Appendix A

Consider the Thompson samples 0;, ¢ =1,..., N for
any round indexed by t. The samples for stationary
optimal arm 1 and stationary suboptimal arm ¢ are
denoted by 61+ and 6, ; respectively. Let M;(t) denote
the event

where we choose thresholds such that xo > 1. Consider
the probability of the event where suboptimal arm ¢
is selected under the filtration F;_; and the Thomp-
son sample 6, ; such that E? is true, i.e., Pr(i(t) =
i|E?(t), F;—1). We have that arm i is a part of the
optimal solution only if arm 1 is below the threshold
K1, all other stationary arms are below their respective
thresholds x;, j & {1,2,4}, and the stationary optimal
arm 2 is above k2 (in which case at least some of the op-
timal solutions are supported by arms i and 2). Hence,
we have

ej,t S Kj, .7 g {1’257;}7 and
Ko < 02 < g,

(1)

Pr(i(t) = i| B (t), Fi-1)
< Pr(i(t) = i,0,(t) < ry, M;(t)|E2(t), Fi_1)

= (1 — i) Pr(M;(8)| E7 (1), Fio), (2)

where the second step follows from the independence
of events conditional on the filtration F;_1.

Next, we bound the probability of selecting arm 1. We
observe that, conditioned on M;(t) and EY, arm 1 forms
a part of the optimal solution at time ¢ along with arm
2. Further, the probability mass assigned to arm 1
is (624 —n)/(02,+ — 01). For any Thompson samples
such that 65 > ko and 07 > k1, the probability mass
assigned to arm 1 is at least (k2 —1)/(k2 — K1) = €14
Consequently, we have

Pr(i(t) = 1/BY(t), Fin)

> Pr(i(t) = 1, My(t)| B (t), Fi 1)

= Pr(M;(t)| E{ (), Fr—1) - Pr(i(t) = 1[Mi(t), BY(t), Fo 1)
> €14 Pit 'PT(Mi(t”Ef(t)a]:t*l)’ (3)

Combining and we get the desired result.

Appendix B

Similar to the approach in [Agrawal and Goyal, 2013],
we bound the number of plays of any suboptimal arm
in the following manner:
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The last two terms of this expression are upper bounded
by (17) and (16) respectively. Then, following the
approach in [Agrawal and Goyal, 2013], we bound the
first term of the expression above using Lemma 1, where
we exploit the fact that the number of plays of arm 4
are a linear function of the number of playes of arm 1,
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where I is the indicator function, and we have used
the fact that €; ; is independent of the history of plays.

From (18), we have an upper bound on E(.- T1_+1 ). By

collecting the upper bounds from (16), (17), and (18),
we directly obtain Lemma 2.




Appendix C

We present the pseudocode for the LinCon-KL-UCB
algorithm in this section.

Algorithm 1 LinCon-KL-UCB

1: Input: Reward Values 71 . ny, Constraint 7, c
2: Initialize: kg1 Ny 0 =0,8¢1,.. n},0=0.
3: for Time indext =1to T do

4: if t< N then
5: i(t)=t
6: else
7 for Arm indexi=1to N do
7 fiiy = max{q € O : kid(’:—:j,q) log(t) +
cloglog(t)}
8: end for
9: Solve, if feasible, the linear program:
LP(fi) : maximize in,tﬂi,tri
D i Titflie =M
subject to ¢ > . @i =1
2, >0 Vie{l,...,N}
(4)
10: if a (feasible) optimal solution existed then
11: Sample i(t) ~ [T1,4,---, TN,
12: else
13: Sample i(¢) uniformly from {1,...,N}.
14: end if
15:  end if

16:  Observe: Reward event c;) € {0,1}.
17:  Update:

ki(t) = ki(t) +1

Si(t) = Si(r) T Ci(t)-
18: end for
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