Appendix A

Consider the Thompson samples $\theta_{i,t}$, $i=1,\ldots,N$ for any round indexed by t. The samples for stationary optimal arm 1 and stationary suboptimal arm i are denoted by $\theta_{1,t}$ and $\theta_{i,t}$ respectively. Let $M_i(t)$ denote the event

$$M_i(t): \begin{cases} \theta_{j,t} \le \kappa_j, \ j \notin \{1,2,i\}, \text{ and} \\ \kappa_2 < \theta_{2,t} \le \mu_2, \end{cases}$$
 (1)

where we choose thresholds such that $\kappa_2 > \eta$. Consider the probability of the event where suboptimal arm iis selected under the filtration \mathcal{F}_{t-1} and the Thompson sample $\theta_{i,t}$ such that E_i^{θ} is true, i.e., $\Pr(i(t) = i|E_i^{\theta}(t), \mathcal{F}_{t-1})$. We have that arm i is a part of the optimal solution only if arm 1 is below the threshold κ_1 , all other stationary arms are below their respective thresholds κ_j , $j \notin \{1, 2, i\}$, and the stationary optimal arm 2 is above κ_2 (in which case at least some of the optimal solutions are supported by arms i and 2). Hence, we have

$$\Pr(i(t) = i | E_i^{\theta}(t), \mathcal{F}_{t-1})$$

$$\leq \Pr(i(t) = i, \theta_1(t) < \kappa_1, M_i(t) | E_i^{\theta}(t), \mathcal{F}_{t-1})$$

$$= (1 - p_{i,t}) \Pr(M_i(t) | E_i^{\theta}(t), \mathcal{F}_{t-1}), \tag{2}$$

where the second step follows from the independence of events conditional on the filtration \mathcal{F}_{t-1} .

Next, we bound the probability of selecting arm 1. We observe that, conditioned on $M_i(t)$ and E_i^{θ} , arm 1 forms a part of the optimal solution at time t along with arm 2. Further, the probability mass assigned to arm 1 is $(\theta_{2,t} - \eta)/(\theta_{2,t} - \theta_{1,t})$. For any Thompson samples such that $\theta_2 > \kappa_2$ and $\theta_1 > \kappa_1$, the probability mass assigned to arm 1 is at least $(\kappa_2 - \eta)/(\kappa_2 - \kappa_1) = \epsilon_{1,i}$. Consequently, we have

$$\Pr(i(t) = 1 | E_i^{\theta}(t), \mathcal{F}_{t-1})$$

$$\geq \Pr(i(t) = 1, M_i(t) | E_i^{\theta}(t), \mathcal{F}_{t-1})$$

$$= \Pr(M_i(t) | E_i^{\theta}(t), \mathcal{F}_{t-1}) \cdot \Pr(i(t) = 1 | M_i(t), E_i^{\theta}(t), \mathcal{F}_{t-1})$$

$$\geq \epsilon_{1,i} \cdot p_{i,t} \cdot \Pr(M_i(t) | E_i^{\theta}(t), \mathcal{F}_{t-1}), \tag{3}$$

Combining (2) and (3) we get the desired result.

Appendix B

Similar to the approach in [Agrawal and Goyal, 2013], we bound the number of plays of any suboptimal arm in the following manner:

$$\mathbb{E}[k_i(T)] = \sum_{t=1}^{T} \Pr(i(t) = i)$$

$$= \sum_{t=1}^{T} \Pr(i(t) = i, E_i^{\mu}(t), E_i^{\theta}(t))$$

$$+ \sum_{t=1}^{T} \Pr(i(t) = i, E_i^{\mu}(t), \overline{E_i^{\theta}(t)})$$

$$+ \sum_{t=1}^{T} \Pr(i(t) = i, \overline{E_i^{\mu}(t)})$$

The last two terms of this expression are upper bounded by (17) and (16) respectively. Then, following the approach in [Agrawal and Goyal, 2013], we bound the first term of the expression above using Lemma 1, where we exploit the fact that the number of plays of arm i are a linear function of the number of playes of arm 1,

$$\begin{split} \sum_{t=1}^{T} & \Pr(i(t) = i, E_{i}^{\mu}(t), E_{i}^{\theta}(t)) \\ &= \sum_{t=1}^{T} \mathbb{E} \left[\Pr(i(t) = i, E_{i}^{\mu}(t), E_{i}^{\theta}(t) \big| \mathcal{F}_{t-1}) \right] \\ &\leq \sum_{t=1}^{T} \mathbb{E} \left[\frac{1 - p_{i,t}}{\epsilon_{1,i} \cdot p_{i,t}} \Pr(i(t) = 1, E_{i}^{\mu}(t), E_{i}^{\theta}(t) \big| \mathcal{F}_{t-1}) \right] \\ &= \sum_{t=1}^{T} \mathbb{E} \left[\mathbb{E} \left[\frac{1 - p_{i,t}}{\epsilon_{1,i} \cdot p_{i,t}} I(i(t) = 1, E_{i}^{\mu}(t), E_{i}^{\theta}(t)) \right] \right] \\ &\leq \sum_{k=0}^{T-1} \mathbb{E} \left[\left(\frac{1}{\epsilon_{1,i} \cdot p_{i,\tau_{k}+1}} - 1 \right) \sum_{t=\tau_{k}+1}^{\tau_{k+1}} I(i(t) = 1) \right] \\ &= \sum_{k=0}^{T-1} \mathbb{E} \left[\frac{1}{\epsilon_{1,i} \cdot p_{i,\tau_{k}+1}} - 1 \right], \end{split}$$

where I is the indicator function, and we have used the fact that $\epsilon_{1,i}$ is independent of the history of plays. From (18), we have an upper bound on $\mathbb{E}(\frac{1}{p_{i,\tau_j+1}})$. By collecting the upper bounds from (16), (17), and (18), we directly obtain Lemma 2.

Appendix C

We present the pseudocode for the LinCon-KL-UCB algorithm in this section.

```
Algorithm 1 LinCon-KL-UCB
 1: Input: Reward Values r_{\{1,\ldots,N\}}, Constraint \eta, c
 2: Initialize: k_{\{1,...,N\},0} = 0, s_{\{1,...,N\},0} = 0.
 3: for Time index t = 1 to T do
 4:
        if t < N then
           i(t) = t
 5:
 6:
        else
 7:
            for Arm index i = 1 to N do
               \tilde{\mu}_{i,t} = \max \left\{ q \in \Theta : k_i d\left(\frac{k_i}{s_i}, q\right) \log(t) + \right.
 7:
               c \log \log(t)
 8:
            end for
 9:
           Solve, if feasible, the linear program:
           LP(\tilde{\mu}_t): maximize \sum_i x_{i,t} \tilde{\mu}_{i,t} r_i
                  subject to \begin{cases} \sum_{i} x_{i,t} \tilde{\mu}_{i,t} \geq \eta \\ \sum_{i} x_{i,t} = 1 \\ x_{i,t} \geq 0 \quad \forall i \in \{1, \dots, N\} \end{cases} 
\tag{4}
            if a (feasible) optimal solution existed then
10:
               Sample i(t) \sim [x_{1,t}, \dots, x_{N,t}]
11:
12:
               Sample i(t) uniformly from \{1, \ldots, N\}.
13:
            end if
14:
         end if
15:
         Observe: Reward event c_{i(t)} \in \{0, 1\}.
16:
```

References

18: **end for**

Update:

 $k_{i(t)} = k_{i(t)} + 1$ $s_{i(t)} = s_{i(t)} + c_{i(t)}$.

17:

[Agrawal and Goyal, 2013] Agrawal, S. and Goyal, N. (2013). Further optimal regret bounds for thompson sampling. In *Artificial Intelligence and Statistics*, pages 99–107.