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APPENDICES: Conditional Importance Sampling for Off-Policy Learning

A Proofs

Proposition 4.2. Assume the support condition (SC) holds. Given a trajectory functional Ψ and an associated
SCF Φ, the estimator in Expression (11) is unbiased for Eηπ [Ψ(τ0:n)]. Further, its variance is no greater than
that of the OIS estimator in Expression (10).

Proof. The proof of unbiasedness follows the logic of Proposition 3.1’s proof and the proof for the variance upper
bound follows the logic of Proposition 3.2’s proof. Beginning with unbiasedness, we make the following calculation:
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where (a) follows since Φ is an SCF for Ψ (and hence Ψ(τ0:n) is fully determined by Φ(τ0:n)), (b) follows from the
tower law of conditional expectations, and (c) follows from standard importance sampling theory.

For the variance result, we observe that
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which follows since Φ is an SCF for Ψ. Therefore, this estimator is a conditional expectation of the OIS estimator

ηπ0:n|(x,a)(τ0:n)

ηµ0:n|(x,a)(τ0:n)
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and therefore the conclusion follows by direct application of Equation (9) which was used to establish Proposi-
tion 3.2, taking Z1 =

ηπ0:n|(x,a)(τ0:n)
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Ψ(τ0:n) and Z2 = Φ(τ0:n).

Proposition 4.3. For any given MDP, and pair of policies π and µ satisfying (SC), and target functional Ψ, the
variance preorder refines the inclusion preorder. That is, for any two SCFs Φ1, Φ2 of Ψ, if Φ1 - Φ2, then we have
Φ1 -V Φ2.

Proof. Assume we have Φ1 - Φ2 for two sufficient conditioning functionals Φ1,Φ2 for Ψ. Since Φ1(τ0:n) is a
function of Φ2(τ0:n), we have that E[ρπ,µ1:n−1|Φ1(τ0:n)] = E[E[ρπ,µ1:n−1|Φ2(τ0:n)]|Φ1(τ0:n)] by the tower property for
conditional expectations. The statement now follows from the conditional variance formula (9).

Proposition 4.4. An SCF for Ψ for which the associated estimator in Expression (11) achieves minimal variance
is Ψ itself.

Proof. This follows by first observing that Ψ(τ0:n) is a minimal sufficient conditioning functional for Ψ with respect
to the ordering induced by -; this is immediate from the definition. Next, since -V refines - (by Proposition 4.3),
we have that Ψ(τ0:n) is also a minimal sufficient conditioning functional with respect to -V, and the statement
follows.

Proposition 5.1. Assume the support condition (SC). For a given policy µ let pµ|(x,a) be the probability mass
function of
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. (12)
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Proof. As in the discussion in Section 3, we have
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.

We then decompose
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as required.

Proposition 5.2. A global minimum for each of the objectives in Expressions (15) and (16) is given by
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.

Proof. We begin by restating Expression (15), and use the tower law of conditional expectation as follows:
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The inner conditional expectation is of the form EY [(z − Y )2]; viewed as a function of z, it is well known that the
minimiser of such an expression is z = E[Y ]. Thus, for a fixed value of Φ(τ0:n), the optimal value of fθ(Φ(τ0:n)) is
given by

Eηµ
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.

Therefore, the global optimiser of Expression (15) is given precisely by the function

fθ(Φ(τ0:n)) = Eηµ
[
ηπ0:n|(x,a)(τ0:n)

ηµ0:n|(x,a)(τ0:n)

∣∣∣∣Φ(τ0:n)

]
,

as required. For Expression (16), in a similar manner we can write the following:
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,

with the equality following from the fact that Φ is a sufficient conditioning functional for Ψ. Now we may proceed
in an identical manner to that for Expression (15), and the claim follows.

We also record a precise result on the form of the SCIS weights described in Section 5 below.

Proposition A.1. As described in Section 5, assuming the support condition, we have

Eηµ|(x,a)

[
ηπ0:n|(x,a)(τ0:n)

ηµ0:n|(x,a)(τ0:n)
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]
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× π(At|Xt)

µ(At|Xt)
.
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Proof. The proof follows by factorising the trajectory probabilities ηπ0:n|(x,a)(τ0:n), ηµ0:n|(x,a)(τ0:n) in the following
manner, using the Markov property of the environment:

ηπ0:n|(x,a)(τ0:n) = pπt |(x,a)(Xt)π(At|Xt)η
π
t:n|(Xt,At)(τt:n)ηπ0:t−1|(x,a)(τ0:t−1|Xt) ,

where we write ηπ0:t−1|(x,a)(τ0:t−1|Xt) for probability mass associated with the trajectory τ0:t−1 under ηπ0:t,
conditional on the trajectory visiting the state Xt at time t. Using conditional independence, we therefore have
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,

as required. The final equality follows since both of the conditional expectations are in fact expectations of
Radon-Nikodym derivatives under the measure in the “denominator” of the derivative, and hence evaluate to 1
almost surely.

B Experimental details

B.1 Environment

Chain. We use a 6-state chain environment, with absorbing states at each end of the chain. Two actions,
left and right, are available at each state of the chain. Transitions corrupted with p% noise means that with
probability p, a transition to a uniformly-random adjacent state (independent of the action taken) occurs. Each
non-terminal step incurs a reward of +1, whilst reaching an absorbing state incurs a one-off reward of +10, and
the episode then terminates. The initial state of the environment is taken to be the third state from the left.
Figure 4 provides an illustration.

STermination Termination

Figure 4: Illustration of the chain environment.

B.2 Other experimental details: operator estimation

Throughout, the discount factor is taken to be γ = 0.99, and the Q-function used to form the target (Tπ)nQ has its
entries sampled independently from the N(0, 0.1) distribution. The policies π and µ are drawn independently, with
each π(·|x) and µ(·|x) drawn independently from a Dirichlet(1, . . . , 1) distribution. Default values of parameters
are taken as n = 5, the transition noise level is set to 10%, and the learning rate is set to 0.1, and 100 repetitions
of each experiments are performed to compute the bootstrapped confidence intervals.

B.3 Other experimental details: policy evaluation

The environment and default parameters are exactly the same as in the operator estimation experiments, with
the exception that the Q-function is initialised so that all coordinates are 0, and n = 3. We estimate bootstrap
confidence intervals using 500 repetitions of each experiment. In the linear function approximation experiments,
we use a version of tile-coding [Sutton and Barto, 2018]; the specification parametrisation we use is as follows. For
a chain of length K, we take a weight vector w = (wk,a|k ∈ [K − 1], a ∈ A) ∈ R(K−1)×|A|. Labelling the states of
the chain x1, . . . , xK , we parametrise Q(x1, a) by w1,a, Q(xK , a) by wK−1,a, and Q(xk, a) by 1

2wk−1,a + 1
2wk,a,

for each a ∈ A and each 1 < k < K; this is illustrated in Figure 5. The weight vector is initialised with all
coordinates equal to 0 in all experiments.
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Termination Termination

Figure 5: An illustration of the tile-coding scheme used in the linear function approximation scheme; the figure
shows how feature weights (for each action) are allocated states. The value prediction at each state is given by
averaging the weights allocated to the state.

B.4 Further experimental results

In this section, we give in Figure 6 the results described in Section 6.2, including also results for oracle versions
of the CIS algorithms in question. We observe that the performance of the online versions of CIS algorithms
generally closely track that of their oracle counterparts.

Noise, tabular Off-policy, tabular Noise, linear Off-policy, linear

Figure 6: Policy evaluation MSE as a function of number of trajectories for OIS, RCIS, PDIS, and SCIS, with both
tabular and function approximation variants. Shaded regions indicate bootstrapped 95% confidence intervals.

C Extending the CIS framework

C.1 A measure-theoretic perspective on conditional importance sampling

In this section, we give a measure-theoretic treatment of the conditional importance sampling framework introduced
in Section 4 of the main paper. We do not provide any fundamentally new results relative to the main paper, but
we believe the measure-theoretic exposition gives a useful perspective, and may be useful for future work.

We begin by returning to the trajectory importance-weighted estimator given in Expression (10) in the main
paper:

ηπ0:n|(x,a)(τ0:n)

ηµ0:n|(x,a)(τ0:n)
Ψ(τ0:n) .

This expression weights the target quantity Ψ(τ0:n) by the importance weight associated with the proposal
distribution ηµ0:n and the target distribution ηπ0:n. A conditional importance sampling estimator is formed by
taking a function Φ that in the language of the main paper, is a sufficient conditioning functional for Ψ, and
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forming the new estimator

E
[
ηπ0:n|(x,a)(τ0:n)

ηµ0:n|(x,a)(τ0:n)

∣∣∣∣Φ(τ0:n)

]
Ψ(τ0:n) .

Proposition 4.2 then shows that the variance of the conditioned estimator is no greater than that of the
trajectory-weighted estimator, and, roughly speaking, in many cases it is strictly lower.

Whilst this perspective of conditioning on functionals Φ of the trajectory is conceptually straightforward and
clearly hints at how such techniques can be implemented in practice, as described in Section 5.3, there are some
subtleties introduced by this perspective that make the analysis of the method less straightforward. One such case
is illustrated by the following example: consider two sufficient conditioning functionals Φ1 and Φ2 for a target Ψ,
which happen to be related according to the identity Φ1(τ0:n) = 2Φ2(τ0:n) for all τ0:n. Intuitively, Φ1 and Φ2

encode the same information about τ0:n, and thus the estimators they produce are identical. We might therefore
like to be able to treat Φ1 and Φ2 as “identical” in our analysis, and yet this is made difficult by the focus of
the analysis on functionals of the trajectory. This is related to the need to work with preorders in Section 4.1,
rather than the perhaps more familiar notion of partial orders. One route around this difficulty is to define
an equivalence relation over functions of the trajectory, rigorously encoding the notion of “captures the same
information about τ0:n”, and then to work instead with equivalence classes of trajectory functionals under this
relation. However, this has the potential to be very unwieldy, and further, it turns out this is essentially equivalent
to a much more familiar collection of objects from measure theory, known as sigma-algebras. For formal definitions
and background on sigma-algebras, see for example Billingsley [1995]. We note that technically speaking, it is
necessary to constrain functionals of the trajectory to be measurable; we do not mention this condition further
in this section, but return to it in Appendix C.2 when describing the application of the conditional importance
sampling framework to more general classes of MDPs. For a general random variable Z, we write FZ for the
sigma-algebra generated by Z; in the discussion that follows, all random variables will be defined over the same
probability space, which we therefore suppress from the notation in what follows.

The counterpart to a sufficient conditioning functional Φ is a sufficient conditioning sigma-algebra (SCSA) F ,
which is defined as being a sigma-algebra over the same measurable space as Fτ0:n , with the property that
FΨ(τ0:n) ⊆ F . With this definition, a functional Φ is an SCF if and only if FΦ(τ0:n) is an SCSA. The corresponding
importance sampling estimator is then given by

Eηµ|(x,a)

[
ηπ0:n|(x,a)(τ0:n)

ηµ0:n|(x,a)(τ0:n)

∣∣∣∣F]Ψ(τ0:n) .

The analogue of the preorder - over conditioning functionals is the inclusion partial order ⊆ over sigma-algebras;
we have Φ1 - Φ2 if and only if FΦ1(τ0:n) ⊆ FΦ2(τ0:n). Further, if for two conditioning functionals Φ1 and Φ2

we have Φ1 - Φ2 and Φ2 - Φ1 (that is, roughly speaking, Φ1 and Φ2 encode the same information about the
trajectory), then we have FΦ1(τ0:n) = FΦ2(τ0:n). Thus, working with sigma-algebras eliminates the issue of several
conditioning objects representing exactly the same information about the trajectory.

C.2 Generalising the conditional importance sampling framework to other classes of MDPs

We have restricted the presentation in the main paper to MDPs with finite state and action spaces and reward
distributions with finite support for ease of exposition, and to avoid having to introduce measure-theoretic
terminology such as Radon-Nikodym derivatives to deal with more general classes of MDPs. Nevertheless, the
framework described in the main paper applies much more generally, such as for certain classes of MDPs with
continuous state and/or action spaces. In this section, we briefly describe how the framework generalises to these
settings. The aim is not to be exhaustive, but rather to indicate how key concepts change when moving away
from the assumptions of the main paper; for a rigorous treatment of the measure-theoretic issues that arise in
MDPs with more general state and action spaces, see Bertsekas and Shreve [2007].

Consider now an MDP with a general state space X and action space A, each equipped with a sigma-algebra,
and consider R, the domain of rewards in the MDP, to be equipped with its usual Borel sigma-algebra. Given
measurable transition kernel P : X ×A →P(X ), reward kernel R : X ×A →P(R), initial state distribution
ν ∈ P(X ), and two Markov policies π, µ : X → P(A), we can straightforwardly define trajectory measures
ηµ0:n, η

π
0:n, and conditional trajectory measures ηµ0:n|(x,a), ηπ0:n|(x,a) over the relevant product space. The key
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requirement in order to be able to carry out importance sampling in this more general case is that ηπ0:n|(x,a) is
absolutely continuous with respect to ηµ0:n|(x,a). When this is the case, the Radon-Nikodym derivative

dηπ0:n|(x,a)

dηµ0:n|(x,a)
(τ0:n)

exists, and has the property that for a measurable functional Ψ of the trajectory, under mild integrability
conditions, we have

Eηµ0:n|(x,a)

[
dηπ0:n|(x,a)

dηµ0:n|(x,a)
(τ0:n)Ψ(τ0:n)

]
= Eηπ0:n|(x,a) [Ψ(τ0:n)] ,

the fundamental property we require an importance weight to satisfy. The CIS framework of the main paper can
thus be extended to these more general settings by computing conditional expectations of the Radon-Nikodym
derivative of the two trajectory measures. We conclude by noting that in several practical applications of interest,
X and A are themselves subsets of Euclidean spaces, with π(·|x) and µ(·|x) taken to have densities with respect to
Lebesgue measure for each x ∈ X ; in such circumstances, under mild assumptions, the Radon-Nikodym derivative
can be expressed in the familiar form of a product of action density ratios; that is

dηπ0:n|(x,a)

dηµ0:n|(x,a)
(τ0:n) =

n−1∏
t=1

π(At|Xt)

µ(At|Xt)
.

However, in cases where the action distribution π(·|x) is not absolutely continuous with respect to µ(·|x), such
as in deterministic policy gradient algorithms [Silver et al., 2014, Lillicrap et al., 2016], the measure ηπ0:n is not
absolutely continuous with respect to ηµ0:n, meaning that the Radon-Nikodym derivative does not exist, and so
importance sampling, and in particular the CIS framework, cannot straightforwardly be applied.
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