
Appendix A

Consider the Thompson samples θi,t, i = 1, . . . , N for
any round indexed by t. The samples for stationary
optimal arm 1 and stationary suboptimal arm i are
denoted by θ1,t and θi,t respectively. Let Mi(t) denote
the event

Mi(t) :

{
θj,t ≤ κj , j 6∈ {1, 2, i} , and
κ2 < θ2,t ≤ µ2,

(1)

where we choose thresholds such that κ2 > η. Consider
the probability of the event where suboptimal arm i
is selected under the filtration Ft−1 and the Thomp-
son sample θi,t such that Eθi is true, i.e., Pr(i(t) =
i|Eθi (t),Ft−1). We have that arm i is a part of the
optimal solution only if arm 1 is below the threshold
κ1, all other stationary arms are below their respective
thresholds κj , j 6∈ {1, 2, i}, and the stationary optimal
arm 2 is above κ2 (in which case at least some of the op-
timal solutions are supported by arms i and 2). Hence,
we have

Pr(i(t) = i|Eθi (t),Ft−1)

≤ Pr(i(t) = i, θ1(t) < κ1,Mi(t)|Eθi (t),Ft−1)

= (1− pi,t)Pr(Mi(t)|Eθi (t),Ft−1), (2)

where the second step follows from the independence
of events conditional on the filtration Ft−1.

Next, we bound the probability of selecting arm 1. We
observe that, conditioned onMi(t) and Eθi , arm 1 forms
a part of the optimal solution at time t along with arm
2. Further, the probability mass assigned to arm 1
is (θ2,t − η)/(θ2,t − θ1,t). For any Thompson samples
such that θ2 > κ2 and θ1 > κ1, the probability mass
assigned to arm 1 is at least (κ2 − η)/(κ2 − κ1) = ε1,i.
Consequently, we have

Pr
(
i(t) = 1|Eθi (t),Ft−1

)
≥ Pr

(
i(t) = 1,Mi(t)|Eθi (t),Ft−1

)
= Pr

(
Mi(t)|Eθi (t),Ft−1

)
· Pr
(
i(t) = 1|Mi(t), E

θ
i (t),Ft−1

)
≥ ε1,i · pi,t · Pr

(
Mi(t)|Eθi (t),Ft−1

)
, (3)

Combining (2) and (3) we get the desired result.

Appendix B

Similar to the approach in [Agrawal and Goyal, 2013],
we bound the number of plays of any suboptimal arm
in the following manner:

E
[
ki(T )

]
=

T∑
t=1

Pr(i(t) = i)

=

T∑
t=1

Pr(i(t) = i, Eµi (t), Eθi (t))

+

T∑
t=1

Pr(i(t) = i, Eµi (t), Eθi (t))

+

T∑
t=1

Pr(i(t) = i, Eµi (t))

The last two terms of this expression are upper bounded
by (17) and (16) respectively. Then, following the
approach in [Agrawal and Goyal, 2013], we bound the
first term of the expression above using Lemma 1, where
we exploit the fact that the number of plays of arm i
are a linear function of the number of playes of arm 1,

T∑
t=1

Pr(i(t) = i, Eµi (t), Eθi (t))

=

T∑
t=1

E
[
Pr(i(t) = i, Eµi (t), Eθi (t)

∣∣Ft−1)

]

≤
T∑
t=1

E
[

1− pi,t
ε1,i · pi,t

Pr(i(t) = 1, Eµi (t), Eθi (t)
∣∣Ft−1)

]

=

T∑
t=1

E
[
E
[

1− pi,t
ε1,i · pi,t

I(i(t) = 1, Eµi (t), Eθi (t)
)]]

≤
T−1∑
k=0

E
[(

1

ε1,i · pi,τk+1
− 1

) τk+1∑
t=τk+1

I(i(t) = 1)

]

=

T−1∑
k=0

E
[

1

ε1,i · pi,τk+1
− 1

]
,

where I is the indicator function, and we have used
the fact that ε1,i is independent of the history of plays.
From (18), we have an upper bound on E( 1

pi,τj+1
). By

collecting the upper bounds from (16), (17), and (18),
we directly obtain Lemma 2.



Appendix C

We present the pseudocode for the LinCon-KL-UCB
algorithm in this section.

Algorithm 1 LinCon-KL-UCB
1: Input: Reward Values r{1,...,N}, Constraint η, c
2: Initialize: k{1,...,N},0 = 0, s{1,...,N},0 = 0.
3: for Time index t = 1 to T do
4: if t < N then
5: i(t) = t
6: else
7: for Arm index i = 1 to N do
7: µ̃i,t = max

{
q ∈ Θ : kid

(
ki
si
, q
)

log(t) +

c log log(t)
}

8: end for
9: Solve, if feasible, the linear program:

LP (µ̃t) : maximize
∑
i

xi,tµ̃i,tri

subject to


∑
i xi,tµ̃i,t ≥ η∑
i xi,t = 1

xi,t ≥ 0 ∀ i ∈ {1, . . . , N}
,

(4)

10: if a (feasible) optimal solution existed then
11: Sample i(t) ∼ [x1,t, . . . , xN,t]
12: else
13: Sample i(t) uniformly from {1, . . . , N}.
14: end if
15: end if
16: Observe: Reward event ci(t) ∈ {0, 1}.
17: Update:

ki(t) = ki(t) + 1
si(t) = si(t) + ci(t).

18: end for
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