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Abstract

We consider the least-squares approximation
of a matrix C in the set of doubly stochastic
matrices with the same sparsity pattern as C.
Our approach is based on applying the well-
known Alternating Direction Method of Mul-
tipliers (ADMM) to a reformulation of the
original problem. Our resulting algorithm
requires an initial Cholesky factorization of
a positive definite matrix that has the same
sparsity pattern as C + I followed by sim-
ple iterations whose complexity is linear in
the number of nonzeros in C, thus ensuring
excellent scalability and speed. We demon-
strate the advantages of our approach in a
series of experiments on problems with up to
82 million nonzeros; these include normaliz-
ing large scale matrices arising from the 3D
structure of the human genome, clustering
applications, and the SuiteSparse matrix li-
brary. Overall, our experiments illustrate the
outstanding scalability of our algorithm; ma-
trices with millions of nonzeros can be ap-
proximated in a few seconds on modest desk-
top computing hardware.

1 INTRODUCTION

Consider the following optimization problem

minimize 1
2‖X − C‖

2

subject to X nonnegative
Xi,j = 0 ∀ (i, j) with Ci,j = 0
X1 = 1, XT1 = 1,

(P)

which approximates the symmetric real, n× n matrix
C in the Frobenius norm by a doubly stochastic matrix
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X ∈ Rn×n, i.e., a matrix with nonnegative elements
whose columns and rows sum to one, that has the same
sparsity pattern as C. Problem P is a matrix nearness
problem, i.e., a problem of finding a matrix with cer-
tain properties that is close to some given matrix; see
Higham (1989) for a survey on matrix nearness prob-
lems.

Adjusting a matrix so that it becomes doubly stochas-
tic is relevant in many fields, e.g., for precondition-
ing linear systems (Knight, 2008), as a normalization
tool used in spectral clustering (Zass and Shashua,
2007), optimal transport (Cuturi, 2013), and image fil-
tering (Milanfar, 2013), or as a tool to estimate a dou-
bly stochastic matrix from incomplete or approximate
data used e.g., in longitudinal studies in life sciences
(Diggle et al., 2002), or to analyze the 3D structure of
the human genome (Rao et al., 2014)

A related and widely used approach is to search for a
diagonal matrix D such that DCD is doubly stochas-
tic. This is commonly referred to as the matrix bal-
ancing problem, or the Sinkhorn’s algorithm (Knight,
2008). Such a scaling matrix D exists and is unique
whenever C has total support. Perhaps surprisingly,
when C has only nonnegative elements, then the ma-
trix balancing problem can be considered as a matrix
nearness problem. This is because, DCD has been
shown to minimize the relative entropy measure (Idel,
2016, Observation 3.19) (Benamou et al., 2015), i.e., it
is the solution of the following convex problem

minimize
∑
i,j Xi,j logXi,j/Ci,j

subject to X doubly stochastic
Xi,j = 0 ∀ (i, j) with Ci,j = 0,

(1)

where we define 0 · log(0) = 0, 0 · log(0/0) = 0, and
1 · log(1/0) = ∞. Note, however, that the relative
entropy is not a proper distance metric since, it is not
symmetric, does not satisfy the triangular inequality
and can take the value ∞.

The matrix balancing problem can be solved by iter-
ative methods with remarkable scalability. Standard
and simple iterative methods exist that exhibit linear
per-iteration complexity w.r.t. the number of nonze-
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ros in C and linear convergence rate (Knight, 2008),
(Idel, 2016). More recent algorithms can exhibit a
super-linear convergence rate and increased robustness
in many practical situations (Knight and Ruiz, 2013).

The aim of the paper is to show that the direct mini-
mization of a least squares objective in doubly stochas-
tic approximation, which has a long history dating
back to the influential paper of (Deming and Stephan,
1940)1, can also be solved efficiently. This gives practi-
tioners a new solution to a very important problem of
doubly stochastic matrix approximation, which might
prove useful for cases where the relative entropy metric
is not suitable to their problem.

The approach we present is also flexible in the sense
that it can handle other interesting cases, for example,
where C is asymmetric or rectangular, ‖·‖ is a weighted
Frobenius norm, and X1 and XT1 are required to
sum to an arbitrary, given vector. We discuss these
generalizations in §3.2.

Related work Zass and Shashua (2007) consider
the problem P in the case when C is fully dense. They
suggest an alternating projections algorithm that has
linear per-iteration complexity. The approach of Zass
and Shashua (2007) resembles the results of §3.2, but
as we will see in the experimental section, it is not
guaranteed to converge to an optimizer.

The paper is organized as follows: In Section 2, we
introduce a series of reformulations to Problem 1, re-
sulting in a problem that is much easier to solve.In
Section 3, we suggest a solution method that reveals
a particular structure in the problem. Finally, in Sec-
tion 4, we present a series of numerical results that
highlight the scalability of the approach.

Notation used The symbol ⊗ denotes the Kro-
necker product, vec(·) the operator that stacks a
matrix into a vector in a column-wise fashion and
mat(·) the inverse operator to vec(·) (see (Golub and
Van Loan, 2013, 12.3.4) for a rigorous definition).
Given two matrices, or vectors, with equal dimensions
� denotes the Hadamard (element-wise) product. ‖·‖
denotes the 2-norm of a vector and the Frobenius norm
of a matrix, while card(·) the number of nonzero ele-
ments in a vector or a matrix. Finally εp denotes the
machine precision.

1Deming and Stephan (1940) consider the weighted
least squares cost 1

2

∑
i,j [Xi,j − Ci,j ]

2/Ci,j which we treat
in §3.2.

2 MODELING P EFFICIENTLY

In this section, we present a reformulation of the dou-
bly stochastic approximation problem P suitable for
solving large-scale problems. One of the difficulties
with the original formulation, P, is that it has n2

variables and 2n2 + 2n constraints. Attempting to
solve P with an off-the-shelf QP solver, such as Gurobi
(Gurobi Optimization LLC, 2018), can result in out-
of-memory issues just by representing the problem’s
data even for medium-sized problems.

In order to avoid this issue, we will perform a series
of reformulations that will eliminate variables from P.
The final problem, i.e., P2, will have significantly fewer
variables and constraints while maintaining a remark-
able degree of structure, which will be revealed and
exploited in the next section.

We first take the obvious step of eliminating all vari-
ables in P that are constrained to be zero, as pre-
scribed by the constraint

Xi,j = 0 for all (i, j) such that Ci,j = 0. (2)

Indeed, consider vec(·), the operator that stacks a ma-
trix into a vector in a column-wise fashion and H an
nnz×n2 matrix, where nnz := card(C), that selects all
the nonzero elements of vec(C). Note that H depends
on the sparsity pattern S of C, defined as the 0 − 1
n× n matrix

Si,j :=

{
0 Ci,j = 0

1 otherwise,
(3)

but we will not denote this dependence explicitly. We
can now isolate the nonzero variables contained in X
and C in nnz−dimensional vectors defined as

x := H vec(X), c := H vec(C). (4)

Note that x is simply a re-writing of
X in Rnnz , since for any X ∈ S :=
{X ∈ Rn×n | Xi,j = 0 for all Ci,j = 0} we have

HTH vec(X) = vec(X)⇔ HTx = vec(X),

due to the fact that HTH = diag(vec(S)) Thus every
x defines a unique X ∈ S and vice versa.

We can now describe the constraints of P, i.e., X ≥ 0,
X1n = 1n and XT1n = 1n, on the “x−space”. Ob-
viously X ≥ 0 trivially maps to x ≥ 0. Furthermore,
recalling the standard Kronecker product identity

vec(LMN) = (NT ⊗ L) vec(M) (5)

for matrices of compatible dimension, the constraints
X1n = 1n and XT1n = 1n of P can be rewritten in
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an equivalent vectorized form as[
1Tn ⊗ In
In ⊗ 1Tn

]
vec(X) = 12n (6)

or, by noting that HTx = vec(X), as[
1Tn ⊗ In
In ⊗ 1Tn

]
HTx = 12n. (7)

Thus P can be rewritten in the “x−space” as

minimize 1
2‖x− c‖

2

subject to x ≥ 0[
1Tn ⊗ In
In ⊗ 1Tn

]
HTx = 12n.

(P1)

A further reduction of the variables and constraints
of P1 can be achieved by exploiting the symmetry of
C. To this end, note that when C is symmetric the
optimal doubly stochastic approximation will also be
symmetric according to the following proposition:

Proposition 2.1. If C is symmetric, then the optimal
solution X∗ of P is also symmetric.

Proof. Assume the contrary, so that X∗ is optimal but
asymmetric. Then the matrix X∗T is a feasible solu-
tion for P since it remains element-wise negative when
its row and column sums are exchanged, and has an
identical objective value since C is assumed symmet-
ric. Then define the symmetric matrix X̃ as the convex
combination

X̃ :=
1

2
(X∗ +X∗T )

which is also a feasible point for P. Since the objective
function is strictly convex (at least on the subset of
elements of X not constrained to be zero), the objective
function evaluated at X̃ will be strictly lower than that
for both X∗, contradicting the optimality of X∗. �

Note that the above proof, like the one of the following
Theorem 2.2, are simply algebraic calculations.

It follows that restricting the feasible set of P to sym-
metric matrices does not affect its solution. We will
exploit this by eliminating all the variables embedded
into X that are below its main diagonal. Define an up-
per triangular matrix Xu consisting of scaled elements
of X such that X = Xu +XT

u , and likewise for C, i.e.

Xu := U �X, Cu := U � C (8)

where

U :=


1
2 1 · · · 1

. . .
...

1
2 1

0 1
2

. (9)

As in the previous definitions, define Hu as the matrix
that stacks all the nonzeros of Cu in an column-wise
fashion, which is used to extract the nonzero elements
of Xu and Cu, i.e., scaled nonzero elements of the up-
per triangular part of X, to the vectors

xu := Hu vec(Xu), cu := Hu vec(Xu). (10)

We can now write down our reduced optimization
problem. Note that, although it might not be directly
evident, the following problem possesses a remarkable
degree of internal structure that is exploited in the
suggested solution algorithm of the next section.

Theorem 2.2. Solving P for a symmetric C is equiv-
alent to solving

minimize 1
2‖p� (xu − cu)‖2

subject to xu ≥ 0
Axu = 1n,

(P2)

where

p := Hu vec




2
√

2 · · ·
√

2
. . .

...

2
√

2
0 2




A1 := 1Tn ⊗ In, A2 := In ⊗ 1Tn

and A := (A1 +A2)HT
u , in the sense that P is feasible

iff P2 is, and the optimizer X∗ of P can be constructed
from the optimizer x∗u of P2 using (10) and (8).

Proof. We will first show that every feasible xu of P2

defines a feasible X for P, where vec(Xu) := HT
u xu,

with the same objective value. Similarly to S, define
Su ∈ Rn×n as an 0−1 matrix that represents the spar-
sity of C and the upper triangular of C respectively,
i.e.

Sui,j
=

{
0 Ci,j = 0, or i < j

1 otherwise.

The equality of the objective value can be shown as
follows:

‖p� (xu − cu)‖

=
∥∥∥(1n×n

√
2 + (2−

√
2)In)� (Xu − Cu)

∥∥∥
=
∥∥∥(1n×n

√
2 + (2−

√
2)In)� U � (X − C)

∥∥∥
=
∥∥∥(1n×n

√
2 + (1−

√
2)In)� SU � (X − C)

∥∥∥
=‖S � (X − C)‖ = ‖X − C‖.

(11)

Furthermore, similarly to (5)-(7), we have

X1n = (Xu +XT
u )1n

= (1Tn ⊗ In + In ⊗ 1Tn ) vec(Xu)

= (1Tn ⊗ In + In ⊗ 1Tn )HT
u xu = Axu,

(12)
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resulting in X1n = 1n due to the feasibility of xu for
P2. Due to the symmetry of X we also get XT1n. Fi-
nally, X is nonnegative construction and has sparsity
pattern S. Therefore X is feasible for P.

Likewise, following (11)-(12) in reverse order, we can
show that every symmetric feasible matrix X of P de-
fines an xu := Hu vec(Xu), where Xu := U�X, that is
feasible for P2 and has identical objective value. Since
only symmetric optimizers exist for P (Lemma 2.1)
this concludes the proof. �

Unlike P which has n2 and 2n constraints, P2 has
approximately nnz/2 and n constraints. Furthermore,
it possesses a specific internal structure that we exploit
in the solution algorithm presented in §3.

3 SOLUTION METHOD

In this section, we describe how the reduced problem
P2 can be solved with ADMM. We begin with a brief
introduction to the ADMM algorithm in the general
setting, which follows (Boyd et al., 2011), and then
describe how ADMM can be applied efficiently for P2.

Several optimization problems, including reformula-
tions of P2 (Stellato et al., 2017), are concerned with
the minimization of a function q that can be decom-
posed into two parts q = f + g such that optimizing
independently f or g is tractable. Ideally, if f and g op-
erate on disjoint variables, i.e., if q(χ, ψ) = f(χ)+g(ψ),
then q can also be optimized efficiently by merely min-
imizing q over χ and ψ independently. However, it is
often that case that there is some coupling between χ
and ψ which we assume to be in the form Aχ+Bψ = d,
resulting in the following optimization problem

minimize f(χ) + g(ψ)
subject to Aχ+Bψ = d

(13)

where χ, ψ denote the decision variables, f , g are
proper lower-semicontinuous convex functions, and
A,B, d are matrices of appropriate dimensions.

The Alternating Direction Method of Multipliers
(ADMM) is a first-order (i.e., “gradient-based”) algo-
rithm that solves (13) while exploiting the assumption
that f and g can be easily optimized independently.
Indeed, ADMM iterates as follows,

χk+1 = inf
χ
Lρ(χ, ψ

k, yk)

ψk+1 = inf
ψ
Lρ(χ

k+1, ψ, yk)

yk+1 = yk + ρ(Aχk+1 +Bψk+1 − d)

where

Lρ(χ, ψ, y) := f(χ) + h(ψ) + yT (Aχ+Bψ − d)

+(ρ/2)‖Aχ+Bψ − d‖2,

is the augmented Lagrangian of (13) and ρ is a positive
penalty parameter.

Recalling that (P2) is a Quadratic Problem, we note
that solving QPs with ADMM has been widely studied
in the literature (Stellato et al., 2017), (Garstka et al.,
2019), (O’Donoghue et al., 2016). We will follow the
approach of (Stellato et al., 2017) which can solve P2

by applying ADMM to the following splitting

minimize f(x̃, z̃) + g(x, z)
subject to (x̃, z̃) = (x, z)

(14)

where f and g, are defined as

f(x̃, z̃) =
1

2
xTPx− Pcu + IAx̃=z̃(x̃, z̃)

g(x, z) = Ix≥0(x) + Iz=12n
(z)

and P := diag(p � p), IAx̃=z̃, n̄nz are the
number of nonzeros in the upper triangular of
C and Ix≥0, Iz=12n denote the indicator func-
tions of the sets

{
(x, z) ∈ Rn̄nz × R2n | Ax = z

}
,

{x ∈ Rn̄nz | x ≥ 0} and
{
x ∈ R2n | x = 12n

}
respec-

tively.

Applying ADMM for the problem (14) results2 in Al-
gorithm 1, where Π+ denotes the projection of a vector
to the nonnegative orthant and Π1(x) := 1 for any vec-
tor x. Refer to (Stellato et al., 2017, §3) for details.

Algorithm 1: Solving P2 with ADMM

1 given initial values x0, z0, y0 and parameters
ρ > 0, σ > 0, and α ∈ (0, 2);

2 repeat
3 (x̃k+1, z̃k+1)← solution of the linear system[

(P + σIn̄nz
) ρAT

ρA −ρI2n

][
x̃k+1

z̃k+1

]
=[

σxk − wk +AT (ρzk − yk) + Pcu
0

]
;

4 xk+1 ← Π+(αx̃k+1 + (1− α)xk);

5 zk+1 ← Π1(αz̃k+1 + (1− α)zk + ρ−1yk);

6 wk+1 ← wk + σ(αx̃k+1 + (1− α)xk − xk+1);

7 yk+1 ← yk + ρ(αz̃k+1 + (1− α)zk − zk+1);

8 until termination condition is satisfied ;

2Algorithm 1 includes two extensions over the simple
ADMM algorithm discussed in §3: it uses over-relaxation,
a commonly used variation that can increase the speed of
convergence (Eckstein and Bertsekas, 1992, Figure 2), and
two different step sizes ρ, σ for the update of Lagrange
multipliers w and y respectively. The parameters ρ, σ and
α are chosen according to (Stellato et al., 2017) wherein
exhaustive numerical testing was done to identify the best
choices of these parameters when solving QPs across a wide
variety of problem structures.
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The most computationally intensive operation of Al-
gorithm 1 is the solution of the (n̄nz + n)× (n̄nz + n)
linear system in line 3. We will show that its solution
can be obtained by solving instead a reduced n × n
linear system.

Fact 3.1. Consider the following linear system[
P + σIn̄nz

ρAT

ρA −ρI2n

][
x
z

]
=

[
r
0

]
(15)

where x, r ∈ Rn̄nz , z ∈ Rn̄nz and A ∈ R2n×n̄nz . Its
solution can be obtained as follows

1. Obtain z by solving the following n × n positive
definite linear system

(ρA(P + σIn̄nz
)−1AT + In)z = A(P + σIn̄nz

)−1r
(16)

2. Obtain x as (P + σIn̄nz)
−1(r − ρAT z).

Proof. The first block row gives (P+σIn̄nz)x+ρAT z =
r ⇔ x = (P + σIn̄nz

)−1(r − ρAT z). Reducing the
variable x from (15) results in (16). �

Thus solving (15) can be reduced to solving a linear
system with left hand side

(ρA(P + σIn̄nz
)−1AT + In). (17)

Fortunately, the reduced matrix (17), which is equal
to A diag(Hu vec(U))AT with

U :=


(4 + σ)−1 (2 + σ)−1 · · · (2 + σ)−1

. . .
...

(4 + σ)−1 (2 + σ)−1

0 (4 + σ)−1

,
turns out to be positive definite with a sparsity pattern
matching that of C + I:

Theorem 3.2. The following relation holds

Adiag(Hu vec(D))AT

=S � (D +DT ) + diag(S � (D +DT )1)

for any upper triangular n× n matrix D.

Proof. The proof is in the supplementary material. �

The solution of the reduced linear system (16) can
be obtained given an initial Cholesky factorization of
ρA(P + σIn̄nz

)−1AT + In, or even with a factoriza-
tion free algorithm e.g., Conjugate Gradients which
primarily consists of repeated matrix-vector multipli-
cations with ρA(P + σIn̄nz

)−1AT + In. The fact that
the linear system to be solved has the same sparsity
pattern of S+ I can be particularly beneficial in cases
where a fill-in reducing permutation is already known
for the matrix under approximation C (and thus for
S), since the same permutation could be used before
the factorization of ρA(P +σIn̄nz

)−1AT + In resulting
in reduced fill-in and thus significant speedup.

3.1 Convergence and Feasibility

We terminate Algorithm 1 when the primal and dual
residuals of P2

rprim := ‖Au− 1‖∞,
rdual :=

∥∥Px− cu +AT y + w
∥∥
∞

become smaller than some acceptable tolerance. Al-
gorithm 1 is guaranteed to converge to the solution of
P2 whenever P2, or equivalently P, is feasible.

We next establish conditions that characterize the fea-
sibility of P:

Lemma 3.3. Problem P is feasible if and only if there
exists a set of indices I = {(i1, j1) . . . , (in, in)} corre-
sponding to exactly one nonzero element from each row
and column of C.

Proof. Regarding the “if” part, the n× n matrix

Xi,j =

{
1 if i, j ∈ I
0 otherwise

(18)

is a feasible point for P. Regarding the “only if” part,
since P has a feasible point X, then according to (Per-
fect and Mirsky, 1965, Theorem 1) there exists a set of
indices I = {(i1, j1) . . . , (in, in)} corresponding to ex-
actly one nonzero element from each row and column
of X. Due to the second constraint of P, the same
argument also holds for C. �

Note that Lemma 3.3 and (Perfect and Mirsky, 1965,
Theorem 1) imply that P is feasible whenever the ma-
trix balancing problem is feasible, i.e. when the matrix
C has total support (Knight and Ruiz, 2013).

3.2 Special cases and generalizations

The case where C is almost or fully dense: In
the special case where C is fully dense we have S =
1n1

T
n , and Theorem 3.2 gives

ρA(P + σIn̄nz
)−1AT + In = αI + β1n×n

where

α :=
σρ

(2 + σ/2)(2 + σ)
+

nρ

2 + σ
+1 and β :=

ρ

2 + σ
.

Using the Sherman-Morrison formula, we can explic-
itly calculate the inverse of (16) as

(ρA(P + σIn̄nz)
−1AT + In)−1 =

1

α

(
I − β1n1

T
n

α+ βn

)
.

(19)
We can then solve (15) and perform ADMM on P2

without the need to perform an initial matrix factor-
ization.
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This approach can also be extended to cases where C
has a relatively small number of zero elements. Indeed,
by avoiding the elimination of the zero variables of P
we get the following variant of P2:

minimize 1
2‖p� xu − cu‖

2

subject to xu ≥ 0
xui

= 0 ∀ i with cui
= 0

Axu = 12n

(P3)

where p,A, xu, and cu are defined according to Section

2, but with Hu an (n+1)n
2 ×n2 linear map that extracts

all the upper triangular elements of a vectorized n×n
matrix. P3 can then be solved with Algorithm 1, with
the following two changes. First, we replace Π+ (line

2, Algorithm 1) with ΠS , where S := {x ∈ R(n2+n)/2 |
x ≥ 0 and xi = 0 for all i such that ci = 0}. Sec-
ondly, the solution of the linear system of line 3 of
Algorithm 1 is trivially solved using Fact 3.1 and (19).

Solving variants of P with Algorithm 1: Algo-
rithm 1 can be easily adjusted to the case where ‖·‖
in the objective of P is a weighted Frobenius norm,
i.e. ‖X‖ = ‖W �X‖F where W is a given symmet-
ric matrix. The only thing that has to change is the
definition of p, and thus of P := diag(p� p), to:

p := Hu vec




2
√

2 · · ·
√

2
. . .

...

2
√

2
0 2

�W
.

Theorem 3.2 could then be used to solve the linear
system of Algorithm 1 (line 3) efficiently. Similarly,
we can allow for general constraints X1 = r and
XT1 = r in P, where r is a given nonnegative vec-
tor, by simply changing Π1 in line 5 of Algorithm 1
to Πr(x) := r. Finally, non-square or asymmetric ma-
trices C can be solved via use of P for the symmetric

matrix

[
0 C
CT 0

]
.

4 NUMERICAL EXPERIMENTS

In this section we present numerical results of Algo-
rithm 1 on a range of matrix normalization problems.
We provide a Julia implementation of the Algorithm,
along with code that generates all the results of this
section at:
github.com/oxfordcontrol/DoublyStochastic.jl

4.1 Normalizing Hi-C Contact Matrices of
the Human Genome in the 3D Space

We first present results on the application of our
method to real-world contact matrices describing the

3D structure of the human genome, starting with a
description of the nature of these matrices. The hu-
man genome has an end-to-end length on the order of
meters when unfolded, but fits inside the cell nucleus
with dimensions on the order of micrometers, imply-
ing that the genome is heavily folded in the 3D space.
The 3D structure of the genome can be examined by
breaking the genome into a number of pieces and mea-
suring how many contacts exist between each piece in
the 3D space (Rao et al., 2014). This produces Hi-C
contact matrices, where the term Hi-C describes the
particular experimental procedure used.

The process is, however, subject to errors and ex-
perimental constraints. To alleviate these issues, the
contact matrix is normalized so that all its rows and
columns sum to the same value. The matrix balanc-
ing approach is often the method of choice for this
task (Rao et al., 2014, Supplemental Material II.b),
but other methods have also been suggested in the lit-
erature (Yaffe and Tanay, 2011).

We will show that our approach can also be used for
this task even for contact matrices containing hun-
dreds of millions of nonzero entries as in Rao et al.
(2014). In particular, we consider normalization of the
contact matrix of the 7th chromosome of the GM12878
cell3, thus replicating (Rao et al., 2014, Figure 1.C).
Since the genome consists of sequences of the bases
adenine, guanine, cytosine and thymine, it is typi-
cal to measure the length of each genome piece by
the average number of bases it contains. The total
range of the contact matrices is 0 to 160 mega-bases
(Mb). We consider two discretization lengths, 1 kilo-
base (Kb), and 5Kb, which result in contact matrices
of 151 and 82 million nonzeros respectively. Figure 1
provides detailed views of the contact matrices, span-
ning the range [137.2–137.8Mb] for the contact map
at 5Kb resolution and the [137.55–137.75Mb] for the
one at 1Kb resolution. These regions were chosen to
highlight interesting regions of the contact matrix as
they appear in (Rao et al., 2014, Figure 1.C, rightmost
column, two bottom subfigures).

Our approach produces considerably different normal-
ized contact matrices than the matrix balancing ap-
proach. In particular, our approach results in contact
matrices that have increased sparsity and higher con-
trast. This is unlike the matrix balancing approach
which results in a normalized matrix that has exactly
the same nonzeros as the original matrix. Although
further investigation is necessary for the evaluation of

3The data corresponding to the thresholding cri-
terion MAPQ ≥ 30 were used (Rao et al., 2014,
Supplemental Material IIa.4). Obtained from the
GM12878 “combined” intrachromosomal tarball at
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
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the suitability of the approach in Hi-C data, the results
indicate that our method can be used to normalize very
large Hi-C datasets leading to promising visual results.

4.2 Spectral clustering problems

Next, we present results of running our Algorithm on
correlation matrices arising from spectral clustering

Figure 1: Details of Hi-C Contact Matrices for the 7th

chromosome of the GM12878 cell, corresponding to
(Rao et al., 2014, Figure 1.C, rightmost column, two
bottom subfigures). Top row shows the area [137.2 −
137.8Mb]2 for the contact matrix of 5Kb resolution.
Bottom row shows the area [137.55 − 137.75Mb]2 for
the contact matrix of 1Kb resolution. Areas repre-
senting zero contacts are depicted in black, while areas
with a high number of contacts are shown in yellow.
The total area of the contact matrices is [0−160Mb]2,
thus the areas depicted are zoomed 71 and 640 thou-
sand times in the top and bottom figures respectively.
The leftmost column shows the original contact ma-
trices. Rao et al. (2014) normalize the n × n contact
matrix C via the matrix balancing method of (Knight
and Ruiz, 2013) so that its columns and rows sum
to
∑
i,j Ci,j/n. The resulting normalized matrices are

depicted in the rightmost column. The middle col-
umn depicts the results of Algorithm 1 for normaliz-
ing the matrices so that its columns and rows sum to∑
i,j Ci,j/n. The Conjugate Gradient method is used

to solve the linear system (16) since using a Cholesky
factorization resulted in memory issues. A tolerance of
10−3 is used for the termination of our Algorithm. The
normalization of the 5Kb and 1Kb contact matrix take
701 and 3136 seconds respectively on a single-threaded
implementation on Intel Gold 5120, 192GB memory.

Figure 2: Comparison of the primal convergence (i.e.
feasibility) of Algorithm 1 vs. the approach of (Zass
and Shashua, 2007) (21) on the Spambase dataset with
(22) as affinity criterion with σ = 100.

(Zass and Shashua, 2007). In spectral clustering one
is given a set of points {xi ∈ Rd} to be arranged into
l clusters. To this end, an affinity matrix C is gen-
erated with each entry Ci,j representing a measure of
the pairwise similarity between points i and j. This
matrix is then normalized and used by later stages
of the clustering procedure. Zass and Shashua (2007)
suggested that the normalization

minimize 1
2‖X − C‖

2

subject to X nonnegative
X1n = 1n, X

T1n = 1n,
(20)

leads to superior clustering performance in various dif-
ferent test cases. Note that solving (20) is equivalent
to solving P for C + εp1n×n. Note that the formula-
tion (20) of Zass and Shashua (2007) does not exploit
sparsity in C. Nevertheless, Zass and Shashua (2007)
suggested that the following iterative scheme can be
used to solve 20

X̃k = Xk + n−2(1TnX
k1n + n)1n×n

− n−1(Xk1n×n + 1n×nX
k) (21a)

Xk+1 = Π+

(
X̃k
)
. (21b)

The first step in (21) minimizes the objective of P
subject to the equality constraints, while the sec-
ond projects the iterate to the nonnegative orthant.
However, this approach is not guaranteed to solve P
to optimality. For example, in the simple case of

C = 1
10

[
1 9 9
9 1 0
9 0 9

]
, (21) converges to a suboptimal point

X̄ with
∥∥X̄ −X∗∥∥∞ = 0.07 where X∗ is the opti-

mizer. Nevertheless, it appears that, in general, (21)
converges to a feasible point. However, even conver-
gence to a feasible point can be much slower than our
approach, as demonstrated in Figure 2.

Besides guaranteed convergence to the optimizer of P,
our approach can also handle sparsity in the affinity
matrices. To demonstrate how exploiting sparsity can
lead to significant speedups we consider the Spambase



Optimal Approximation of Doubly Stochastic Matrices

Table 1: Normalizing correlation matrices with Algo-
rithm 1 for spectral clustering on Spambase. A tol-
erance of 10−4 is used for the termination of our Al-
gorithm. The Timings are expressed in seconds. and
compared against Gurobi with its default settings (on
P1) and against solving C+εp1n×n with the approach
of §3.2 where and is C(σ) the original affinity matrix.
Hardware used: Intel i7-5557U CPU @ 3.10GHz, 8GB
Memory.

σ 1.0 5.0 10.0 20.0
nnz 3.9× 104 1.8× 106 4.0× 106 7.3× 106

tadmm 1.1× 10−1 5.7 1.5× 101 2.6× 101

tgurobi 3.9× 10−1 4.6× 101 1.1× 102 2.0× 102

tdense
admm 7.7× 102 6.9× 102 6.4× 102 7.2× 102

dataset4 (considered in Zass and Shashua (2007)) with
an RBF kernel as an affinity criterion

Ci,j(σ) = e−‖xi−xj‖2/σ2

, (22)

where σ is a parameter that is typically tuned to
achieve the best clustering performance. Note that due
to the exponential form of C(σ), some values will be
very small. Therefore, we truncate to zero all entries
with value less than 10−7. The runtimes of applying
our Algorithm to this dataset are listed in Table 1 and
compared to timings achieved with Gurobi (note that
we use P1 for Gurobi as we consider P1 to be a “stan-
dard” reformulation of P). We observe that exploiting
sparsity can lead to significant speedup as compared
to treating the affinity matrix as fully dense, even if
we follow the approach of §3.2. At the same time, the
optimizers of P for the affinity matrices C(σ) consid-
ered in Table 1 appear to coincide with the ones for
the fully dense C(σ) + εp1n×n.

4.3 Matrices from the SuiteSparse Collection

Finally, we consider all Undirected Weighted Graph
Matrices, with less than 50 million nonzeros, contained
in the SuiteSparse collection5. 69 matrices meet these
criteria. We use Algorithm 1 to normalize every ma-
trix C so that all of its columns and rows sum to
maxi,j(Ci,j). All of the problems, except two, have
nonnegative entries. For these two exceptions, we
change the negative entries to their absolute value, as
we are unaware of practical cases where C is expected
to have negative entries.

Detailed comparison of our results with Gurobi pre-
sented in the Supplementary Material. Figure 3 shows
the timings achieved by our method, and the speedups

4archive.ics.uci.edu/ml/datasets/spambase
5Available at sparse.tamu.edu

relative to Gurobi (on P1), as a function of each prob-
lem’s nonzeros.

Figure 3: Results of Algorithm 1 for matrices from
the SuiteSparse collection. Dots represent the timing
of our Algorithm (with 10−4 tolerance), while squares
represent the speedup achieved over Gurobi with its
default settings (on P1). Hardware used: a single
thread running on an Intel Gold 5120 with 192GB of
memory.

5 Conclusions

In this paper we have shown that approximating dou-
bly stochastic matrices, under a Frobenius distance
metric, can be performed efficiently, even for very
large, sparse matrices. We believe that our approach
will complement very popular existing methods, such
as the matrix balancing or Sinkhorn’s algorithm, that
solve the same problem under a different “distance”
metric, thus giving practitioners more freedom in
choosing the most suitable objective for this widely
used approximation problem.
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