apart from that, we believe what is a good split will
largely depend on the Guess mechanism. Hence, in
general the split parameter should be treated as a hy-
perparameter for our GnC method. We provide pseu-
docode for GnC in Algorithm 1, and a block schematic
of how a query is answered by GnC in Figure 4.

We provide coverage guarantees for GnC without any
restrictions on the guess mechanism. To get the guar-
antee, we first show that for query φi, if function
HoldoutTol returns a (1 − βi)-confidence interval τh
for holdout answer ah,i, and GnC’s output is the guess
(ag,i, τi), then τi is a (1 − βi)-confidence interval for
ag,i. We can get a simple definition for HoldoutTol
(formally stated in Appendix C.3.1), but we provide
a slightly sophisticated variant below that uses the
guess and holdout answers to get better tolerances,
especially under low-variance queries. We defer the
proof of Lemma 3.1 to Appendix C.3.2.
Lemma 3.1. If the function HoldoutTol in GnC (Al-
gorithm 1) is defined as

HoldoutTol(β′, ag, τ, ah)

=



arg min
τ ′∈(0,τ)


(

1+µ(e`−1)
e`(µ+τ′)

)n
≤ β

2 ,

where ` solves
µe`

1+µ(e`+1) = µ+ τ ′

 if ag > ah ,

arg min
τ ′∈(0,τ)


(

1+µ′(e`−1)
e`(µ′+τ′)

)n
≤ β

2 ,

where ` solves
µ′e`

1+µ′(e`+1) = µ′ + τ ′

 o.w.

where µ = ag − τ and µ′ = 1 − ag − τ , then for
each query φi s.t. GnC’s output is (ag,i, τi), we have
Pr (|ag,i − φi(D)| > τi) ≤ βi.

Next, if failure f occurs within GnC for query φi, by
applying a Chernoff bound we get that γf is the max-
imum possible discretization parameter s.t. τi is a
(1− βi)-confidence interval for the discretized holdout
answer bah,icγf . Finally, we get a simultaneous cover-
age guarantee for GnC by a union bound over the error
probabilities of the validity over all possible transcripts
between GnC and any analyst A with adaptive queries
{φ1, . . . , φk}. The guarantee is stated below, with its
proof deferred to Appendix C.3.1.
Theorem 3.2. The Guess and Check mechanism (Al-
gorithm 1), with inputs dataset X ∼ Dn, confidence
parameter β, and mechanismMg that, using inputs of
size ng < n, provides responses (“guesses”) of the form
(ag,i, τi) for query φi, has simultaneous coverage 1− β.

3.1 Experimental evaluation

Now, we provide details of our empirical evaluation of
the Guess and Check framework. In our experiments,
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Figure 4: A schematic of how query φ is answered via our Guess and Check (GnC) framework. Dataset Xg is the
guess set randomly partitioned by GnC. The dotted box represents computations that are previleged, and are not
accessible to the analyst.

we use two mechanisms, namely the Gaussian mecha-
nism and Thresholdout, for providing guesses in GnC.
For brevity, we refer to the overall mechanism as GnC
Gauss when the Gaussian is used to provide guesses,
and GnC Thresh when Thresholdout is used.

Strategy for performance evaluation: Some mech-
anisms evaluated in our experiments provide worst-
case bounds, whereas the performance of others is
instance-dependent and relies on the amount of adap-
tivity present in the querying strategy. To highlight
the advantages of the latter, we design a query strategy
called the quadratic-adaptive query strategy. Briefly,
it contains two types of queries: random non-adaptive
queries in which each sample’s contribution is gener-
ated i.i.d. from a Bernoulli distribution, and adap-
tive queries which are linear combinations of previous
queries. The adaptive queries become more sparsely dis-
tributed with time; “hard” adaptive queries φi, i > 1,
are asked when i is a perfect square. They are com-
puted in a similar manner as in the strategy used in
Figure 3. We provide pseudocode for the strategy in
Algorithm 5.

Experimental Setup: We run the quadratic-
adaptive strategy for up to 40, 000 queries. We tune
the hyperparameters of each mechanism to optimize
for this query strategy. We fix a confidence parameter
β and set a target upper bound τ on the maximum
allowable error we can tolerate, given our confidence
bound. We evaluate each mechanism by the number
of queries it can empirically answer with a confidence
width of τ for our query strategy while providing a

simultaneous coverage of 1−β: i.e. the largest number
of queries it can answer while providing (τ, β)-accuracy.
We plot the average and standard deviation of the
number of queries k answered before it exceeds its
target error bound in 20 independent runs over the
sampled data and the mechanism’s randomness. When
we plot the actual realized error for any mechanism, we
denote it by dotted lines, whereas the provably valid
error bounds resulting from the confidence intervals
produced by GnC are denoted by solid lines. Note that
the empirical error denoted by dotted lines is not actu-
ally possible to know without access to the distribution,
and is plotted just to visualize the tightness of the prov-
able confidence intervals. We compare to two simple
baselines: sample splitting, and answer discretization:
the better of these two is plotted as the thick solid
line. For comparison, the best worst-case bounds for
the Gaussian mechanism (Theorem 2.1) are shown as
dashed lines. Note that we improve by roughly two
orders of magnitude compared to the tightest bounds
for the Gaussian. We improve over the baseline at
dataset sizes n ≥ 2, 000.

Boost in performance for low-variance queries:
Since all the queries we construct take binary values
on a sample x ∈ X , the variance of query φi is given by
var(φi) = φi(D)(1−φi(D)), as φi(D) = Pr (φi(x) = 1).
Now, var(φi) is maximized when φi(D) = 0.5. Hence,
informally, we denote query φi as low-variance if either
φi(D) � 0.5, or φi(D) � 0.5. We want to be able
to adaptively provide tighter confidence intervals for
low-variance queries (as, for e.g., the worst-case bounds
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of Feldman and Steinke [2017a,b] are able to). For in-
stance, in Figure 5, we show that in the presence of low-
variance queries, using Lemma 3.1 forHoldoutTol (plot
labelled “GnC Check:MGF”) results in a significantly
better performance for GnC Gauss as compared to
using Lemma C.9 (plot labelled “GnC Check:Chern”).
We fix τ, β = 0.05, and set φi(D) = 0.9 for i ≥ 1. We
can see that as the dataset size grows, using Lemma 3.1
provides an improvement of almost 2 orders of magni-
tude in terms of the number of queries k answered. This
is due to Lemma 3.1 providing tighter holdout toler-
ances τh for low-variance queries (with guesses close to
0 or 1), compared to those obtained via Lemma C.9 (ag-
nostic to the query variance). Thus, we use Lemma 3.1
for HoldoutTol in all experiments with GnC below.
The worst-case bounds for the Gaussian don’t promise
a coverage of 1 − β even for k = 1 in the considered
parameter ranges. This is representative of a general
phenomenon: switching to GnC-based bounds instead
of worst-case bounds is often the difference between
obtaining useful vs. vacuous guarantees.

Figure 5: Gain in performance for GnC Gauss by using
Lemma 3.1 for HoldoutTol (“GnC Check:MGF”), as
compared to using Lemma C.9 (“GnC Check:Chern”).

Performance at high confidence levels: The
bounds we prove for the Gaussian mechanism, which
are the best known worst-case bounds for the con-
sidered sample size regime, have a substantially sub-
optimal dependence on the coverage parameter β :√

1/β. On the other hand, sample splitting (and
the bounds from Dwork et al. [2015d], Bassily et al.
[2016] which are asymptotically optimal but vacuous at
small sample sizes) have a much better dependence on
β : ln (1/2β). Since the coverage bounds of GnC are
strategy-dependent, the dependence of τ on β is not
clear a priori. In Figure 6, we show the performance of
GnC Gauss (labelled “GnC”) when β ∈ {0.05, 0.005}.
We see that reducing β by a factor of 10 has a neg-
ligible effect on GnC’s performance. Note that this

is the case even though the guesses are provided by
the Gaussian, for which we do not have non-vacuous
bounds with a mild dependence on β in the considered
parameter range (see the worst-case bounds, plotted
as “Bnd”) — even though we might conjecture that
such bounds exist. This gives an illustration of how
GnC can correct deficiencies in our worst-case theory:
conjectured improvements to the theory can be made
rigorous with GnC’s certified confidence intervals.

Figure 6: Performance of GnC Gauss (“GnC”), and the
best Gaussian bounds (“Bnd”), for β ∈ {0.05, 0.005}.

GnC with different guess mechanisms: GnC is
designed to be modular, enabling it to take advantage of
arbitrarily complex mechanisms to make guesses. Here,
we compare the performance of two such mechanisms
for making guesses, namely the Gaussian mechanism,
and Thresholdout. In Figure 7, we first plot the number
of queries answered by the Gaussian (“Gauss Emp”)
and Thresholdout (“Thresh Emp”) mechanisms, respec-
tively, until the maximum empirical error of the query
answers exceeds τ = 0.1. It is evident that Thresh-
oldout, which uses an internal holdout set to answer
queries that likely overfit to its training set, provides
better performance than the Gaussian mechanism. In
fact, we see that for n > 5000, while Thresholdout is
always able to answer 40, 000 queries (the maximum
number of queries we tried in our experiments), the
Gaussian mechanism isn’t able to do so even for the
largest dataset size we consider. Note that the “em-
pirical” plots are generally un-knowable in practice,
since we do not have access to the underlying distri-
butions. But they serve as upper bounds for the best
performance a mechanism can provide.

Next, we fix β = 0.05, and plot the performance of
GnC Gauss and GnC Thresh. We see that even though
GnC Thresh has noticeably higher variance, it provides
performance that is close to two orders of magnitude
larger than GnC Gauss when n ≥ 8000. Moreover, for
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Figure 7: Performance of GnC with Gaussian (“GnC
Gauss”), and Thresholdout (“GnC Thresh”) mecha-
nisms, together with their empirical error.

n ≥ 8000, it is interesting to see GnC Thresh guaran-
tees (τ, β)-accuracy for our strategy while consistently
beating even the empirical performance of the Gaussian.
We note that the best bounds for both the Gaussian
and Thresholdout mechanisms alone (not used as part
of GnC) do not provide any non-trivial guarantees in
the considered parameter ranges.

Responsive widths that track the empirical er-
ror: The GnC framework is designed to certify guesses
which represent both a point estimate and a desired
confidence interval width for each query. Rather than
having fixed confidence interval widths, this framework
also provides the flexibility to incorporate guess mecha-
nisms that provide increased interval widths as failures
accumulate within GnC. This allows GnC to be able
to re-use the holdout set in perpetuity, and answer
an infinite number of queries (albeit with confidence
widths that might grow to be vacuous).

In Figure 8, we fix n = 30000, β = 0.05, τ1 = 0.06,
and plot the performance of GnC Gauss such that
the guessed confidence width τi+1 = min (1.4τi, 0.17) if
the “check” for query φi results in a failure, otherwise
τi+1 = τi. For comparison, we also plot the actual
maximum empirical error encountered by the answers
provided by GnC (“GnC Gauss Emp”). It corresponds
to the maximum empirical error of the answers of the
Gaussian mechanism that is used as a guess mechanism
within GnC, unless the check for a query results in a
failure (which occurs 4 times in 40000 queries), in which
case the error corresponds to the discretized answer
on the holdout. We see that the statistically valid
accuracy guaranteed by GnC is “responsive” to the
empirical error of the realized answers produced by the
GnC, and is almost always within a factor of 2 of the
actual error.

Figure 8: The accuracy of GnC with Gaussian guesses
provides “responsive” confidence interval widths that
closely track the empirical error incurred by the guesses
of the Gaussian mechanism (“GnC Gauss Emp”).

Discussion: The runtime of our GnC system is domi-
nated by the runtime of the mechanism providing the
guesses. For each guess, the GnC system need only
compute the empirical answer of the query on the hold-
out set, and a width (for example, from Lemma 3.1)
that comes from a simple one-dimensional optimiza-
tion. Thus, GnC with any particular Guess mechanism
will have an execution time comparable to that of the
Guess mechanism by itself. It is also important to note
that GnC can be combined with any guess-generating
mechanism, and it will inherit the worst-case general-
ization behavior of that mechanism. However, the GnC
will typically provide much tighter confidence bounds
(since the worst-case bounds are typically loose).

4 Conclusion

In this work, we focus on algorithms that provide ex-
plicit confidence intervals with sound coverage prob-
abilities for adaptively posed statistical queries. We
start by deriving tighter worst-case bounds for several
mechanisms, and show that our improved bounds are
within small constant factors of optimal for certain
mechanisms. Our main contribution is the Guess and
Check framework, that allows an analyst to use any
method for “guessing” point estimates and confidence
interval widths for their adaptive queries, and then
rigorously validate those guesses on an additional held-
out dataset. Our empirical evaluation demonstrates
that GnC can improve on worst-case bounds by orders
of magnitude, and that it improves on the naive base-
line even for modest sample sizes. We also provide a
Python library (Rogers et al. [2019]) implementing our
GnC method.
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A Omitted Definitions

Here, we present the definitions that were omitted from
the main body due to space constraints.

A.1 Confidence Interval Preliminaries

In our implementation, we are comparing the true av-
erage φ(D) to the answer a, which will be the true
answer on the sample with additional noise to ensure
each query is stably answered. We then use the fol-
lowing string of inequalities to find the width τ of the
confidence interval.

Pr [|φ(D)− a| ≥ τ ] ≤ Pr [|φ(D)− φ(X)|+ |φ(X)− a| ≥ τ ]
≤ Pr

[
|φ(D)− φ(X)| ≥ τ − τ ′

]︸ ︷︷ ︸
Population Accuracy

+ Pr
[
|φ(X)− a| ≥ τ ′

]︸ ︷︷ ︸
Sample Accuracy

for τ ′ ≥ 0

(1)

We will then use this connection to get a bound in
terms of the accuracy on the sample and the error in
the empirical average to the true mean. Many of the
results in this line of work use a transfer theorem which
states that if a query is selected via a private method,
then the query evaluated on the sample is close to the
true population answer, thus providing a bound on
population accuracy. However, we also need to control
the sample accuracy which is affected by the amount of
noise that is added to ensure stability. We then seek a
balance between the two terms, where too much noise
will give terrible sample accuracy but great accuracy
on the population – due to the noise making the choice
of query essentially independent of the data – and too
little noise makes for great sample accuracy but bad
accuracy to the population. We will consider Gaussian
noise, and use the composition theorems to determine
the scale of noise to add to achieve a target accuracy
after k adaptively selected statistical queries.

Given the size of our dataset n, number of adap-
tively chosen statistical queries k, and confidence level
1− β, we want to find what confidence width τ ensures
M = (M1, · · · ,Mk) is (τ, β)-accurate with respect to
the population when each algorithm Mi adds either
Laplace or Gaussian noise to the answers computed on
the sample with some yet to be determined variance.
To bound the sample accuracy, we can use the follow-
ing theorem that gives the accuracy guarantees of the
Gaussian mechanism.

Theorem A.1. If {Zi : i ∈ [k]} i.i.d.∼ N(0, σ2) then for
β ∈ (0, 1] we have:

Pr
[
|Zi| ≥ σ

√
2 ln(2/β)

]
≤ β

=⇒ Pr
[
∃i ∈ [k] s.t. |Zi| ≥ σ

√
2 ln(2k/β)

]
≤ β.
(2)

https://github.com/omthkkr/empirical_adaptive_data_analysis
https://github.com/omthkkr/empirical_adaptive_data_analysis
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A.2 Stability Measures

It turns out that privacy preserving algorithms give
strong stability guarantees which allows for the rich
theory of differential privacy to extend to adaptive data
analysis [Dwork et al., 2015d,a, Bassily et al., 2016,
Rogers et al., 2016]. In order to define these privacy
notions, we define two datasets X = (x1, · · · , xn), X ′ =
(x′1, · · · , x′n) ∈ Xn to be neighboring if they differ in at
most one entry, i.e. there is some i ∈ [n] where xi 6= x′i,
but xj = x′j for all j 6= i. We first define differential
privacy.
Definition A.2 (Differential Privacy [Dwork et al.,
2006b,a]). A randomized algorithm (or mechanism)
M : Xn → Y is (ε, δ)-differentially private (DP) if for
all neighboring datasets X and X ′ and each outcome
S ⊆ Y , we have Pr [M(X) ∈ S] ≤ eεPr [M(X ′) ∈ S] +
δ. If δ = 0, we simply say M is ε-DP or pure DP.
Otherwise for δ > 0, we say approximate DP.

We then give a more recent notion of privacy, called
concentrated differential privacy (CDP), which can be
thought of as being “in between" pure and approximate
DP. In order to define CDP, we define the privacy
loss random variable which quantifies how much the
output distributions of an algorithm on two neighboring
datasets can differ.
Definition A.3 (Privacy Loss). Let M : Xn → Y
be a randomized algorithm. For neighboring datasets
X,X ′ ∈ Xn, let Z(y) = ln

(
Pr[M(X)=y]
Pr[M(X′)=y]

)
. We then de-

fine the privacy loss variable PrivLoss (M(X)||M(X ′))
to have the same distribution as Z(M(X)).

Note that if we can bound the privacy loss random vari-
able with certainty over all neighboring datasets, then
the algorithm is pure DP. Otherwise, if we can bound
the privacy loss with high probability then it is approx-
imate DP (see Kasiviswanathan and Smith [2014] for
a more detailed discussion on this connection).

We can now define zero concentrated differential privacy
(zCDP), given by Bun and Steinke [2016a] (Note that
Dwork and Rothblum [2016] initially gave a definition
of CDP which Bun and Steinke [2016a] then modified).
Definition A.4 (zCDP). An algorithmM : Xn → Y
is ρ-zero concentrated differentially private (zCDP), if
for all neighboring datasets X,X ′ ∈ Xn and all λ > 0
we have

E [exp (λ (PrivLoss (M(X)||M(X ′))− ρ))] ≤ eλ
2ρ.

We then give the Laplace and Gaussian mechanism for
statistical queries.
Theorem A.5. Let φ : X → [0, 1] be a statistical query
and X ∈ Xn. The Laplace mechanismMLap : Xn → R

is the followingMLap(X) = 1
n

∑n
i=1 φ(xi) + Lap

( 1
εn

)
,

which is ε-DP. Further, the Gaussian mechanism
MGauss : Xn → R is the following MGauss(X) =
1
n

∑n
i=1 φ(xi) +N

(
0, 1

2ρn2

)
, which is ρ-zCDP.

We now give the advanced composition theorem for
k-fold adaptive composition.
Theorem A.6 (Dwork et al. [2010],Kairouz et al.
[2017]). The class of ε′-DP algorithms is (ε, δ)-DP un-
der k-fold adaptive composition where δ > 0 and

ε =
(
eε
′ − 1

eε′ + 1

)
ε′k + ε′

√
2k ln(1/δ) (3)

We will also use the following results from zCDP.
Theorem A.7 (Bun and Steinke [2016a]). The class
of ρ-zCDP algorithms is kρ-zCDP under k-fold adap-
tive composition. Further if M is ε-DP then M
is ε2/2-zCDP and if M is ρ-zCDP then M is (ρ +
2
√
ρ ln(√πρ/δ), δ)-DP for any δ > 0.

Another notion of stability that we will use is mutual
information (in nats) between two random variables:
the input X and outputM(X).
Definition A.8 (Mutual Information). Consider
two random variables X and Y and let Z(x, y) =
ln
(

Pr[(X,Y )=(x,y)]
Pr[X=x]Pr[Y=y]

)
. We then denote the mutual in-

formation as I (X;Y ) = E [Z(X,Y )], where the expec-
tation is taken over the joint distribution of (X,Y ).

A.3 Monitor Argument

For the population accuracy term in (1), we will use the
monitor argument from Bassily et al. [2016]. Roughly,
this analysis allows us to obtain a bound on the popu-
lation accuracy over k rounds of interaction between
adversary A and algorithmM by only considering the
difference |φ(X)− φ(D)| for the two stage interaction
where φ is chosen by A based on outcomeM(X). We
present the monitor WD[M,A] in Algorithm 2.

Algorithm 2 Monitor WD[M,A](X)
Require: X ∈ Xn
We simulate M(X) and A interacting. We write
φ1, · · · , φk ∈ QSQ as the queries chosen by A and
write a1, · · · , ak ∈ R as the corresponding answers
ofM.
Let j∗ = argmaxj∈[k] |φj(D)− aj | .

Ensure: φj∗

Since our stability definitions are closed under post-
processing, we can substitute the monitor WD[M,A]
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as our post-processing function f in the above theorem.
We then get the following result.
Corollary A.9. LetM = (M1, · · · ,Mk), where each
Mi may be adaptively chosen, satisfy any stability con-
dition that is closed under post-processing. For each
i ∈ [k], let φi be the statistical query chosen by adver-
sary A based on answers aj =Mj(X),∀j ∈ [i−1], and
let φ be any function of (a1, · · · , ak). Then, we have
for τ ′ ≥ 0

Pr
M,

X∼Dn

[
max
i∈[k]
|φi(D)− ai| ≥ τ

]
≤ Pr

M,
X∼Dn

[
max
i∈[k]
|φi(X)− ai| ≥ τ ′

]
+ Pr

X∼Dn,
φ←M(X)

[
|φ(D)− φ(X)| ≥ τ − τ ′

]

Proof. From the monitor in Algorithm 2 and the fact
thatM is closed under post-processing, we have

Pr
M,

X∼Dn

[
max
i∈[k]
|φi(D)− ai| ≥ τ

]
= Pr

X∼Dn,
φj∗←WD[M,A](X)

[|φj∗(D)− aj∗ | ≥ τ ]

≤ Pr
X∼Dn,

φj∗←WD[M,A](X)

[|φj∗(D)− φj∗(X)|| ≥ τ − τ ′]

+ Pr
X∼Dn,

φj∗←WD[M,A](X)

[|φj∗(X)− aj∗ || ≥ τ ′]

≤ Pr
X∼Dn,
φ←M(X)

[|φ(D)− φ(X)| ≥ τ − τ ′]

+ Pr
M,

X∼Dn

[
max
i∈[k]
|φi(X)− ai| ≥ τ ′

]

We can then use the above corollary to obtain an ac-
curacy guarantee by union bounding over the sample
accuracy for all k rounds of interaction and then bound-
ing the population error for a single adaptively chosen
statistical query.

B Omitted Confidence Interval
Bounds

Here we present the bounds derived via prior work,
provide a comparison of our bounds for the Gaussian
mechanism (Theorem 2.1) with prior work.

B.1 Confidence Bounds from Dwork et al.
[2015a]

We start by deriving confidence bounds using results
from Dwork et al. [2015a], which uses the following
transfer theorem (see Theorem 10 in Dwork et al.
[2015a]).
Theorem B.1. If M is (ε, δ)-DP where φ ←
M(X) and τ ≥

√
48
n ln(4/β), ε ≤ τ/4 and δ =

exp
(
−4 ln(8/β)

τ

)
, then Pr [|φ(D)− φ(X)| ≥ τ ] ≤ β.

We pair this together with the accuracy from either the
Gaussian mechanism or the Laplace mechanism along
with Corollary A.9 to get the following result
Theorem B.2. Given confidence level 1−β and using
the Laplace or Gaussian mechanism for each algorithm
Mi, then (M1, · · · ,Mk) is (τ (1), β)-accurate, where

• Laplace Mechanism: We define τ (1) to be the
solution to the following program

min τ

s.t. τ ≥

√
48
n

ln
(

8
β

)
+ τ ′(

τ − τ ′ − 4ε′k ·
(
eε
′
− 1

eε′ + 1

))2

·
(
τ − τ ′

)
≥ 256ε′2k ln 16

β

for ε′ > 0 and τ ′ = ln (2k/β)
nε′

• Gaussian Mechanism: We define τ (1) to be the
solution to the following program

min τ

s.t. τ ≥

√
48
n

ln
(

8
β

)
+ τ ′((

τ − τ ′ − 4ρk
)2 − 64ρk ln

√
πρk
)
·
(
τ − τ ′

)
≥ 64ρk ln 16

β

for ρ > 0 and τ ′ = 1
2n

√
1
ρ

ln(4k/β)

To bound the sample accuracy, we will use the following
lemma that gives the accuracy guarantees of Laplace
mechanism.
Lemma B.3. If {Yi : i ∈ [k]} i.i.d.∼ Lap(b), then for
β ∈ (0, 1] we have:

Pr [|Yi| ≥ ln(1/β)b] ≤ β
=⇒ Pr [∃i ∈ [k] s.t. |Yi| ≥ ln(k/β)b] ≤ β. (4)
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Proof of Theorem B.2. We will focus on the Laplace
mechanism part first, so that we add Lap

( 1
nε′

)
noise

to each answer. After k adaptively selected queries,
the entire sequence of noisy answers is (ε, δ)-DP where

ε = kε′ · e
ε′ − 1
eε′ + 1 + ε′ ·

√
2k ln(1/δ) (5)

Now, we want to bound the two terms in (1) by β
2 each.

We can bound sample accuracy as:

τ ′ = 1
nε′

ln
(

2k
β

)
which follows from Lemma B.3, and setting the error
width to τ ′ and the probability bound to β

2 .

For the population accuracy, we apply Theorem B.1 to
take a union bound over all selected statistical queries,
and set the error width to τ − τ ′ and the probability
bound to β

2 to get:

δ = exp
(
−8 ln(16/β)
τ − τ ′

)
,

τ − τ ′ ≥
√

48
n

ln 8
β

and

τ − τ ′ ≥ 4ε (6)

We then use (5) and write ε in terms of δ to get:

ε = ε′k · e
ε′ − 1
eε′ + 1 + 4ε′ ·

√
k ln(16/β)
τ − τ ′

.

Substituting the value of ε in Equation (6), we get:

τ − τ ′ ≥ 4

ε′k ·(eε′ − 1
eε′ + 1

)
+ 4ε′ ·

√
k ln 16

β

τ − τ ′


By rearranging terms, we get(
τ − τ ′ − 4ε′k ·

(
eε
′ − 1

eε′ + 1

))2

·(τ − τ ′) ≥ 256ε′2k ln 16
β

We are then left to pick ε′ > 0 to obtain the smallest
value of τ .

When can follow a similar argument when we add
Gaussian noise with variance 1

2n2ρ . The only modifica-
tion we make is using Theorem A.7 to get a composed
DP algorithm with parameters in terms of ρ, and the
accuracy guarantee in Theorem A.1.

B.2 Confidence Bounds from Bassily et al.
[2016]

We now go through the argument of Bassily et al.
[2016] to improve the constants as much as we can

via their analysis to get a decent confidence bound on
k adaptively chosen statistical queries. This requires
presenting their monitoring, which is similar to the
monitor presented in Algorithm 2 but takes as input
several independent datasets. We first present the
result.
Theorem B.4. Given confidence level 1−β and using
the Laplace or Gaussian mechanism for each algorithm
Mi, then (M1, · · · ,Mk) is (τ (2), β)-accurate.

• Laplace Mechanism: We define τ (2) to be the
following quantity:

1

1− (1− β)
⌊

1
β

⌋ inf
ε′>0,
δ∈(0,1)

{
eψ − 1 + 6δ

⌊
1
β

⌋
+

ln k
2δ

ε′n

}
,

where ψ =
(
eε
′
− 1

eε′ + 1

)
· ε′k + ε′

√
2k ln 1

δ

• Gaussian Mechanism: We define τ (2) to be the
following quantity:

1

1− (1− β)
⌊

1
β

⌋ inf
ρ>0,
δ∈(0,1)

eξ − 1 + 6δ
⌊

1
β

⌋
+

√
ln k

δ

n2ρ

 ,

where ξ = kρ+ 2

√
kρ ln

(√
πρ

δ

)

In order to prove this result, we begin with a technical
lemma which considers an algorithm W that takes as
input a collection of s samples and outputs both an
index in [s] and a statistical query, where we denote
QSQ as the set of all statistical queries φ : X → [0, 1]
and their negation.
Lemma B.5 ([Bassily et al., 2016]). Let W : (Xn)s →
QSQ × [s] be (ε, δ)-DP. If ~X = (X(1), · · · , X(s)) ∼
(Dn)s then∣∣∣∣∣ E

~X,(φ,t)=W( ~X)

[
φ(D)− φ(X(t))

]∣∣∣∣∣ ≤ eε − 1 + sδ

We then define what we will call the extended monitor
in Algorithm 3.

We then present a series of lemmas that leads to an
accuracy bound from Bassily et al. [2016].
Lemma B.6 ([Bassily et al., 2016]). For each ε, δ ≥ 0,
ifM is (ε, δ)-DP for k adaptively chosen queries from
QSQ, then for every data distribution D and analyst
A, the monitor WD[M,A] is (ε, δ)-DP.
Lemma B.7 ([Bassily et al., 2016]). IfM fails to be
(τ, β)-accurate, then φ∗(D) − a∗ ≥ 0, where a∗ is the
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Algorithm 3 Extended Monitor WD[M,A]( ~X)

Require: ~X = (X(1), · · · , X(s)) ∈ (Xn)s
for t ∈ [s] do

We simulateM(X(t)) and A interacting. We write
φt,1, · · · , φt,k ∈ QSQ as the queries chosen by A
and write at,1, · · · , at,k ∈ R as the corresponding
answers ofM.

Let (j∗, t∗) = argmaxj∈[k],t∈[s] |φt,j(D)− at,j | .
if at∗,j∗ − φt∗,j∗(D) ≥ 0 then φ∗ ← φt∗,j∗

else φ∗ ← −φt∗,j∗
Ensure: (φ∗, t∗)

answer to φ∗ during the simulation (A can determine
a∗ from output (φ∗, t∗)) and

Pr
~X∼(Dn)s,

(φ∗,t∗)=WD[M,A](~XXX)

[|φ∗(D)− a∗| > τ ] > 1− (1− β)s.

The following result is not stated exactly the same
as in Bassily et al. [2016], but it follows the same
analysis. We just do not simplify the expressions in
the inequalities.
Lemma B.8. IfM is (τ ′, β′)-accurate on the sample
but not (τ, β)-accurate for the population, then∣∣∣∣∣∣∣∣ E

~X∼(Dn)s,
(φ∗,t)=WD[M,A]( ~X)

[
φ∗(D)− φ∗

(
X(t)

)]∣∣∣∣∣∣∣∣
≥ τ (1− (1− β)s)− (τ ′ + 2sβ′) .

We now put everything together to get our result.

Proof of Theorem B.4. We ultimately want a contra-
diction between the result given in Lemma B.5 and
Lemma B.8. Thus, we want to find the parameter
values that minimizes τ but satisfies the following in-
equality

τ (1− (1− β)s)− (τ ′ + 2sβ′) > eε − 1 + sδ. (7)

We first analyze the case when we add noise Lap
( 1
nε′

)
to each query answer on the sample to preserve ε′-
DP of each query and then use advanced composition
Theorem A.6 to get a bound on ε.

ε =
(
eε
′ − 1

eε′ + 1

)
ε′k + ε′

√
2k ln(1/δ) = ψ.

Further, we obtain (τ ′, β′)-accuracy on the sample,
where for β′ > 0 we have τ ′ = ln(k/β′)

ε′n . We then plug

these values into (7) to get the following bound on τ

τ ≥
(

1
1− (1− β)s

) ln
(
k
β′

)
ε′n

+ 2sβ′ + eψ − 1 + sδ


We then choose some of the parameters to be the same
as in Bassily et al. [2016], like s = b1/βc and β′ = 2δ.
We then want to find the best parameters ε′, δ that
makes the right hand side as small as possible. Thus,
the best confidence width τ that we can get with this
approach is the following

1
1− (1− β)b

1
β c
· inf
ε′>0,
δ∈(0,1)

{
eψ − 1 + 6δ

⌊
1
β

⌋
+

ln k
2δ

ε′n

}

Using the same analysis but with Gaussian noise added
to each statistical query answer with variance 1

2ρn2 (so
thatM is ρk-zCDP), we get the following confidence
width τ ,

1
1− (1− β)b

1
β c

inf
ρ>0,
δ∈(0,1)

eξ − 1 + 6δ
⌊

1
β

⌋
+

√
ln k

δ

n2ρ



B.3 Confidence Bounds for Thresholdout
(Dwork et al. [2015a])

Theorem B.9. If the Thresholdout mechanism M
with noise scale σ, and threshold T is used for answer-
ing queries φi, i ∈ [k], with reported answers a1, · · · , ak
such that M uses the holdout set of size h to answer
at most B queries, then given confidence parameter β,
Thresholdout is (τ, β)-accurate, where

τ =

√√√√ 1
β
·

(
T 2 + ψ + ξ

4h +
√
ξ

h
· (T 2 + ψ)

)

for ψ = E
[
(max
i∈[k]

Wi + max
j∈[B]

Yj)2
]

+ 2T ·

E
[
max
i∈[k]

Wi + max
j∈[B]

Yj

]
, and ξ = min

λ∈[0,1)

(
2B
σ2h
−ln(1−λ)
λ

)
,

where Wi ∼ Lap(4σ), i ∈ [k] and Yj ∼ Lap(2σ), j ∈
[B].

Proof. Similar to the proof of Theorem 2.1, first we
derive bounds on the mean squared error (MSE) for
answers to statistical queries produced by Thresholdout.
We want to bound the maximum MSE over all of the
statistical queries, where the expectation is over the
noise added by the mechanism and the randomness of
the adversary.
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Theorem B.10. If the Thresholdout mechanism M
with noise scale σ, and threshold T is used for answer-
ing queries φi, i ∈ [k], with reported answers a1, · · · , ak
such that M uses the holdout set of size h to answer
at most B queries, then we have

E
X∼Dn,

φj∗∼WD[M,A](X)

[
(aj∗ − φj∗(D))2]

≤ T 2 + ψ + ξ

4h +
√
ξ

h
· (T 2 + ψ),

for ψ = E
[
(max
i∈[k]

Wi + max
j∈[B]

Yj)2
]

+ 2T ·

E
[
max
i∈[k]

Wi + max
j∈[B]

Yj

]
and ξ = min

λ∈[0,1)

(
2B
σ2h
−ln(1−λ)
λ

)
,

where Wi ∼ Lap(4σ), i ∈ [k] and Yj ∼ Lap(2σ), j ∈
[B].

Proof. Let us denote the holdout set inM by Xh and
the remaining set as Xt. Let O denote the distribution
WD[M,A](X), where X ∼ Dn. We have:

E
φj∗∼O

[
(aj∗ − φj∗(D))2]

= E
φj∗∼O

[
(aj∗ − φj∗(Xh) + φj∗(Xh)− φj∗(D))2]

= E
φj∗∼O

[
(aj∗ − φj∗(Xh))2]

+ E
φj∗∼O

[
(φj∗(Xh)− φj∗(D))2]

+
(

2
√

E
φj∗∼O

[(aj∗ − φj∗(Xh))2]

·
√

E
φj∗∼O

[(φj∗(Xh)− φj∗(D))2]
)

(8)

where the last inequality follows from the Cauchy-
Schwarz inequality.

Now, define a set Sh which contains the indices of the
queries answered via Xh. We know that for at most B
queries φj ∈ Sh, the output ofM was aj = φj (Xh)+Zj
where Zj ∼ Lap(σ), whereas it was ai = φi (Xt) for
at least k −B queries, i ∈ [k \ Sh]. Also, define Wi ∼
Lap(4σ), i ∈ [k] and Yj ∼ Lap(2σ), j ∈ Sh. Thus, for
any j∗ ∈ [k], we have:

aj∗ − φj∗(Xh)

≤ max
{

max
i∈[k\Sh]

|φi(Xh)− φi(Xt)|,max
j∈Sh

Zj

}

≤ max

 max
i∈[k\Sh],
j(i)∈Sh

T + Yj(i) +Wi,max
j∈Sh

Zj


≤ max

 max
i∈[k\Sh],
j∈Sh

T + Yj +Wi,max
j∈Sh

Zj


≤ T + max

i∈[k]
Wi + max

j∈[B]
Yj

Thus,

E
φj∗∼O

[
(aj∗ − φj∗(Xh))2]

≤ E
[
(T + max

i∈[k]
Wi + max

j∈[B]
Yj)2

]
= T 2 + E

[
(max
i∈[k]

Wi + max
j∈[B]

Yj)2
]

+ 2T · E
[
max
i∈[k]

Wi + max
j∈[B]

Yj

]
(9)

We bound the 2nd term in (8) as follows. For ev-
ery i ∈ Sh, there are two costs induced due to pri-
vacy: the Sparse Vector component, and the noise ad-
dition to φi(Xh). By the proof of Lemma 23 in Dwork
et al. [2015a], each individually provides a guarantee
of
( 1
σh , 0

)
-DP. Using Theorem A.7, this translates to

each providing a
( 1

2σ2h2

)
-zCDP guarantee. Since there

are at most B such instances of each, by Theorem A.7
we get thatM is

(
B

σ2h2

)
-zCDP. Thus, by Lemma C.6

we have
I (M(Xh);Xh) ≤ B

σ2h

Proceeding similar to the proof of Theorem C.8, we
use the sub-Gaussian parameter for statistical queries
in Lemma C.5 to obtain the following bound from
Theorem C.2:

E
φj∗∼O

[
(φj∗(Xh)− φj∗(D))2

]
= E
X∼Dn,
M,A

[
max
i∈Sh

{
(φi(Xh)− φi(D))2}]

≤ ξ

4h (10)

Defining ψ = E
[
(max
i∈[k]

Wi + max
j∈[B]

Yj)2
]

+ 2T ·

E
[
max
i∈[k]

Wi + max
j∈[B]

Yj

]
, and combining Equations (8),
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(9), and (10), we get:

E
φj∗∼O

[
(aj∗ − φj∗(D))2] ≤ T 2 + ψ + ξ

4h +
√
ξ

h
· (T 2 + ψ)

We can use the MSE bound from Theorem B.10, and
Chebyshev’s inequality, to get the statement of the
theorem.

C Omitted Results, and Proofs

In this section, we provide the results and detailed
proofs that have been omitted from the main body of
the paper.

C.1 RMSE analysis for the single-adaptive
query strategy

Theorem C.1. The output by the single-adaptive
query strategy above results in the maximum possible
RMSE for an adaptively chosen statistical query when
each sample in the dataset is drawn uniformly at ran-
dom from {−1, 1}k+1, andM is the Naive Empirical
Estimator, i.e.,M provides the empirical correlation
of each of the first k features with the (k + 1)th feature.

Proof. Consider a dataset X ∈ Xn, where X is the
uniform distribution over {−1, 1}k+1. We will denote
the jth element of xi ∈ X by xi(j), for j ∈ [k + 1].
Now, ∀j ∈ [k], we have that:

E
X

[
1 + x(j) · x(k + 1)

2

]
= 1 + Pr (x(j) = x(k + 1))− Pr (x(j) 6= x(k + 1))

2
= aj

∴ Pr
X

(x(j) = x(k + 1)) = aj

and Pr
X

(x(j) 6= x(k + 1)) = 1− aj

Now,

ln

(
PrX

(
x(k + 1) = 1| ∧j∈[k] x(j) = xj

)
PrX

(
x(k + 1) = −1| ∧j∈[k] x(j) = xj

))

= ln

(
PrX

(
x(k + 1) = 1 ∧ (∧j∈[k]x(j) = xj)

)
PrX

(
x(k + 1) = −1 ∧ (∧j∈[k]x(j) = xj)

))

= ln

∏
j∈[k]

PrX (x(k + 1) = 1 ∧ x(j) = xj)
PrX (x(k + 1) = −1 ∧ x(j) = xj)


= ln

∏
j∈[k]

(
PrX (x(k + 1) = x(j))
PrX (x(k + 1) 6= x(j))

)xj
= ln

∏
j∈[k]

(
aj

1− aj

)xj
=
∑
j∈[k]

(
xj · ln

aj
1− aj

)

Thus,

φk+1(x) =
sign

(
ln
(

PrX(x(k+1)=1|∧j∈[k]x(j)=xj)
PrX(x(k+1)=−1|∧j∈[k]x(j)=xj)

))
+ 1

2 .

As a result, the adaptive query φk+1 in Algorithm 5
(setting input S = {k + 1}) corresponds to a naive
Bayes classifier of x(k + 1), and given that X is the
uniform distribution over {−1, 1}k+1, this is the best
possible classifier for x(k+1). This results answer ak+1
achieving the maximum possible deviation from the
answer on the population, which is 0.5 as X is uniformly
distributed over {−1, 1}k+1. Thus, ak+1 results in the
maximum possible RMSE.

C.2 Proof of Theorem 2.1

Rather than use the stated result in Russo and Zou
[2016], we use a modified “corrected” version and pro-
vide a proof for it here. The result stated here and the
one in Russo and Zou [2016] are incomparable.
Theorem C.2. Let Qσ be the class of queries φ :
Xn → R such that φ(X) − φ(Dn) is σ-subgaussian
where X ∼ Dn. If M : Xn → Qσ is a ran-
domized mapping from datasets to queries such that
I (M(X);X) ≤ B then

E
X∼Dn,
φ←M(X)

[
(φ(X)− φ(Dn)))2

]

≤ σ2 · min
λ∈[0,1)

(
2B − ln (1− λ)

λ

)
.
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In order to prove the theorem, we need the following
results.

Lemma C.3 (Russo and Zou [2015], Gray [1990]).
Given two probability measures P and Q defined on
a common measurable space and assuming that P is
absolutely continuous with respect to Q, then

DKL [P ||Q] = sup
X

{
E
P

[X]− logE
Q

[exp(X)]
}

Lemma C.4 (Russo and Zou [2015]). If X is a zero-
mean subgaussian random variable with parameters σ
then

E
[
exp

(
λX2

2σ2

)]
≤ 1√

1− λ
, ∀λ ∈ [0, 1)

Proof of Theorem C.2. Proceeding similar to the proof
of Proposition 3.1 in Russo and Zou [2015], we write
φφφ(X) = (φ(X) : φ ∈ Qσ). We have:

I (M(X);X)
≥ I (M(X);φφφ(X))

=
∑

aaa,φ∈Qσ

(
ln
(

Pr [(φφφ(X),M(X)) = (aaa, φ)]
Pr [φφφ(X) = aaa] Pr [M(X) = φ]

)

· Pr [(φφφ(X),M(X)) = (aaa, φ)]

)

=
∑

aaa,φ∈Qσ

(
ln
(

Pr [φφφ(X) = aaa|M(X) = φ]
Pr [φφφ(X) = aaa]

)

· Pr [M(X) = φ] Pr [φφφ(X) = aaa|M(X) = φ]

)

≥
∑

a,φ∈Qσ

(
ln
(

Pr [φ(X) = a|M(X) = φ]
Pr [φ(X) = a]

)

· Pr [M(X) = φ] Pr [φ(X) = a|M(X) = φ]

)
=
∑
φ∈Qσ

(
Pr [M(X) = φ]

·DKL [(φ(X)|M(X) = φ)||φ(X)]
)

(11)

where the first inequality follows from post processing
of mutual information, i.e. the data processing inequal-
ity. Consider the function fφ(x) = λ

2σ2 (x−φ(Dn))2 for

λ ∈ [0, 1). We have

DKL [(φ(X)|M(X) = φ)||φ(X)]
≥ E
X∼Dn,M

[fφ(φ(X))|M(X) = φ]

− ln E
X∼Dn,
φ∼M(X)

[exp (fφ(φ(X)))]

≥ λ

2σ2 E
X∼Dn,M

[
(φ(X)− φ(Dn))2 |M(X) = φ

]
− ln

(
1√

1− λ

)
where the first and second inequalities follows from
Lemmas C.3 and C.4, respectively.
Therefore, from eq. (11), we have

I (M(X);X)

≥ λ

2σ2 E
X∼Dn,
φ∼M(X)

[
(φ(X)− φ(Dn))2]− ln

(
1√

1− λ

)

Rearranging terms, we have

E
X∼Dn,
φ∼M(X)

[
(φ(X)− φ(D))2

]

≤ 2σ2

λ

(
I (M(X);X) + ln

(
1√

1− λ

))
= σ2 · 2I (M(X);X)− ln (1− λ)

λ

In order to apply this result, we need to know the
subgaussian parameter for statistical queries and the
mutual information for private algorithms.
Lemma C.5. For statistical queries φ and X ∼ Dn,
we have φ(X)− φ(Dn) is 1

2
√
n
-sub-gaussian.

We also use the following bound on the mutual infor-
mation for zCDP mechanisms:
Lemma C.6 (Bun and Steinke [2016a]). IfM : Xn →
Y is ρ-zCDP and X ∼ Dn, then I (M(X);X) ≤ ρn.

In order to prove Theorem C.8, we use the same monitor
from Algorithm 2 in which there is a single dataset as
input to the monitor and it outputs the query whose
answer had largest error with the true query answer.
We first need to show that the monitor has bounded
mutual information as long asM does, which follows
from mutual information being preserved under post-
processing.
Lemma C.7. If I (X;M(X)) ≤ B where X ∼ Dn,
then I (X;WD[M,A](X)) ≤ B.

Next, we derive bounds on the mean squared error
(MSE) for answers to statistical queries produced by
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the Gaussian mechanism. We want to bound the maxi-
mum MSE over all of the statistical queries, where the
expectation is over the noise added by the mechanism
and the randomness of the adversary.

E
X∼Dn,
A,M

[
max
i∈[k]

(φi(D)− ai)2
]

≤ 2 E
X∼Dn,
A,M

[
max
i∈[k]

{
(φi(D)− φi(X))2 + (φi(X)− ai)2}]

= 2 · E
[

max
i∈[k]

(φi(D)− φi(X))2
]

+ 2 · E
Zi∼N

(
0, 1

2n2ρ

) [max
i∈[k]

Z2
i

]
(12)

To bound E
[
maxi∈[k] (φi(D)− φi(X))2

]
, we obtain

the following using the monitor argument from Bassily
et al. [2016] along with results from Russo and Zou
[2016], Bun and Steinke [2016a].
Theorem C.8. For parameter ρ ≥ 0, the answers
provided by the Gaussian mechanism a1, · · · , ak against
an adaptively selected sequence of queries satisfy:

E
X∼Dn,
M,A

[
max
i∈[k]

(φi(D)− ai)2
]

≤ 1
2n · min

λ∈[0,1)

(
2ρkn− ln (1− λ)

λ

)
+ 2 · E

Zi∼N
(

0, 1
2n2ρ

) [max
i∈[k]

Z2
i

]

Proof. We follow the same analysis for proving Theo-
rem B.4 where we add Gaussian noise with variance

1
2ρn2 to each query answer so that the algorithm M
is ρ-zCDP, which (using Lemma C.6 and the post-
processing property of zCDP) makes the mutual in-
formation bound B = ρkn. We then use Lemma C.7
and the sub-Gaussian parameter for statistical queries
in Lemma C.5 to obtain the following bound from
Theorem C.2.

E
X∼Dn,

φ∗∼WD[M,A](X)

[
(φ∗(X)− φ∗(D)))2

]

= E
X∼Dn,M,A

[
max
i∈[k]

{
(φi(X)− φi(D))2}}]

≤ 1
4n · min

λ∈[0,1)

(
2ρkn− ln (1− λ)

λ

)
(13)

We then combine this result with (12) to get the state-
ment of the theorem.

Proof of Theorem 2.1. We want to bound the two
terms in (1) by β

2 each. We start by bounding the

sample accuracy via the following constraint:

τ ′ ≥ 1
2n

√
1
ρ

ln(4k/β)

which follows from Theorem A.1, and setting the error
width to τ ′ and the probability bound to β

2 .

Next, we can bound the population accuracy in (1)
using Equation (13) and Chebyshev’s inequality to
obtain the following high probability bound,

Pr
X∼Dn,
φ←M(X)

[|φ(X)− φ(D)| ≥ τ − τ ′]

≤ 1
4n(τ − τ ′)2 · min

λ∈[0,1)

(
2ρkn− ln (1− λ)

λ

)
which implies that for bounding the probability by β

2 ,
we get

τ − τ ′ ≥

√
1

2nβ · min
λ∈[0,1)

(
2ρkn− ln (1− λ)

λ

)

We then use the result of Corollary A.9 to obtain our
accuracy bound.

C.2.1 Comparison of Theorem 2.1 with Prior
Work

One can also get a high-probability bound on the sam-
ple accuracy of M(X) using Theorem 3 in Xu and
Raginsky [2017], resulting in

τ =

√
2
n

(
2ρkn
β

+ log
(

4
β

))
+ 1

2n

√
1
ρ

ln
(

4k
β

)
(14)

where i.i.d. Gaussian noise N
(

0, 1
2ρn2

)
has been added

to each query. The proof is similar to the proof of
Theorem 2.1. If the mutual information bound B =
ρkn ≥ 1, then the first term in the expression of the
confidence width in Theorem 2.1 is less than the first
term in eq. (14), thus making Theorem 2.1 result in a
tighter bound for any β ∈ (0, 1). For very small values
of B, there exist sufficiently small β for which the result
obtained via Xu and Raginsky [2017] is better.

C.3 Proofs from Section 3

C.3.1 Proof of Theorem 3.2

We start by proving the validity for query responses
output by GnC that correspond to the responses pro-
vided by Mg, i.e., each query φi s.t. the output of
GnC is (ag,i, τi).
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Lemma C.9. If the function HoldoutTol(β′, ag, ah) =√
ln 2/β′

2nh in GnC (Algorithm 1), then for each query
φi s.t. the output of GnC is (ag,i, τi), we have
Pr (|ag,i − φi(D)| > τi) ≤ βi.

Proof. Consider a query φi for which the output
of the GnC mechanism is (ag,i, τi), and let τh =
HoldoutTol(βi, ag,i, ah,i). Now, we have

Pr (|ag,i − φi(D)| > τi)
≤ Pr (|ag,i − ah,i|+ |ah,i − φi(D)| > τi)
= Pr (|ah,i − φi(D)| > τh)
≤ βi

where the equality follows since |ag,i − ah,i| ≤ τi −
τh, and the last inequality follows from applying the
Chernoff bound for statistical queries.

Lemma C.9 is agnostic to the guesses and holdout an-
swers while computing the holdout tolerance τh. How-
ever, GnC can provide a better tolerance τh in the
presence of low-variance queries. We state the guar-
antee in Lemma 3.1, and provide a proof for it in
Appendix C.3.2.

Next, we provide the accuracy for the query answers
output by GnC that correspond to discretized empirical
answers on the holdout. It is obtained by maximizing
the discretization parameter such that applying the
Chernoff bound on the discretized answer satisfies the
required validity guarantee.
Lemma C.10. If failure f occurs in GnC
(Algorithm 1) for query φi and the out-
put of GnC is

(
bah,icγf , τi

)
, since we have

γf = max
[0,τ ′)

γ s.t. 2e−2(τ ′−γ)2nh ≤ β′, we have

Pr (|ag,i − φi(D)| > τi) ≤ βi. Here, bycγ denotes y
discretized to multiples of γ

Proof of Theorem 3.2. Let an instance of the Guess
and Check mechanism M encounter f failures while
providing responses to k queries {φ1, . . . , φk}. We will
consider the interaction between an analyst A and the
Guess and Check mechanismM to form a tree T , where
the nodes in T correspond to queries, and each branch
of a node is a possible answer for the corresponding
query. We first note a property about the structure of
T :

Fact 1: For any query φi′ , if the check withinM re-
sults in failure f ′, then there are 1

γf′
possible responses

for φi′ . On the other hand, if the check doesn’t result
in a failure, then there is only 1 possible response for
φi′ , namely (ag,i′ , τi′).

Next, notice that each node in T can
be uniquely identified by the tuple t =
(i′, f ′, {j1, . . . , jf ′}, {γj1 , . . . , γjf′}), where i′ is
the depth of the node (also, the index of the next
query to be asked), f ′ is the number of failures within
M that have occurred in the path from the root to
node t, and for ` ∈ [f ′], the value j` denotes the query
index of the `th failure on this path, whereas γj` is the
corresponding discretization parameter that was used
to answer the query. We can now observe another
property about the structure of T :

Fact 2: For any i′ ∈ [k], f ′ ∈ [i′ − 1], there are(
i′−1
f ′

)∏
`∈[f ′]

(
1
γj`

)
nodes in T of type (i′, f ′, ; , ; ). This

follows since there are
(
i′−1
f ′

)
possible ways that f ′ fail-

ures can occur in i′− 1 queries, and from Fact 1 above,
there are 1

γj`
possible responses for a failure occurring

at query index j`, ` ∈ [f ′].
Now, we have

Pr (∃i ∈ [k] : |φi(D)− ai| > τi)

≤
∑

node t∈T

Pr (|φt(D)− at| > τt)

=

( ∑
i′∈[k]

∑
f ′∈[i′−1]

∑
{j1,...,jf′}

∑
{γj1 ,...,γjf′

}

Pr (|φi′(D)− ai′ | > τi′ |t)

)
=
∑
i′∈[k]

∑
f ′∈[i′−1]

∑
{j1,...,jf′}

∑
{γj1 ,...,γjf′

}

β · ci′−1 · cf ′
ν
i′,f ′,γ

j
f′
j1

= β

( ∑
i′∈[k]

∑
f ′∈[i′−1]

∑
{j1,...,jf′}

∑
{γj1 ,...,γjf′

}

ci′−1 · cf ′(
i′−1
f ′

)∏
`∈[f ′]

(
1
γj`

))

= β

∑
i′∈[k]

ci′−1 ·

 ∑
f ′∈[i′−1]

cf ′

 ≤ β ∑
i′∈[k]

ci′−1

≤ β

where the second equality follows from Lemma 3.1,
Lemma C.10, and substituting the values of βi in Al-
gorithm 1; the last equality follows from Fact 2 above;
and the last two inequalities follow since

∑
j≥0 cj ≤ 1.

Thus, we have simultaneous coverage 1 − β for the
Guess and Check mechanismM.

Lemma C.9 is agnostic to the guesses and holdout an-
swers while computing the holdout tolerance τh. How-
ever, GnC can provide a better tolerance τh in the
presence of low-variance queries. We provide a proof
for it below.
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C.3.2 Proof of Lemma 3.1

Lemma 3.1 uses the MGF of the binomial distribution
to approximate the probabilities of deviation of the
holdout’s empirical answer from the true population
mean (instead of, say, optimizing parameters in a large
deviation bound). This is exact when the query only
takes values in {0, 1}. To prove the lemma, we start
by first proving the dominance of the binomial MGF.
Lemma C.11. Let X1, X2, ..., Xn be i.i.d. random
variables in [0, 1], distributed according to D, and let
µ = E [Xi]. Let S =

∑n
i=1 Xi, and B ∼ B(n, µ) be a

binomial random variable. Then, we have:

Pr(S > t) ≤ min
λ>0

E
[
eλB

]
eλt

.

Proof. Consider some λ > 0. We have

E
[
eλS
]

=
(
E
[
eλX1

])n
≤
(
E
[
X1 · eλ + (1−X1) · e0])n

=
(

1 + E [X1] (eλ − 1)
)n

=
(
1 + µ(eλ − 1)

)n
= E

[
eλB

]
(15)

where the first equality follows since X1, X2, ..., Xn are
i.i.d., and the last equality represents the MGF of the
binomial distribution.

Now, we get:

Pr(S > t) = Pr
(
eλS > eλt

)
≤

E
[
eλS
]

eλt
≤

E
[
eλB

]
eλt

≤ min
λ′>0

E
[
eλ
′B
]

eλ′t

where the first inequality follows from the Chernoff
bound, and the second inequality follows from Equa-
tion (15).

Proof of Lemma 3.1. Consider a query φi for which
the output of the GnC mechanism is (ag,i, τi).
Let τh = HoldoutTol(βi, ag,i, ah,i). For proving
Pr (|ag,i − φi(D)| > τi) ≤ βi, it suffices to show that if
|ag,i − φ(D)| > τi, then

sup
D s.t.

φi(D)=ag,i−τi

Pr
Xh∼Dnh

(ah,i ≥ ag,i − τi + τh) ≤ βi
2

(16)

and sup
D s.t.

φi(D)=ag,i+τi

Pr
Xh∼Dnh

(ah,i ≤ ag,i + τi − τh) ≤ βi
2

(17)

When ag,i > ah,i, we only require inequality 16 to hold.
Let B ∼ B(n, µ) be a binomial random variable. We
have:

sup
D s.t.
φi(D)=µ

Pr
Xh∼Dnh

(ah,i ≥ µ+ τ ′)

≤ min
λ>0

E
[
eλB

]
eλn(µ+τ ′)

= min
λ>0

e{ln (E[eλB])−λn(µ+τ ′)}

=
E
[
e`B
]

e`n(µ+τ ′)

=
(
1 + µ(e` − 1)

)n
e`n(µ+τ ′) (18)

where ` = arg min
λ>0

e{ln (E[eλB])−λn(µ+τ ′)}, i.e.,
µe`

1+µ(e`+1) = µ + τ ′. Here, the first inequality follows
from Lemma C.11 by setting t = (µ + τ ′)n, and the
last equality follows from the MGF of the binomial
distribution. Thus, we get that inequality 16 holds for
µ = ag,i − τi.

Similarly, when ag,i ≤ ah,i, we only require inequal-
ity 17 to hold. Let µ′ = 1 − µ, and B′ ∼ B(n, µ′).
Therefore, we get

sup
D s.t.
φi(D)=µ

Pr
Xh∼Dnh

(ah,i ≤ µ− τ ′)

= sup
D s.t.

φi(D)=µ′

Pr
Xh∼Dnh

(ah,i ≥ µ′ + τ ′)

≤

(
1 + µ′(e`′ − 1)

)n
e`′n(µ′+τ ′)

where `′ = arg min
λ>0

e

{
ln
(
E
[
eλB
′])
−λn(µ′+τ ′)

}
, i.e.,

µ′e`
′

1+µ′(e`′+1) = µ′ + τ ′. Here, the inequality follows
from inequality 18. Thus, we get that inequality 17
holds for µ = ag,i + τi.
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D Omitted Pseudocodes

Algorithm 4 Thresholdout (Dwork et al. [2015a])
Require: train size t, threshold T , noise scale σ

Randomly partition dataset X into a training set Xt

containing t samples, and a holdout set Xh contain-
ing h = n− t samples
Initialize T̂ ← T + Lap(2σ)
for each query φ do
if |φ(Xh)− φ(Xt)| > T̂ + Lap(4σ) then
T̂ ← T + Lap(2σ)
Output φ(Xh) + Lap(σ)

else
Output φ(Xt)

Algorithm 5 A custom adaptive analyst strategy for
random data
Require: MechanismM with a hidden dataset X ∈
{−1, 1}n×(k+1), set S ⊆ [k + 1] denoting the indices
of adaptive queries2

Define j ← 1, and success← True
while j ≤ k and success = True do
if j ∈ S then

Define φj(x) =
sign

( ∑
i∈[j−1]\S

(
x(i)·ln ai

ai−1

))
+1

2 ,

where sign(y) =
{

1 if y ≥ 0
−1 otherwise

else
Define φj(x) = 1+x(j)·x(k+1)

2
Give φj toM, and receive aj ∈ [0, 1]∪⊥ fromM
if aj = ⊥ then
success = False

else
j ← j + 1

2For the single-adaptive query strategy used in the plots
in Figure 3, we set S = {k+ 1}. For the quadratic-adaptive
strategy used in the plots in Section 3, we set S = {i : 1 <
i ≤ k and ∃` ∈ N s.t. ` < i and `2 = i}.
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