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A Proof of Theorem 2

Proof. In this proof, we condition on the event in Lemma 1 holding true, meaning that ucb; and lcb; provide
valid confidence bounds as per (13). As stated in the lemma, this holds with probability at least 1 — 4.

Our main goal in this proof is to upper bound the difference:
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To do so, we provide upper and lower bounds of the first and second terms, respectively, and then we upper
bound their difference.

First, we show that the following holds:
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where x; is the point queried at time t.

To prove Eq. (20) we use the lower confidence bound and (14):
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where (22) follows from the definition of the confidence bounds in (5) and (6), (24) is due to monotonicty of
Bt, and (25) is by rule (10) used in Algorithm 1 to select 6;. Finally, (26) is obtained via the standard result
from (Srinivas et al., 2010; Chowdhury and Gopalan, 2017)
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when \ > 1.

Next, we show that the first term can be upper bounded as follows:
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To prove this, we start by upper bounding the minimum value of the inner objective:
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We obtain Eq. (28) as the following trivially holds
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for each ¢ and w; € {w € [0,1]™ : >°/" | w[i] = 1}, and hence it also holds for the average value
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Eq. (29) follows from (14), (30) follows by the linearity of expectation, and (32) holds since Dirac delta &,
Ve € X, is in A(X). Finally, (33) follows by rule (9) used in Algorithm 1 to select ;.

Next, we bound the difference in (19) by combining the bounds obtained in (26) and (33):
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where (34) follows by the guarantees of the no-regret online multiplicative weight updates algorithm played by
the adversary, that is,
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with the learning rate set to np = 81%(7”). For more details on this result see (Cesa-Bianchi and Lugosi, 2006,

Section 4.2) where the same online algorithm is considered. Specifically, the result above follows from (Cesa-
Bianchi and Lugosi, 2006, Theorem 2.2) by noting that Zle Eg~w, [uchbi_1(z¢,0)] = 23:1 wl - uchy_q (x4, ),
mingceo Zle uchy_q(x;,0) = ming,eca(o) Zil w’ - ucby_1(x,-) and ucb;_;(-,-) € [0,1] for every ¢. In our
case, the objective function changes with ¢ but remains bounded, which allows the result to hold despite the
changes (see time-varying games result extension (Cesa-Bianchi and Lugosi, 2006, Remark 7.3)).

By rearranging (34) and by letting /(") be the uniform distribution over the queried points {1, ..., s} during
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the run of Algorithm 1, we obtain:
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Finally, we require € > 4/ % + 48714/ @, which we obtain when
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B Proof of Corollary 3

Proof. The proof closely follows the one of Theorem 2. The main changes are due to the modified best-response
rule from (16).

For a given distribution Q € A(O) and trade-off parameter x € (0, 1], we can define the new function
9(@,0) :=x - f(,0) + (1 - x) - Eg~olf(z, 0)] (36)

Same as before, our goal is to upper bound the difference:
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where x; is the point selected at time ¢ by GP-MRO using the modified best-response rule as in (16).

Next, we condition on the event in Lemma 1 holding true, and we provide upper and lower bounds of the first
and second term, respectively.

First, we show that the second term of (37) can be lower bounded as:
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To prove Eq. (38) we make use of (36) and similar arguments as the ones used in the proof of Theorem 2:
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To prove this we use similar arguments as in the proof of Theorem 2:
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where (40) is obtained by the rule in (16) used to select ;.
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Next, we bound the difference in (37) by combining the bounds (38) and (39) and applying (35) to obtain:
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By letting (") be the uniform distribution over the queried points {z1,...,x7} and by using the definitions of
W (-) and P* together with the bound (41), we obtain:
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Finally, we require € > x4/ log ) 4 4By WT’\ , which we obtain when
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