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A PROOFS

This appendix contains the proofs of the theorems
from Section 3, which are adapted from Saad et al.
(2020, Section 3) and included here for completeness.

Proposition A.1 (Proposition 3.1 in main text). For
integers k and l with 0 ≤ l ≤ k, define Zkl := 2k −
2l1l<k. Then
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Zkl
,
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Zkl
, . . . ,

Zkl − 1

Zkl
,
Zkl
Zkl

1l<k

}
.

Proof. For l = k, the number system Bkl = Bkk is the
set of dyadic rationals less than one with denominator
Zkk = 2k. For 0 ≤ l < k, any x ∈ Bkl when written
in base 2 has a (possibly empty) non-repeating prefix
and a non-empty infinitely repeating suffix, so that x
has binary expansion (0.b1 . . . blsl+1 . . . sk)2. Now,

2l(0.b1 . . . bl)2 = (b1 . . . bl)2 =
∑l−1
i=0 bl−i2

i

and

(2k−l − 1)(0.sl+1 . . . sk)2 = (sl+1 . . . sk)2

=
∑k−(l+1)
i=0 sk−i2i

together imply that

x = (0.b1 . . . bl)2 + 2−l(0.sl+1 . . . sk)2

=
(2k−l − 1)

∑l−1
i=0 bl−i2

i +
∑k−(l+1)
i=0 sk−i2i

2k − 2l
.

Remark A.2. When 0 ≤ l ≤ k, we have Bkl ⊆
Bk+1,l+1, since if x ∈ Bkl then Proposition A.1 fur-
nishes an integer c such that x = c/(2k − 2l1l<k) =
2c/(2k+1 − 2l+11l<k) ∈ Bk+1,l+1. Further, for k ≥ 2,
we have Bk,k−1 \ {1} = Bk−1,k−1 ⊆ Bkk, since any
repeating suffix with exactly one digit can be folded
into the prefix (except when the prefix and suffix are
all ones).

Theorem A.3 (Theorem 3.2 in main text). Let T be
an entropy-optimal DDG tree with a non-degenerate
output distribution (pi)

n
i=1 for n > 1. The depth of

T is the smallest integer k such that there exists an
integer l ∈ {0, . . . , k} for which all the pi are integer
multiples of 1/Zkl (hence in Bkl).

Proof. Suppose that T is an entropy-optimal DDG
tree and let k be its depth (note that k ≥ 1, as k = 0
implies p is degenerate). Assume n = 2. From Theo-
rem 2.1, for each i = 1, 2, the probability pi is a ratio-
nal number where the number of digits in the shortest
prefix and suffix of the binary expansion (which ends

in 0̄ if dyadic) is at most k. Therefore, we can ex-
press the probabilities p1, p2 in terms of their binary
expansions as

p1 = (0.b1 . . . bl1sl1+1 . . . sk)2,

p2 = (0.w1 . . . wl2ul2+1 . . . uk)2,

where li and k − li are the number of digits in the
shortest prefix and suffix, respectively, of the binary
expansions of each pi.

If l1 = l2 then the conclusion follows from Proposi-
tion A.1. If l1 = k − 1 and l2 = k then the conclusion
follows from Remark A.2 and the fact that p1 6= 1,
p2 6= 1. Now, from Proposition A.1, it suffices to estab-
lish that l1 = l2 =: l, so that p1 and p2 are both integer
multiples of 1/Zkl. Suppose for a contradiction that
l1 < l2 and l1 6= k − 1. Write p1 = a/c and p2 = b/d
where each summand is in reduced form. By Proposi-
tion A.1, we have c = 2k − 2l1 and d = 2k − 2l21l2<k.
Then as p1+p2 = 1 we have ad+bc = cd. If c 6= d then
either b has a positive factor in common with d or a
with c, contradicting the summands being in reduced
form. But c = d contradicts l1 < l2.

The case where n > 2 is a straightforward extension
of this argument.

Theorem A.4 (Theorem 3.4 in main text). Sup-
pose p is defined by pi = ai/m (i = 1, . . . , n), where∑n
i=1 ai = m. The depth of any entropy-optimal sam-

pler for p is at most m− 1.

Proof. By Theorem 3.2, it suffices to find integers k ≤
m−1 and l ≤ k such that Zkl is a multiple of m, which
in turn implies that any entropy-optimal sampler for
p has a maximum depth of m− 1.

Case 1: Z is odd. Consider k = m− 1. We will show
that m divides 2m−1−2l for some l such 0 ≤ l ≤ m−2.
Let φ be Euler’s totient function, which satisfies 1 ≤
φ(m) ≤ m − 1 = k. Then 2φ(m) ≡ 1 (mod m) as
gcd(m, 2) = 1. Put l = m − 1 − φ(m) and conclude
that m divides 2m−1 − 2m−1−φ(m).

Case 2: m is even. Let t ≥ 1 be the maximal power
of 2 dividing m, and write m = m′2t. Consider k =
m′ − 1 + t and l = j + t where j = (m′ − 1) − φ(m′).
As in the previous case applied to m′, we have that
m′ divides 2m

′−1 − 2j , and so m divides 2k − 2l. We
have 0 ≤ l ≤ k as 1 ≤ φ(m) ≤ m − 1. Finally, k =
m′ + t− 1 ≤ m′2t − 1 = m− 1 as t < 2t.

Theorem A.5 (Theorem 3.5 in main text). Let p be
as in Theorem A.4. If m is prime and 2 is a primitive
root modulo m, then the depth of an entropy-optimal
DDG tree for p is m− 1.
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Proof. Since 2 is a primitive root modulo m, the small-
est integer a for which 2a−1 ≡ 0 (mod m) is precisely
φ(m) = m− 1. We will show that for any k′ < m− 1
there is no exact entropy-optimal sampler that uses k′

bits of precision. By Theorem A.4, if there were such
a sampler, then Zk′l must be a multiple of m for some
l ≤ k′. If l < k′, then Zk′l = 2k

′ − 2l. Hence 2k
′ ≡ 2l

(mod m) and so 2k
′−l ≡ 1 (mod m) as m is odd. But

k′ < m − 1 = φ(m), contradicting the assumption
that 2 is a primitive root modulo m. If l = k′, then
Zk′l = 2k

′
, which is not divisible by m since we have

assumed that m is odd (as 2 is not a primitive root
modulo 2).


