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Abstract

Maximization of non-submodular functions
appears in various scenarios, and many previ-
ous works studied it based on some measures
that quantify the closeness to being submod-
ular. On the other hand, some practical non-
submodular functions are actually close to
being modular, which has been utilized in few
studies. In this paper, we study cardinality-
constrained maximization of weakly modular
functions, whose closeness to being modular
is measured by submodularity and supermod-
ularity ratios, and reveal what we can and
cannot do by using the weak modularity. We
first show that guarantees of multi-stage al-
gorithms can be proved with the weak mod-
ularity, which generalize and improve some
existing results, and experiments confirm their
effectiveness. We then show that weakly mod-
ular maximization is fixed-parameter tractable
under certain conditions; as a byproduct, we
provide a new time–accuracy trade-off for `0-
constrained minimization. We finally prove
that, even if objective functions are weakly
modular, no polynomial-time algorithms can
improve the existing approximation guarantee
achieved by the greedy algorithm in general.

1 INTRODUCTION

We consider the following set function maximization
with a cardinality constraint:

maximize
S⊆[d]

F (S) subject to |S| ≤ k, (1)

where d, k ∈ Z>0, [d] := {1, . . . , d}, and F : 2[d] →
R. We assume F to be monotone, normalized, and
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weakly modular (WM), where the closeness to being
modular is represented with submodularity ratio (SBR)
γ ∈ [0, 1] and supermodularity ratio (SPR) β ∈ [0, 1];
(see, Section 1.2 for precise definitions). We say F is
weakly submodular (weakly supermodular) if its SBR
(SPR) is lower bounded. The larger SBR and SPR are,
the closer F is to being submodular and supermodular,
respectively, and F is modular if γ = β = 1.

Many previous studies on non-submodular maximiza-
tion are based on some measures that quantify the de-
viation from being submodular (Elenberg et al., 2018;
Qian and Singer, 2019), and SBR is one of the most
prevalent among such measures. As regards weakly sub-
modular maximization, Das and Kempe (2018) proved
a well-known (1− e−γ)-approximation guarantee of the
greedy algorithm (Greedy).

When it comes to practical non-submodular maximiza-
tion instances, it can be effective to employ additional
measures other than those quantifying the distance to
being submodular. Bian et al. (2017) considered a class
such that F has bounded SBR and curvature α ∈ [0, 1],
and they proved a 1

α (1 − e−αγ)-approximation guar-
antee of Greedy. Namely, an improved approximation
guarantee is possible if α < 1. Unfortunately, however,
α = 1 occurs quite naturally in many applications as
discussed in Section 2 (see also (Soma and Yoshida,
2018)), which motivates us to consider a wider class
of non-submodular maximization that can capture the
structures of various practical problems.

Weakly modular maximization (WMM) forms a wider
class than that of (Bian et al., 2017). In fact, SPR β
and curvature α always satisfy β ≥ 1− α (Bogunovic
et al., 2018); i.e., SPR β can be bounded even if α = 1.
As shown in Section 2, various problems including fea-
ture selection (Das and Kempe, 2018) and production
planning (Bian et al., 2017) strictly belong to WMM;
that is, F has bounded SPR β even though α = 1 in
general. This fact suggests the importance of study-
ing WMM. However, few previous works have studied
problem (1) by utilizing the weak modularity, and so
WMM remains to be studied.
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1.1 Our Contribution

Our first contribution provides guarantees of efficient
algorithms for WMM. As shown in Section 2, WMM
can model various continuous optimization problems
including `0-constrained minimization and linear pro-
gramming (LP) with a cardinality constraint. Given
such WMM instances, the evaluation of objective func-
tions involves solving optimization subproblems, which
is often so costly that even standard Greedy becomes
impractical. To overcome this hardship, we consider
using multi-stage algorithms for WMM.

Guarantees of Multi-stage Algorithms In Sec-
tion 3, we show that the multi-stage approach is ef-
fective for WMM instances; with this approach, we
accelerate greedy-style algorithms by adding multiple
elements in each iteration, instead of a single element.
The only existing study that proved guarantees of multi-
stage algorithms is (Wei et al., 2014); their result re-
quires the submodularity, and the approximation ratio
is expressed as 1

α (1− e−α(1−α)) in general, which be-
comes 0 if curvature α is equal to 1. Our guarantee of
the multi-stage greedy algorithm (Multi-Greedy) for
WMM is advantageous relative to the previous result
in two aspects: it can be applied to WM functions,
which are generally non-submodular, and it can yield
positive approximation ratios even if α = 1 as long as
SBR and SPR are bounded. Our result also includes
the (1 − e−γ)-approximation guarantee of (Das and
Kempe, 2018) as a special case. We then focus on `0-
constrained minimization and prove a guarantee of the
multi-stage orthogonal matching pursuit (Multi-OMP),
which can achieve a better approximation ratio than
Multi-Greedy. Surprisingly, our result matches that of
standard OMP (Elenberg et al., 2018), while Multi-OMP
can run faster than OMP. Our result also improves
that of the latest feature selection algorithm (Qian and
Singer, 2019). Experiments show that the multi-stage
approach successfully accelerates Greedy and OMP at
the cost of a slight decline in solution quality.

Our second and their contributions, presented in Sec-
tion 4, are related to theoretical properties of WMM.
These contributions are important for revealing what
we can and cannot do with the weak modularity.

Fixed-parameter Tractability In Section 4.1, we
show that ε-error solutions for WMM can be obtained
with a randomized fixed-parameter tractable (FPT) al-
gorithm, whose computation cost depends arbitrarily
on certain inputs including SBR γ, SPR β, sparsity k,
and ε, but it is polynomial in d. The FPT algorithm
was first proposed by Skowron (2017), but its guar-
antee was proved only for a special case of monotone
submodular maximization. As a byproduct, we provide

a time–accuracy trade-off for `0-constrained minimiza-
tion, which is contrasted with the existing sparsity–
accuracy trade-off (Shalev-Shwartz et al., 2010).

Hardness of Improving Approximation Ratio
As mentioned before, if curvature α is bounded by a
constant smaller than 1, the 1

α (1−e−αγ)-approximation
guarantee of (Bian et al., 2017) improves the approxi-
mation ratio, 1−e−γ , of (Das and Kempe, 2018). When
it comes to WMM, not curvature α but SPR β (≥ 1−α)
is bounded. Given this background, the following ques-
tion arises: Can we improve the approximation ratio,
1 − e−γ , if SPR β is bounded by a constant, instead
of curvature α. In Section 4.2, we show that it is gen-
erally impossible. More precisely, we prove that, even
if γ = 1 and β ≥ 1/2, no polynomial-time algorithms
can improve the (1− e−1)-approximation guarantee in
general in the value oracle model; i.e., bounded SPR β
does not always help us to improve the ratio, 1− e−γ .
This result clarifies the theoretical gap between SPR β
and curvature α.

1.2 Notation and Definitions

Given any F : 2[d] → R, we define F (T | S) := F (S ∪
T) − F (S) for any S,T ⊆ [d]. All the set functions
considered in this paper are monotone (F (T | S) ≥ 0,
∀S,T ⊆ [d]) and normalized (F (∅) = 0). We say F
is submodular (supermodular) if F (j | S) ≥ F (j | T)
(F (j | S) ≤ F (j | T)) holds for any S ⊆ T and j /∈ T.
We assume that F can be evaluated in polynomial time
w.r.t. d (or poly(d) time). Given any S ⊆ [d] and
x ∈ R[d], whose j-th entry xj is associated with j ∈ [d],
xS ∈ RS denotes the restriction of x to S. We define
the support of x as supp(x) := {j ∈ [d] | xj 6= 0}.

SBR and SPR Given any monotone F : 2[d] → R,
U ⊆ [d], and s ∈ Z>0, we define SBR γU,s and SPR
βU,s as the largest scalars that satisfy

γU,sF (S | L) ≤
∑

j∈S
F (j | L) and∑

j∈S
F (j | L) ≤ β−1

U,sF (S | L),

respectively, for any disjoint L, S ⊆ [d] such that L ⊆ U
and |S| ≤ s. We say F is (γU1,s1 , βU2,s2)-WM if F
has bounded γU1,s1 and βU2,s2 . Note that γU′,s′ ≥ γU,s
and βU′,s′ ≥ βU,s hold for any U′ ⊆ U and s′ ≤ s. We
can confirm that γU,s ∈ [0, 1] and βU,s ∈ [1/s, 1] hold
for any U and s. We define γs′,s := min|U|≤s′ γU,s and
βs′,s := min|U|≤s′ βU,s; we sometimes use γs := γs,s
and βs := βs,s. We have γd = 1 (βd = 1) iff F is
submodular (supermodular).

Curvature Given monotone F : 2[d] → R, its cur-
vature α ∈ [0, 1] is defined as the smallest scalar that
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satisfies

F (j | S\{j} ∪M) ≥ (1− α)F (j | S\{j})

for any S,M ⊆ [d] and j ∈ S\M. We have βU,s ≥ 1− α
for any U and s (see, (Bogunovic et al., 2018)).

Restricted Strong Convexity and Restricted
Smoothness When studying `0-constrained mini-
mization algorithms, the restricted strong convexity
(RSC) and restricted smoothness (RSM) of loss func-
tion l : Rd → R is often used (Jain et al., 2014; Elenberg
et al., 2018; Yuan et al., 2018). We assume l to be
differentiable. Given any fixed s1, s2 ∈ Z>0, we say l
is µs1,s2 -RSC and νs1,s2-RSM if it satisfies

l(y) ≥ l(x) + 〈∇l(x),y − x〉+
µs1,s2

2
‖y − x‖22 and

l(y) ≤ l(x) + 〈∇l(x),y − x〉+
νs1,s2

2
‖y − x‖22,

respectively, for any x,y ∈ Rd such that ‖x‖0 ≤ s1,
‖y‖0 ≤ s1, and ‖x − y‖0 ≤ s2. If l is quadratic, the
above inequalities reduce to those of the well-known
restricted isometric property (RIP) condition (Candès
et al., 2006). We let µs := µs,s and νs := νs,s. We
define the restricted condition number as κs := νs/µs.
Typically, l with a smaller κs value is easier to deal
with. If l is µd-RSC and νd-RSM, we abbreviate the
subscript and say l is µ-strongly convex (µ-SC) and
ν-smooth (ν-SM); we call κ := ν/µ a condition number.

1.3 Related Work

For the case where F is submodular, Nemhauser et al.
(1978) proved the (1−e−1)-approximation guarantee of
Greedy. Nemhauser and Wolsey (1978) proved that no
polynomial-time algorithms can improve this guaran-
tee in the value oracle model, and Feige (1998) proved
the NP-hardness for the case of Max k-cover. As re-
gards tractability, Skowron (2017) developed a random-
ized FPT approximation algorithm for maximization of
monotone submodular functions with a special property
called p-separability. Unlike our results, those results
hold only for monotone submodular maximization.

When it comes to non-submodular maximization, vari-
ous notions have been introduced to obtain theoretical
guarantees (Krause and Cevher, 2010; Feige and Izsak,
2013; Horel and Singer, 2016; Wang et al., 2016; Zhou
and Spanos, 2016). Das and Kempe (2018) proposed
SBR, one of the most prevalent notion used in many
studies (Hu et al., 2016; Elenberg et al., 2017; Khanna
et al., 2017a,b; Chen et al., 2018; Qian and Singer,
2019), and they proved that Greedy outputs solution
S ⊆ [d] with a (1 − e−γS,k)-approximation guarantee.
Harshaw et al. (2019) proved that no polynomial-time
algorithms can improve the (1 − eγd)-approximation

guarantee in general for every γd ∈ (0, 1] value. This
result is different from our hardness result since they
do not assume SPR to be bounded by a constant; this
difference is critical since bounded SPR could make
the problem easier.

The definition of SPR that we use was introduced
by Bogunovic et al. (2018). Other SPR-like notions
have been used in the context of minimization prob-
lems (Takeda et al., 2013; Liberty and Sviridenko, 2017),
but those are different from SPR, which quantifies the
deviation from being supermodular in the context of
maximization problems.

Curvature α (Conforti and Cornuéjols, 1984; Bian et al.,
2017) is also used in many studies (Iyer et al., 2013;
Sviridenko et al., 2015; Bai and Bilmes, 2018). Its value
is, however, often pessimistic (i.e., α ≈ 1) as pointed
out by Soma and Yoshida (2018), and to bound the
curvature value is more demanding than to bound SPR.
Hence our results obtained with SPR are different from
existing guarantees that use curvature; although those
results can sometimes be improved by using greedy
curvature αG ≤ α (Bian et al., 2017), no lower bounds
of αG for WM functions have been proved.

We remark that our work is different from some pre-
vious studies on set functions that are close to being
modular. As mentioned before, Bian et al. (2017) stud-
ied the case where the curvature and SBR are bounded,
and they proved that Greedy finds solution S with a
1
α (1 − e−αγS,k)-approximation guarantee. They also
proved that Greedy cannot improve this guarantee.
Unlike this result, our hardness result considers every
polynomial-time algorithm. Bogunovic et al. (2018)
considered the case where SBR and SPR are bounded.
However, they are interested in obtaining guarantees for
robust maximization, not for the standard cardinality-
constrained maximization (1), which is of our interest.
Chierichetti et al. (2015) defined the approximate mod-
ularity as the `∞-distance to being modular, which is
different from the weak modularity.

Wei et al. (2014) provided the curvature-dependent
approximation guarantees of multi-stage algorithms
for submodular maximization. Marsousi et al. (2013)
applied Multi-OMP to a special case of `0-constrained
minimization where the loss function l is quadratic, but
its theoretical guarantee has not been proved.

The idea of adding multiple elements in each round
is also considered in the context of parallel algo-
rithms (Balkanski and Singer, 2018). Qian and Singer
(2019) recently developed a parallel approximation al-
gorithm that runs in O(ln d) rounds for `0-constrained
minimization. Surprisingly, thanks to the use of the
weak modularity, we can show that Multi-OMP with
only one round achieves a better approximation ratio.
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2 APPLICATIONS

We motivate to study WMM by presenting its applica-
tions. For each application, we present lower bounds of
SBR and SPR. We also provide an example such that
α = 1 for one of the applications, and such examples
for the other applications are presented in Appendix A.

`0-constrained Minimization Given a differen-
tiable loss function l : Rd → R, we consider the
`0-constrained minimization problem: min‖x‖0≤k l(x).
It is generally NP-hard (Natarajan, 1995) and ap-
pears in many practical scenarios: feature selection
(Das and Kempe, 2018) and M-estimation (Jain et al.,
2014). The problem can be rewritten as in (1) with
F (S) = l(0)−minsupp(x)⊆S l(x), which has SBR γU,s ≥
µ|U|+s/ν|U|+1,1 ≥ 1/κ|U|+s (Elenberg et al., 2018) and
SPR βU,s ≥ µ|U|+1/ν|U|+s,s ≥ 1/κ|U|+s (Appendix A.1);
the later bound improves an existing result, βU,s ≥
µ/ν = 1/κ, of (Bogunovic et al., 2018). The evalu-
ation of F (S) involves solving minsupp(x)⊆S l(x). If l
is quadratic, we can solve it by computing a pseudo-
inverse matrix. Given a more general l, we can use
iterative methods (e.g., (Shalev-Shwartz and Zhang,
2016)) to solve the minimization problem.

LP with a Cardinality Constraint We consider
the following constrained LP that models optimal pro-
duction planning problem (Bian et al., 2017). Given a
set of d items and k production lines, we design a pro-
duction plan so that the total profit is maximized; i.e.,
we aim to solve maxx∈P,‖x‖0≤k c

>x, where c ∈ Rd and
P ⊆ Rd represent the profit of each item and a poly-
tope specified by continuous constraints (e.g., upper
bounds on the total quantities of materials), respec-
tively. This problem can be reformulated as in (1) with
F (S) := maxx∈P c>S xS. As in (Bian et al., 2017), SBR
γU,s of F is lower bounded by some γ0 > 0 for any U
and s under the non-degeneracy assumption. Further-
more, from the definition of SPR, we have βU,s ≥ 1/s;
although the lower bound, 1/s, can be small if s ≈ d,
this is not always the case. For example, in the guaran-
tee of Multi-Greedy (Theorem 1), s is a controllable
parameter, bmax; i.e., βU,s ≥ 1/bmax holds.

Coverage Maximization Submodular functions
sometimes have bounded SPR βU,s, and such func-
tions can be seen as special WM functions such that
γU,s = 1 for any U and s. One such example is the
coverage function. Let V be a finite set and wv ≥ 0
(v ∈ V ). We define d groups I1, . . . , Id ⊆ V , and we let
IS :=

⋃
j∈S Ij for any S ⊆ [d]. The coverage function is

defined as F (S) :=
∑
v∈IS wv, which is submodular and

used in many scenarios including document summariza-
tion (Lin and Bilmes, 2011) and itemset mining (Kumar

et al., 2015). Given s ∈ Z>0, we assume that any col-
lection of up to s groups covers every v ∈ V at most cs
times; i.e., cs := maxv∈V,|S|≤s |{j ∈ S | v ∈ Ij}|. Note
that cs ≤ s always holds. In this case, SPR βU,s of F
is lower bounded by 1/cs as proved in Appendix A.3.

Example with Unbounded Curvature We pro-
vide an example of LP with a cardinality constraint
such that α = 1. Let d = 2, x = (x1, x2)>, and
ε ∈ (0, 1). We consider a set function defined as F (S) =
maxsupp(x)⊆S{x1 + εx2 | x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}
for any S ⊆ [d]; i.e., c = (1, ε)> and P = {x ∈ R2 |
x1 + x2 ≤ 1, x1 ≥ 0, x2 ≥ 0}. From the definitions
of SBR and SPR, we can confirm that γU,s = 1 and
βU,s ≥ 1

1+ε hold for any U and s. On the other hand,
we have α = 1 since F ({2} | {1}) ≥ (1 − α)F ({1})
must hold for F ({2} | {1}) = 0 and F ({1}) = 1.

3 MULTI-STAGE ALGORITHMS

We study multi-stage algorithms for WMM. Let S∗ and
x∗ be target solutions for WMM and `0-constrained
minimization, respectively, and k∗ := |S∗| = ‖x∗‖0;
note that we allow k∗ to be different from k. As a
warm-up, we first discuss two simple algorithms:

Single-stage Algorithm We compute F (j) for j ∈
[d] and let S = argmaxS′:|S′|≤k

∑
j∈S′ F (j). The algo-

rithm requires to evaluate F only d times, and it can
find optimal solutions if F is modular. However, its
approximation ratio becomes poor if F lacks the mod-
ularity. We consider a coverage maximization instance
with d = 2k and V = {v1, . . . , v2k}. Let wvj = 1 and
Ij = {vj} for j = 1, . . . , k, and let wvj = ε � 1 and
Ij = {v1, vj} for j = k + 1, . . . 2k. In this case, if ε > 0
is sufficiently small, the approximation ratio achieved
by the single-stage algorithm is 1+kε

k+ε = O(1/d).

Greedy Algorithm Starting from S = ∅, Greedy
iteratively adds argmaxj /∈S F (j | S) to S and outputs
S after k iterations. Given F with SBR γS,k∗ , Greedy
achieves a (1− exp(−γS,k∗))-approximation guarantee.
Greedy is, however, often costly due to the sequential
evaluation of F , particularly when the evaluation of F
involves solving optimization problems. For example, in
the case of `0-constrained minimization, Greedy solves
convex minimization problems Θ(dk) times.

Namely, while the single-stage algorithm can efficiently
find optimal solutions if F is modular, Greedy can
achieve better guarantees for non-modular F at the
cost of more computational effort. In the case of WMM,
since F is close to being modular, we can expect that
an intermediate of the above two algorithms works well.
The multi-stage approach provides such an intermedi-
ate. As in Algorithm 1, we perform m (≤ k) iterations
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Algorithm 1 Multi-stage algorithm

1: U← [d], S← ∅
2: for i = 1, . . . ,m do
3: Bi ← argmaxB⊆U:|B|≤bi GS(B)
4: S← S ∪ Bi
5: U← U\Bi
6: return S

to obtain a solution. In each i-th iteration, we choose
subset Bi ⊆ [d] of size at most bi so that it maximizes a
surrogate function, GS, where S is the current solution.
To obtain fast multi-stage algorithms, GS should be
efficiently evaluated and maximized. Below we design
GS for Multi-Greedy and Multi-OMP, and we present
their theoretical guarantees. We then experimentally
evaluate the multi-stage algorithms.

3.1 Theoretical Guarantees

Let Si = B1 ∪ · · · ∪ Bi for i ∈ [m] and S0 = ∅. We
first present a guarantee of Multi-Greedy for WMM.
We then focus on `0-constrained minimization and
prove a guarantee of Multi-OMP. As detailed below, our
results generalize and improve some existing results,
which emphasizes that to utilize the weak modularity
is effective for obtaining strong theoretical results. The
proofs of the theorems are presented in Appendix B.1.

3.1.1 Multi-Greedy

Multi-Greedy uses GS(B) =
∑
j∈B F (j | S) as a surro-

gate function. Therefore, Multi-Greedy evaluates F
Θ(dm) times. We can show that Multi-Greedy enjoys
the following approximation guarantee:
Theorem 1. Let bmax be an integer satisfying 1 ≤
bmax ≤ k∗. Set b1, . . . , bm so as to satisfy bi ∈ [bmax]
for i ∈ [m] and

∑
i∈[m] bi = k. If S is the solution

obtained with Multi-Greedy and F is (γS,k∗ , βS,bmax)-
WM, we have

F (S) ≥
(

1−
m∏
i=1

(
1− γSi−1,k∗βSi−1,bi

bi
k∗

))
F (S∗)

≥
(

1− exp

(
−γS,k∗βS,bmax

k

k∗

))
F (S∗).

Note that, if we set bmax = 1, this result recovers the
(1− e−γS,k)-approximation of Greedy (Das and Kempe,
2018) since βS,1 = 1. Multi-Greedy with m = 1 is the
single-stage algorithm, which is studied as the oblivious
algorithm in the field of `0-constrained minimization.
Elenberg et al. (2018) proved that its approximation
ratio is at least max

{
1
kκ
−1
k , 3

4κ
−2
k , κ−3

k

}
. Note that

Theorem 1 improves this result since, if b1 = k =
k∗, the approximation ratio becomes max{ 1

kκ
−1
k , κ−2

k }

from the lower bounds of SBR and SPR (Section 2) and
β∅,k ≥ 1/k. More generally, for m ≥ 1, Multi-Greedy
achieves a 1− exp(κ−1

2k κ
−1
k+bmax

)-approximation. Below
we show that a stronger guarantee for `0-constrained
minimization can be obtained by using Multi-OMP.

3.1.2 Multi-OMP

We then focus on `0-constrained minimization; i.e.,
we assume F (S) = l(0)−minsupp(x)⊆S l(x) (∀S ⊆ [d]).
We let b(S) := argminsupp(x′)⊆S l(x

′) for any S ⊆ [d].
Multi-OMP uses GS(B) =

∑
j∈B |∇l(b(S))j |2 as a surro-

gate function. Thus, it requires to compute the gradient
and to solve convex minimization problems m times.
To prove the guarantee of Multi-OMP, we use the fol-
lowing lemma, which, roughly speaking, connects the
decrease in l to the increase in F .

Lemma 1. For any disjoint A,B ⊆ [d], if l(·) is µ|A∪B|-
RSC and ν|B|,|B\A|-RSM, we have

‖∇l(b(A))B‖22
2ν|B|,|B\A|

≤ F (B | A) ≤ ‖∇l(b
(A))B‖22

2µ|A∪B|
.

A special case of the lemma is implicitly used in (Elen-
berg et al., 2018). In Appendix A.1, we provide a
slightly stronger version of the lemma, which we use
for proving the guarantee of Multi-OMP. By using the
lemma, we can employ the technique used when proving
Theorem 1, which leads to the following result:

Theorem 2. Set b1, . . . , bm as in Theorem 1. If l is
µk+k∗-RSC and νk,bmax-RSM, then Multi-OMP outputs
solution S such that x = argminsupp(x′)⊆S l(x

′) satisfies

l(x) ≤ l(x∗) +

m∏
i=1

(
1− µ|Si−1∪S∗|

ν|Si|,|Bi|

bi
k∗

)
(l(0)− l(x∗))

≤ l(x∗) + exp

(
− µk+k∗

νk,bmax

k

k∗

)
(l(0)− l(x∗))

≤ l(x∗) + exp

(
− 1

κk+k∗

k

k∗

)
(l(0)− l(x∗)).

Note that, if k = k∗, Theorem 2 gives a (1− exp(κ−1
2k ))-

approximation guarantee, which improves the aforemen-
tioned guarantee of Multi-Greedy. Interestingly, the
approximation ratio matches those of OMP and Greedy
(Elenberg et al., 2018). Namely, the use of the multi-
stage approach does not degrade the theoretical guar-
antee. If we let b1 = k = k∗, Multi-OMP with only one
round achieves a κ−1

2k -approximation guarantee; this
improves the existing

(
1− exp

(
−κ−4

2k

))
-approximation

guarantee with O(ln d) rounds, recently proved by Qian
and Singer (2019), in terms of both the approximation
ratio and the computation complexity.
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Figure 1: Results of `0-constrained minimization with various m values. Top (bottom) figures present those of
regression (classification) instances. Running times and loss function values are shown with semi-log plots. Each
curve and error band indicate the average and standard deviation, respectively, calculated over 100 instances.

3.2 Experiments

We evaluate the multi-stage algorithms via experiments
with two kinds instances: `0-constrained minimization
and LP with a cardinality constraint. We use Python3
to implement the algorithms, and we conduct experi-
ments on a 64-bit macOS machine with 3.3GHz Intel
Core i7 CPUs and 16 GB RAM. All the algorithms con-
sidered below can be accelerated via randomization (Li
et al., 2016; Khanna et al., 2017b), but to simplify the
comparisons we here do not employ such techniques.

3.2.1 `0-constrained Minimization

We use two instances with the real-world dataset
available at PMLB (Olson et al., 2017). The first
is a sparse regression instance with the square loss,
l(x) = 1

2n‖y − Ax‖22, where A ∈ Rn×d and y ∈ Rn
are obtained from “satellite_image” dataset. We use
the 1st and 2nd order polynomial features; as a re-
sult, we have d = 666 features and a sample of size
N = 6435. We set k = 100. The second is a sparse
classification instance. We use the regularized logistic
loss, l(x) = 1

n

∑
i∈[n] ln(1 + exp(−yi(Ax)i)) + λ

2 ‖x‖22,
where A ∈ Rn×d and y ∈ Rn are obtained from
“hill_valley_with_noise” dataset. The dataset has
d = 100 features and a sample of size N = 1212.
We let λ = 0.01 and k = 20. For each instance,
we randomly split the sample into training and test
data of sizes dN/2e and bN/2c, respectively; we thus
create 100 random instances. We consider multi-
stage algorithms with various numbers of iterations,
m = k, 0.9k, . . . , 0.1k (m = k corresponds to standard
Greedy/OMP). We set b1, . . . , bk−mbk/mc at dk/me and
the rest at bk/mc. We use two baselines based on the
projected gradient method: iterative hard thresholding
(IHT) (Jain et al., 2014) and hard thresholding pursuit

(HTP) (Yuan et al., 2018). We continue their iterations
until the decrease in l(·) value becomes smaller than
10−5. We evaluate the algorithms with running times,
loss function values, R2 scores (for regression), and
mean accuracy (for classification); the last two are de-
fined by the corresponding scikit-learn score functions.

Figure 1 summarizes the results. We see that the multi-
stage algorithms speed up as m decreases; in particular,
Multi-OMP becomes as fast as HTP. In the regression
instances, multi-stage algorithms achieve better loss
function values and R2 scores than the baselines. Other
than for Multi-OMP withm = 10, the decrease inm has
negligible effects on loss function values and R2 scores.
In the classification instances, the loss function values
of the multi-stage algorithms increase as m decreases,
but they are smaller on average than those of IHT and
HTP. The multi-stage algorithms also achieve better
mean accuracy than the baselines. To conclude, by
using the multi-stage approach, Greedy and OMP can
become faster while outperforming the baselines. When
addressing large-scale instances in practice, it would be
effective to try multi-stage algorithms with a small m
and increase it until an acceptable solution is obtained.

As regards solution quality, the gap between the greedy-
style algorithms (Multi-Greedy and Multi-OMP) and
the baselines (IHT and HTP) can partially be explained
in terms of the restricted condition number. For ex-
ample, IHT requires k ≥ Ω(κ2

2k+k∗ ln ε−1) to achieve
ε-errors (Jain et al., 2014), while Multi-OMP requires
k ≥ Ω(κk+k∗ ln ε−1) as implied in Theorem 2. This
suggests that greedy-style algorithms can be more re-
sistant to being ill-conditioned (or a large restricted
condition number), which is often the case with real-
world instances; hence the better performance of the
greedy-style algorithms. Appendix B.2 presents further
experiments with well- and ill-conditioned instances.
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Figure 2: Results of LP with a cardinality constraint.
Each curve (error band) indicates the average (standard
deviation) calculated over 100 instances.

3.3 LP with a Cardinality Constraint

We use synthetic optimal production planning instances.
We let P = {x ∈ Rd | Ax ≤ b,0 ≤ x ≤ 1}. Each
entry of A ∈ Rm×d and c ∈ Rd is drawn from the
uniform distribution on [0, 1]. We set d = 50, m = 100,
and b = 0.5k × 1. We consider various sparsities
k = 5, 10, . . . , 50; for each k, we randomly generate
100 instances as above. We consider Multi-Greedy
with m = 2 and m = 5, denoted by Multi-Greedy-2
and Multi-Greedy-5, respectively. As baselines, we
employ Greedy and Random, which chooses k elements
from [d] uniformly at random.

Figure 2 shows the results. We see that Multi-Greedy
algorithms run far faster than Greedy, and they achieve
almost the same objective values as those of Greedy.
Namely, for optimal production planning instances, the
multi-stage strategy can accelerate Greedy at a very
slight sacrifice of solution quality.

4 THEORETICAL PROPERTIES

We study theoretical properties of WMM: In Section 4.1
we show that WMM is fixed-parameter tractable (FPT)
under certain conditions, and in Section 4.2 we prove
that no polynomial-time algorithms can improve the
(1− e−γS,k)-approximation guarantee in general even if
SBR and SPR are bounded by some constants.

4.1 Fixed-parameter Tractability

Here we discuss the computation cost of solving WMM
almost optimally. If we are to find an optimal solution
for WMM, a naive approach is exhaustive search; i.e.,
we examine F (S) for all S ⊆ [d] of size k. This, how-
ever, incurs Ω(dk) computation cost, which becomes
too large as the instance size, d, increases. Taking
this into account, the following question arises: Can
we solve WMM (almost) optimally without requiring
an Ω(dk) computation cost? To answer this, we use
the parameterized complexity framework (Cygan et al.,
2015). We regard a part of the input as a fixed param-
eter(s), which is denoted by p and does not include the
instance size, d. An algorithm is said to be FPT if it

Algorithm 2 Randomized FPT algorithm

1:
Execute SingleRun() T times and return the best
solution.

2: function SingleRun()
3: S0 ← ∅
4: for i = 1, . . . , k do

5:
Choose j ∈ [d]\Si−1 randomly with proba-
bility ∝ F (j | Si−1).

6: Si ← Si−1 ∪ {j}
7: return Sk

runs in g(p)× poly(d) time, where g is a computable
function of p. Note that, if k is a fixed parameter, al-
gorithms that require Ω(dk) time, including exhaustive
search, are not FPT. Here, regarding k as a part of
the fixed parameters, we show that ε-error solutions for
WMM can be computed with a randomized FPT algo-
rithm (Algorithm 2), which was originally developed by
Skowron (2017) for a special case of monotone submod-
ular maximization. Algorithm 2 performs SingleRun(),
a randomized variant of Greedy, T times and returns
the best solution. We can show that it enjoys the
following guarantee for WMM:
Theorem 3. Assume F to be (γk, βk,d)-WM. Let S∗ be
an optimal solution for problem (1) and F̃ := F ([d])−
F (S∗). For any ε > 0, if

T ≥


(

1

γkβk,d
· F̃ + ε

ε

)k
ln δ−1

 ,
then Algorithm 2 returns solution S satisfying F (S) ≥
F (S∗)− ε with a probability of at least 1− δ.

The key to proving Theorem 3 is the fact that the
probability of choosing j ∈ S∗ in each iteration can
be lower bounded thanks to the weak modularity. We
present the proof in Appendix C.

Since F can be evaluated in poly(d) time as assumed
in Section 1.2, Algorithm 2 is FPT if we regard p :=
(k, γk, βk,d, F̃ , ε, δ) as fixed parameters. Note that, since
F̃ ≤ F ([d]), a sufficiently large T can be computed once
we obtain lower bounds of SBR and SPR, which are
available for various applications as in Section 2.

While Algorithm 2 is not so practical, Theorem 3 is ben-
eficial for studying the tractability of WMM instances.
In particular, we can obtain an interesting corollary re-
lated to `0-constrained minimization from the theorem.
Let x∗ := argmin‖x‖0≤k l(x) be an optimal solution.
As shown by Shalev-Shwartz et al. (2010), Greedy can
find x such that l(x) ≤ l(x∗) + ε if x is allowed to
have Ω(κ ln ε−1) non-zeros; i.e., there is a trade-off
between sparsity ‖x‖0 and accuracy ε. In practice,
however, x is not always allowed to have sufficiently
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many non-zeros. For instance, when performing feature
selection for medical analysis, the number of features
used for predicting a patient’s status is limited since
to use many features requires the patient to undergo
many medical tests, which is a considerable burden.
Hence, to reveal whether we can solve `0-constrained
minimization almost optimally with limited sparsity
k ≥ ‖x‖0 is an important research subject. The follow-
ing corollary, which is obtained from Theorem 3 and
the lower bounds of SBR and SPR (Section 2), implies
that it is possible at the cost of FPT computation time;
i.e, there is a time–accuracy trade-off.

Corollary 3.a. Let F (S) = l(0) − minsupp(x)⊆S l(x)
for any S ⊆ [d] and assume l to be µ2k-RSC, µk+1-
RSC, νk+1,1-RSM, and νd-RSM. Let l̃ := l(x∗) −
minx∈R[d] l(x). If Algorithm 2 runs with

T ≥


(
νk+1,1

µ2k
· νd
µk+1

· l̃ + ε

ε

)k
ln δ−1


and outputs S, then x = argminsupp(x′)⊆S l(x

′) satisfies
l(x) ≤ l(x∗) + ε with a probability of at least 1− δ.

Namely, if we take p := (k, µ2k, µk+1, νk+1,1, νd, l̃, ε, δ)
to be fixed parameters, ε-error solutions can be com-
puted in FPT time with a high probability. Note that,
unlike the aforementioned guarantee of Greedy, Corol-
lary 3.a does not require ‖x‖0 to be sufficiently large.

4.2 Hardness Result

We here prove the following hardness of improving the
(1− e−γS,k)-approximation guarantee for WMM:

Theorem 4. Even if F has SBR γk = 1 and SPR
βk ≥ 1/2 − o(1), no algorithms that evaluate F only
on polynomially many subsets can achieve an approxi-
mation guarantee that exceeds 1− e−1 = 1− e−γk for
problem (1) in general.

Note that the significance of Theorem 4 comes from
SPR βk that can be bounded by a universal constant:
When curvature α, which satisfies βk ≥ 1−α, is upper
bounded by a universal constant smaller than 1, then a
strictly improved approximation ratio, 1

α (1− e−αγS,k),
can be obtained thanks to (Bian et al., 2017). Namely,
Theorem 4 reveals a non-trivial theoretical gap between
SPR βk and curvature α. Below we describe a proof
sketch, and the full proof is presented in Appendix D.1.

Proof sketch. We make a WM function that is hard
to maximize approximately. As with the proof of
(Nemhauser and Wolsey, 1978), given unknown subset
M of size k, we show that to achieve an approximation
guarantee that exceeds 1−e−γk is at least as hard as to
find S such that |S∩M| > r and |S| ≤ pkr := 2k− r+ 1,

where r > 0 is any fixed integer; this cannot be solved
via polynomially many queries. To this end, we use
F that satisfies the following conditions: F (S) value
depends on |S| and |S ∩M| for any S ⊆ [d] and only
on |S| if |S ∩ M| ≤ r or |S| > pkr , which, roughly
speaking, means that the information about F values
is useless. By using such function F , we can obtain the
hardness result. The main difficulty remained in the
above proof is to show that F is WM. In particular,
obtaining βk ≥ 1/2 − o(1) is the most challenging
part. To prove this, we first rewrite SPR as βk =

minL,S⊆[d]

{
F (S|L)∑
j∈S F (j|L)

∣∣∣ L ∩ S = ∅, |L| ≤ k, |S| ≤ k
}
,

where we regard 0/0 = 1. Then, by carefully designing
F and using the fact that F (S) depends only on |S|
and |S ∩M|, we can lower bound βk by the minimum
value of some function with only three variables, and
the minimum value can be proved to be at least
1
2 − 1

2 · r−1
2k−r+1 (see, Lemma A.4 in Appendix D.1). By

letting k increase with d and setting d at a sufficiently
large value, we obtain the lower bound on βk.

Given solution S of Greedy, we always have γS,k ≥ γk.
Therefore, Theorem 4 implies that, even if βk (≤ βS,k)
is lower bounded by a value that can be arbitrarily close
to 1/2, no polynomial-time algorithms can improve the
(1− e−γS,k)-approximation guarantee in general.

We remark that it may be possible to improve the ap-
proximation ratio for some easier subclasses of WMM;
for example, if γd (≤ γk) and βd (≤ βk) are bounded,
we may be able to obtain a better ratio than 1− e−γd

by using βd. We discuss this topic in Appendix D.2.
We also remark that Theorem 4 does not contradict the
FPT result (Theorem 3) for the following reason: The-
orem 4 is proved by using sparsity k that increases with
d, and we cannot regard such a k as a fixed parameter.

5 CONCLUSION

We studied WMM, a class of non-submodular maxi-
mization that can model various practical problems.
We proved guarantees of multi-stage algorithms, which
generalize and improve some existing results, and con-
firmed their effectiveness via experiments. We then
proved the fixed-parameter tractability of WMM, which
yields the time–accuracy trade-off for `0-constrained
minimization as a byproduct, and the hardness of im-
proving the (1− e−γS,k)-approximation guarantee.

Recent studies (Khanna et al., 2017b; Qian et al., 2018)
provided various techniques for accelerating greedy
algorithms, and greedy-style methods for many different
problem settings have also been studied (Bogunovic
et al., 2018; Fujii and Soma, 2018). It will be interesting
to study how to incorporate the multi-stage approach
into those methods for further acceleration.
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