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Abstract

In many application domains (e.g., recom-
mender systems, intelligent tutoring systems),
the rewards associated to the actions tend to
decrease over time. This decay is either caused
by the actions executed in the past (e.g., a
user may get bored when songs of the same
genre are recommended over and over) or by
an external factor (e.g., content becomes out-
dated). These two situations can be modeled
as specific instances of the rested and rest-
less bandit settings, where arms are rotting
(i.e., their value decrease over time). These
problems were thought to be significantly dif-
ferent, since Levine et al. (2017) showed that
state-of-the-art algorithms for restless bandit
perform poorly in the rested rotting setting.
In this paper, we introduce a novel algorithm,
Rotting Adaptive Window UCB (RAW-UCB),
that achieves near-optimal regret in both rot-
ting rested and restless bandit, without any
prior knowledge of the setting (rested or rest-
less) and the type of non-stationarity (e.g.,
piece-wise constant, bounded variation). This
is in striking contrast with previous negative
results showing that no algorithm can achieve
similar results as soon as rewards are allowed
to increase. We confirm our theoretical find-
ings on a number of synthetic and dataset-
based experiments.

1 Introduction

When we design sequential learner, we would like them
to be as adaptive to environment as possible. This
becomes a challenge when the environment only pro-
vides limited feedback, as in the bandit setting (Lai
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and Robbins, 1985; Lattimore and Szepesvári, 2020),
where the learner receives only the feedback associ-
ated to the action it executed. Since the early stages
of the research in bandits (Thompson, 1933; Whit-
tle, 1980), one of the most desirable properties for
a learners would be to adapt to actions whose value
changes over time (Whittle, 1988), as it happens in
non-stationary environments. In fact, from applica-
tions in medical trials (where the patient can become
more resistant to antibiotics) to a modern applications
in recommender systems (Chapelle and Li, 2011; Tracà
and Rudin, 2015), assuming that the environment is
stationary is very limiting.

However, modeling and managing non-stationary en-
vironments is obviously way more difficult (Lattimore
and Szepesvári, 2020). That is why Auer et al. (2003)
went as far as to consider the worst-case scenario, re-
ferred to as the adversarial bandit setting, where the
learner should try to shield from the worst possible vari-
ation in rewards. Nonetheless, real-world environments
are rarely adversarial and algorithms for adversarial
bandits turn out to be too conservative for practi-
cal use. On the one hand, in order to manage such
general family of environments, the performance of a
learner is compared to the best fixed action in hindsight.
This is arguably a weaker objective w.r.t. competing
against the optimal strategy, as it is the case in sta-
tionary bandits. On the other hand, state-of-the-art
adversarial algorithms (Audibert and Bubeck, 2009),
which are proved to recover near-optimal regret rates
on stationary problems, still under-perform in practice
against optimal stationary algorithm (Zimmert and
Seldin, 2019). In order to address these issues, prior
work identified specific types of non-stationary environ-
ments, for which specifically designed algorithms can
be used.

There are two main classes of non-stationary environ-
ments, depending on whether the change of rewards
is triggered by the actions of the learner, the rested
bandits, or it happens over time independently from the
learner, the restless bandits. In this paper, we consider
the specific case where the changes in the rewards are
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arbitrary non-increasing functions of time and/or num-
ber of pulls (in contrast with typical restless bandit
models, where the evolution of rewards was regulated
by Markov chain processes). For instance, Warlop et al.
(2018) model boredom effects in recommender systems
as a rested bandit problem, but need to resort to a more
general reinforcement learning framework to address
the fact that rewards are decreasing while an action
is repeatedly selected but may increase back if enough
time has passed since the last time is chosen. Immorlica
and Kleinberg (2018) and Pike-Burke and Grunewalder
(2019) have recently modeled these recharging effects
as a bandits problem. In the restless setting, Louëdec
et al. (2016) models obsolescence of appearing arms
(e.g. piece of news) with a known exponential rate.
Komiyama and Qin (2014) study a parametric decay in
restless bandits where rewards are linear combination
of known decaying function. In the following, we briefly
review the most relevant results available for restless
bandit (where no rotting assumption has been studied
before) and the rested rotting bandit settings.

Restless stochastic bandits Garivier and
Moulines (2011) study the restless bandits case, where
rewards are piece-wise stationary. If the number of
stationary pieces ΥT at the horizon T is known, the
optimal strategy is included in a set of TΥT switching
experts. Hence one can use Exp3.S, an adversarial
algorithm designed for this specific set of experts
(Auer et al., 2003). Moreover, Garivier and Moulines
(2011) show that two upper-confidence bound index
algorithms with passive forgetting parameters, SW-UCB
and D-UCB, are also able to reach nearly-minimax
performance when they know in advance ΥT and
T . Recent research (Cao et al., 2019; Liu et al.,
2018; Besson and Kaufmann, 2019) has focused on
integrating change-detection algorithms with standard
bandit learners (e.g. UCB) to actively forget past
rewards whenever a significant variation in the reward
distribution is detected. Among them, we mention
GLR-klUCB (Besson and Kaufmann, 2019) which uses
a parameter-free change-point detector. These algo-
rithms actively explore sub-optimal actions to track
potential increase in their value. Yet, their analysis
assume that change-points are always big enough
to be detectable with high-probability. Auer et al.
(2019) introduce AdSwitch, a filtering algorithm with
a planned active exploration scheme for sub-optimal
actions. AdSwitch achieves the minimax rate while
being agnostic to ΥT without any extra assumption.

Besbes et al. (2014) introduced a restless bandits frame-
work where the environment has a variation budget
of VT to change the rewards’ values. In this setup,
the best arm can change at each round and thus the
optimal strategy is not necessary included in a "small"

set of switching experts. Yet, they show that the best
strategy with O

(
T 1/3

)
switches suffers low regret com-

pared to the optimal strategy. Hence, Exp3.S matches
the minimax rate O

(
T 2/3

)
with the knowledge of VT .

Cheung et al. (2019) and Russac et al. (2019) extended
SW-UCB and D-UCB to show that they also match the
minimax rate of the variation budget setting even in
the more general linear bandits framework. Chen et al.
(2019) show that AdSwitch also matches the minimax
rate without the knowledge of VT . They also analyse
ADA-ILTCB+, an algorithm which achieves similar guar-
antee in the more general linear setting. Wei et al.
(2016) extended these results to a non-stationary en-
vironment where both the means and the variances of
the rewards may change.

Rested rotting bandits Finally, Heidari et al.
(2016); Levine et al. (2017) and Seznec et al. (2019)
studied rested rotting bandits, when the reward of an
action decreases every time it is pulled. Seznec et al.
(2019) recently proposed a nearly-optimal algorithm
for this setting. Interestingly, the algorithm does not
execute an index policy (defined later) which is a preva-
lent choice in bandit. Actually, a previous attempt of
using an index policy by Levine et al. (2017) resulted
in a sub-optimal performance.

Our contribution is threefold:

• We show that no learning strategy can achieve o(T )
worst case rate when we allow for both rested and
restless decay (Section 2).
• We introduce a novel index policy RAW-UCB (Sec-
tion 3) and prove that it achieves minimax rate
regret for either restless (Section 4) or rested (Sec-
tion 5) settings without any prior knowledge of
the type of decay, the amount of change, or the
horizon.
• RAW-UCB also recovers problem-dependent
O (log T ) bounds in both setups. In the restless
case1, such bounds cannot be achieved when
the reward can increase. Hence, it shows that
the decreasing assumption do help the learner
compared to the well-studied general case.

Also, we provide a rested simulated (Appendix G.1) and
restless real-world (Section 6) benchmarks on which
RAW-UCB gives the most consistent results in both se-
tups.

1In the rested case, Heidari et al. (2016) shows that
increasing reward is a much harder problem, even in the
absence of noise.
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2 Decreasing multi-armed bandits

At each round t, an agent chooses an arm it ∈ K ,
{1, ...,K} and receives a noisy reward ot. The sample
associated to each arm i is a σ2-sub-Gaussian r.v. with
expected value of µi(t, n) which depends on the number
of times n it was pulled before and on the time t.

Let Ht , {{i(s), os} ,∀s ≤ t} be the sequence of arms
pulled and rewards observed until round t, then

ot , µit(t,Nit,t−1) + εt ,

with E [εt|Ht−1] = 0 and ∀λ ∈ R, E
[
eλεt

]
≤ e

σλ2

2 ,
where Ni,t ,

∑t
s=1 1 (is = i) is the number of pulls of

arm i at time t. We call µ , {µi}i∈K the set of reward
functions.

Decreasing rewards Throughout all the paper, we
consider the following assumption.
Assumption 1. For each arm i, any number of pulls
n, and time t, the functions µi(t, ·) and µi(·, n) are
non-increasing.

We will use interchangeably the terms decreasing, de-
caying and rotting to refer to this Assumption. If
µi(t,Ni,t) = µi(Ni,t), then i is called a rested arm. If
µi(t,Ni,t) = µi(t), then i is called a restless arm.

Learning problem A (deterministic) learning pol-
icy π is a function that maps history of observations
to arms, i.e., π(Ht) ∈ K. In the following, we often
use π(t) , π(Ht−1) to denote the arm pulled at time
t. The performance of a policy π is measured by the
(expected) rewards accumulated over time,

JT (π, µ) ,
T∑
t=1

µπ(t)

(
t,Nπ(t),t−1

)
.

A (deterministic) oracle policy is a function which maps
the set of reward functions and a round to an arm, i.e.,
π(t, µ) ∈ K. Thus, these oracles have access to the true
(without noise) value of the rewards, including future
value. Notice that at the horizon T , there are KT

distinct deterministic policies. Therefore, we call an
optimal (oracle) policy, one which, at a given horizon
T , maximizes the reward

π∗T (t, µ) ∈ arg max
π∈KT

JT (π, µ) .

We define the regret as
RT (π, µ) , JT (π?T , µ)− JT (π, µ).

Notice that this definition is more challenging than
the regret w.r.t. the best fixed-arm policy commonly
used as comparator in adversarial bandits. In the
following, we often use shorter notation π∗T (t), JT (π),
RT (π) where the considered problem µ is implicit.

Greedy oracle policy It is still unclear if 1) we
can compute π?T in a tractable way; 2) if a learn-
ing policy can suffer low regret compared to this
policy. We call πO the oracle policy which selects
greedily at each round t the largest available reward
it ∈ arg maxi∈K µi(t,Ni,t−1).2 We notice that this pol-
icy is optimal at any time in any restless non-stationary
bandit problem µ(t). Heidari et al. (2016) show that it
is also optimal in the rested rotting bandits problem.
Thus, πO answers positively to the first question for
either rested or restless decay. In the next proposition,
we show that the greedy oracle suffers linear worst-case
regret when we allow for both restless and rested decay
at the same time. Worse, we show that no learning
policy can approach the performance of the optimal
oracle at a o(T ) rate

Proposition 1. In the no noise setting (σ = 0), there
exists a rotting 2-arms bandits problem (satisfying As-
sumption 1) with reward value in [0, 1], with one rested
arm and one restless arm, and with at most one change-
point before T each, such that the greedy oracle strategy
πO suffers a regret

RT (πO) ≥
⌊
T

4

⌋
.

Moreover, for any learning strategy πS, there exists
a rotting 2-arms bandits problem (satisfying Assump-
tion 1) with reward value in [0, 1], with one rested arm
and one restless arm, and with at most one change-
point before T each, such that

RT (πS) ≥
⌊
T

8

⌋
.

Notice that the two reward functions of the constructed
difficult problems are simple: either rested or restless,
bounded and with at most one break-point. If we
consider a 2-arm setup with one rested arm and one
restless arm, a good strategy may be to select the
restless arm even when its current value is the worst.
Indeed, this value is only available now, while the good
value of the rested arm will still be available in the
future. Whether the restless rewards are interesting
to the learner depends on the future behavior of the
(currently best) rested arm. On the first hand, if it
decays below the current value of the restless arm before
the horizon T , then the learner should profit from the
restless reward available right now. On the other hand,
if the rested arm stays optimal until the end of the
game then the learner should ignore the restless arm
and follows the greedy oracle strategy. However, the
learner does not know in advance if (and how much)
an arm will decay and any anticipation she makes will

2We break the ties arbitrarily, for instance by selecting
the smallest index in argmaxi∈K µi (t,Ht)
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turn to be bad in the worst case. We formalize these
ideas in the proof in Appendix B and show that any
strategy suffers linear regret in the worst case.

While learning with rested and restless rotting reward
is impossible, we show in the next sections that a
single policy reaches near-optimal guarantee in both
separated setups.

3 The RAW-UCB algorithm

Notation For policy π, we define the average of the
last h observations of arm i at time t as

µ̂hi (t, π) ,
1

h

t−1∑
s=1

1(π(s)= i ∧Ni,s>Ni,t−1−h) os (1)

and the average of the associated means as

µhi (t,π),
1

h

t−1∑
s=1

1(π(s)= i∧Ni,s>Ni,t−1−h)µi(s,Ni,s−1) .

A favorable event We use a similar high probability
analysis than UCB1. We design a favorable event and
we show in Prop. 2 that it holds with high probability.

Proposition 2. For any round t and confidence δt ,
2t−α, let

ξαt ,
{
∀i ∈K, ∀n≤ t−1, ∀h≤n,

|µ̂hi (t, π)− µhi (t, π)| ≤ c(h, δt)
} (2)

be the event under which the estimates at round t are all
accurate up to c(h, δt) ,

√
2σ2 log(2/δt)/h. Then, for

a policy π which pulls each arms once at the beginning,
and for all t > K,

P
[
ξαt

]
≤ Kt2δt

2
= Kt2−α ·

Rotting Adaptive Window Upper Confidence
Bound (RAW-UCB or πR). At each round, RAW-UCB
selects the arm with the largest following index,

ind(i, t, δt) , min
h≤Ni,t−1

µ̂hi (t, πR) + c(h, δt), (3)

with δt , 2
tα . There is a bias-variance trade-off for

the window choice: more variance for smaller size of
the window h and more bias for larger h. The goal
of RAW-UCB is to adaptively select the right window to
compute the tightest UCB. RAW-UCB uses the indexes of
UCB1 computed on all the slices of each arm’s history
which include the last pull. When the rewards are
rotting, all these indexes are upper confidence bounds
on the next value. Thus, RAW-UCB simply selects the
tightest (minimum) one as index of the arm: it is a pure

Algorithm 1 RAW-UCB

Input: K, σ, α
1: for t← 1, 2, . . . ,K do . Pull each arm once
2: Pull it ← t; Receive ot ; Nit ← 1
3:

{
µ̂hit
}
h
← UPDATE(

{
µ̂hit
}
h
, ot) . cf. (1)

4: end for
5: for t← K + 1,K + 2, . . . do
6: Pull it∈arg maxi minh≤Ni µ̂

h
i +c(h,δt) . cf. (3)

7: Receive ot ; Nit ← Nit + 1
8:

{
µ̂hit
}
h
← UPDATE(

{
µ̂hit
}
h
, ot) . cf. (1)

9: end for

UCB-index algorithm. By contrast, when reward can
increase, the learner can only derive upper-confidence
bound on past values which are loosely related to the
next value. Hence, all the UCB-index algorithms in the
restless non-stationary literature need to add change-
detection sub-routine, active random exploration or
passive forgetting mechanism. In Lemma 1, we show a
guarantee of RAW-UCB on the favorable event.

Lemma 1. At round t on favorable event ξαt , if arm it
is selected, for any h ≤ Ni,t−1, the average of its h last
pulls cannot deviate significantly from the best available
arm at that round, i.e.,

µhit(t, π) ≥ max
i∈K

µi(t,Ni,t−1)− 2c(h, δt).

Seznec et al. (2019) show a slightly worse guarantee
about the algorithm FEWA (πF) for the rested rotting
bandits. In Appendix C (see Lemma 2), we restate
their result using only Assumption 1. FEWA uses the
same statistics than RAW-UCB but in a rather complex
expanding filtering mechanism which leads to a guar-
antee of only 4 confidence bounds. Lemma 1 is the
only characterization we need for our analysis. There-
fore, all our upper bounds will hold for both FEWA and
RAW-UCB with their associated constant,

CπR , 2
√

2α CπF , 4
√

2α. (4)

Algorithmic complexity FEWA and RAW-UCB have
O(Kt) per round time and space complexity. In
Appendix D, we describe EFF-RAW-UCB (πER) and
EFF-FEWA (πEF), two algorithms which reduces the
complexities to O (K logm(t)). It is a refinement of the
trick of Seznec et al. (2019) where we add a parameter
m > 1 to trade-off between complexity and efficiency3.
For m = 2, we prove Lemma 3 and Prop. 11, which
are comparable with Lemma 1 and Prop. 2. Therefore,
our analysis also holds for these algorithms with,

CπER ,
4
√
α√

2− 1
CπEF ,

8
√
α√

2− 1
· (5)

3When m < 1 + 1
T
, EFF-RAW-UCB behave as RAW-UCB.
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The efficient algorithms use less statistics than the
original ones. Thus, the probability of the unfavorable
event is bounded by O

(
t1−α

)
(see Prop. 11) which is

smaller than O
(
t2−α

)
in Prop. 2. Hence, our theory

holds for a wider range of α for the efficient algorithms.

4 Restless rotting bandits

In this section, the reward decreases independently of
the user actions. Hence, we have that µi (t, n) = µi (t).

Variation budget bandits

Setup. Besbes et al. (2014) introduce the limited
variation budget bandits, a restless setting where at
each round Nature can modify the reward value of
any arm but with a limited total variation budget
VT at round T. We combine this assumption with
Assumption 1,
Assumption 2. µi : N? → [−VT , 0] are decreasing
functions of the time t with VT a positive constant.
Moreover, we have that,

T−1∑
t=1

sup
i∈K

(µi(t)− µi(t+ 1)) ≤ VT . (6)

Remark 1. In the rotting scenario, the budget assump-
tion is very similar to the bounded assumption. Indeed,
any set of decreasing functions µi : N? → [−V, 0] satis-
fies Equation 6 with VT = KV . Reciprocally, any set
of functions satisfying Equation 6 with µi(1) ∈ [−VT , 0]
are bounded in [−2VT , 0].

Lower bound. We show that our additional decreas-
ing assumption does not change the minimax rate for
budget bandits. This is an adaptation of the proof of
Besbes et al. (2014) where we only use rotting function.
Proposition 3. For any strategy π, there exists a
rotting variation budget bandit scenario with means
{µi(t)}i,t satisfying Assumption 2 with a budget VT ≥

σ
√

K
8T such that,

E [RT (π)] ≥ 1

16
√

2

(
σ2VTKT

2
)1/3

.

Upper bound. RAW-UCB matches this lower bound
up to poly-logarithmic factors without any knowledge
of the horizon T nor the budget VT .
Theorem 1. Let π ∈ {πF, πR} tuned with α ≥ 4 or
π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For any
variation budget bandit scenario with means {µi(t)}i,t
satisfying Assumptions 2 with variation budget VT , π
suffers an expected regret,

E [RT (π)]≤ 4
(
C2
πσ

2VTKT
2 logT

)1/3
+Õ

((
σV 2

TK
2T
)1/3)

.

The remaining terms are of second order when KVT ≤
O(T ), which is a necessary condition for the problem
to be learnable (see Proposition 3).

Piece-wise stationary bandits.

Setup. In this section, we also consider bounded
functions. Hence, they also satisfy Assumption 2 (see
Remark 1). However, we further restrained them to be
piece-wise stationary,

Assumption 3. Let V be a positive constant and ΥT

a positive integer. µi : N? → [−V, 0] are piece-wise
stationary non-increasing functions of the time t with
at most ΥT − 1 breakpoints.

Formally,
∑T−1
t=1 1 (∃i∈K, µi(t) 6=µi(t+1)) ≤ ΥT −1.

We call {tk}k≤Υ−1 the set of breakpoints with t0 = 0,
µki the value of µi(t) for t ∈ {tk + 1, . . . , tk+1}. We call
i?k ∈ arg maxi∈K µ

k
i (one of) the best arm in batch k and

∆i,k , µki?k
−µki the gap to the best arm for arm i during

batch k. Note that we relax all the assumptions related
to the distance between consecutive breakpoints (e.g.
Besson and Kaufmann (2019) and their Assumption 4
and 7; Liu et al. (2018) and their Assumption 1 and 2;
Cao et al. (2019) and their Assumption 1).

Lower bound. We show that our additional Assump-
tion 1 does not decrease the minimax rate of Garivier
and Moulines (2011).

Proposition 4. For any strategy π, there exists
a rotting piece-wise stationary bandit scenario with
means {µi(t)}i,t satisfying Assumption 3 with ΥT ≤(

32V 2T
Kσ2

)1/3
such that,

E [RT (π)] ≥ σ

32

√
ΥTKT .

The condition on ΥT in Proposition 4 follows from
Remark 1: if V is too small compared to ΥT , then we
have a budget constraint (with associated lower bound
in Proposition 3) rather than a break-point constraint.

Upper bound. RAW-UCB matches the lower bound
from Proposition 4 up to poly-logarithmic factors with-
out any knowledge of the horizon T nor the number of
breakpoints ΥT − 1.

Theorem 2. Let π ∈ {πF, πR} tuned with α ≥ 4 or
π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For
any piece-wise stationary bandit scenario with means
{µi(t)}i,t satisfying Assumption 3 with ΥT − 1 change-
points, π suffers an expected regret,

E [RT (π)] ≤ Cπσ
√

log T
(√

ΥTKT + ΥTK
)

+ 6KV.



Julien Seznec, Pierre Menard, Alessandro Lazaric, Michal Valko

Are rotting restless bandits easier? Learning at
the minimax rate without knowing ΥT or VT was
achieved in the non-rotting setup by significantly more
complex algorithms. For instance, Auer et al. (2019)
use a combination of filtering on the set of potentially
good arms, forced exploration planning on identified
bad arms, and full restart of the algorithm when a
change is detected. This algorithmic complexity has a
performance cost, as AdSwitch is guaranteed to achieve
56 times the leading term in Theorem 2. Moreover,
these algorithms rely on doubling trick when the hori-
zon is unknown, which also has a regret cost compared
to intrinsically anytime algorithms (Besson and Kauf-
mann, 2018).

Yet, Proposition 3 and 4 show that the rotting as-
sumption do not improve the minimax rate for the
two considered setups. Interestingly both these lower
bounds are matched by (tuned) Exp3.S (Auer et al.,
2003), an algorithm originally designed for switching
best arm in adversarial sequence of rewards. This is
comparable to the fixed best arm world: adversarial and
stochastic bandits share the same minimax rate which
is matched in both setups by Exp3. The main interest
of the stochastic assumption is to allow for problem de-
pendent analysis. For the stochastic stationary bandits,
it leads to a stronger O(log (T )) bounds. In the piece-
wise stationary setting, Garivier and Moulines (2011)
show that such bounds cannot be achieved without
sacrificing the minimax optimality.

Proposition 5 (Theorem 31.2, Lattimore and
Szepesvári (2020)). If a policy π performs a regret
RT (π, µ) on a 2-arm stationary instance µ, one can
find a piece-wise stationary instance µ′ with only two
breakpoints such that, for a sufficiently long horizon T ,
the regret is lower bounded by

E [RT (π, µ′)] ≥ T

22RT (π, µ)
·

Corollary 1. Let π a minimax policy on the (non-
rotting) piece-wise stationary setups. Then, for a suffi-
ciently large horizon T , there exists a universal constant
C such that for all the 2-arm stationary problems µ,

E [RT (π, µ)] ≥ C
√
T .

The proof of Proposition 5 is instructive. It builds a
problem µ′ on which the reward function equals the
reward of the stationary problem µ except on a time
span τ . During this time span, the best arm of µ keeps
its value while the worst arm increases to become
optimal. The size of τ is chosen inversely proportional
to the average pulling rate of the bad arm in µ. Indeed,
the lower the pulling rate of the bad arm, the longer
the adversary can increase its value in µ′ without being
noticeable by the learner. Since the pulling rate of the

bad arm in µ is proportional to RT (µ), we get a lower
bound proportional to τ ∼ T

RT (µ) .

The decreasing Assumption 1 excludes this µ′ from
the set of possible problems. Theorem 3 shows that
not only RAW-UCB is able to recover the O (log (T )) on
stationary problems but also recovers the same rate on
each batch of a rotting piece-wise stationary problem.
Theorem 3. Let π ∈ {πF, πR} tuned with α ≥ 4 or
π ∈ {πEF, πER} tuned with α ≥ 3 and m = 2. For
any piece-wise stationary bandit scenario with means
{µi(t)}i,t satisfying Assumption 3 with ΥT − 1 change-
points, π suffers an expected regret

E [RT (π)] ≤
ΥT−1∑
k=0

∑
i∈K

C2
πσ

2 log T

∆i,k
+O

(
σΥTK

√
log T

)
.

Like in UCB1 ’s analysis, Proposition 2 uses a union-
bound with Hoeffding inequality. This technique leads
to conservative theoretical tuning of confidence levels
and to a suboptimal constant factor C2

π/2. One can get
the asymptotic optimal tuning for UCB on stationary
gaussian bandits with a refined analysis which uses a
specific concentration result on the deviation of the in-
dex (e.g. Lemma 8.2, Lattimore and Szepesvári (2020)).
Yet, extending this result to our more complex meta-
index and to our several setups is not straightforward
and we leave it as future work. Interestingly, the exper-
imental tuning α = 1.4 is very close to the asymptotic
tuning of UCB (see Section 6). It suggests that, besides
our union bound considers more events than UCB in
the theory, we do not have to be significantly more
conservative on the confidence levels in practice.

Notice that Mukherjee and Maillard (2019) use a dif-
ferent assumption to get a similar problem-dependent
bound. Indeed, they assume that all the arms change
at the same time which also excludes µ′ from the set
of possible problems.

Proofs sketch (full proofs in Appendix E)

Lower bounds. Our proof technique make a strong
connection between Proposition 3 and 4. Yet, we
adapt existing proofs to the decreasing case (Garivier
and Moulines, 2011; Besbes et al., 2014). Hence, we
defer the full proof and its sketch to Appendix E.

Upper bounds. We start by separating the regret on
the bad events ξt from the good events ξt. According to
Proposition 2, the bad events ξt have low probability
for appropriate α. For α = 4, they weigh at most
O(KV ) in the expected regret. On the good events,
we write:

RT (π) =

T∑
t=1

µi?t (t)−µhtit (t, π)+µhtit (t, π)−µit(t) . (7)
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Notice that Lemma 1 can bound the first difference for
any ht. When the reward is piece-wise stationary, we
can select ht such that we include all the pulls of arm
it from the current stationary batch. If there is none,
then it is the first pull of arm it in this batch. We
handle these O(KΥT ) rounds separately (see Lemma 6
in Appendix E). In the other cases, we note that the
second difference is null because µhtit (t, π) = µit(t) = µki
by the piece-wise stationary assumption. The remain-
ing of the proofs of Theorem 2 and 3 are then very
similar to the analysis of Auer et al. (2002) on each
stationary batch. Indeed, the two confidence bounds
guarantee of Lemma 1 is similar to UCB1’s guarantee.

In the variation budget setting, there is no stationary
batches. Hence, we cannot choose an ht which cancels
the second difference in Equation 7. Yet, we still de-
compose the rounds in Υ batches of equal length for
the analysis. We choose ht such that we include all the
pulls of arm it from the current batch. For the sum of
the first differences in Equation 7, there is no difference
with the piece-wise stationary case and we can bound

T∑
t=1

µi?t (t)− µhtit (t, π) ≤ Õ
(√

KΥT
)
. (8)

We call ∆k
i , µi(tk)− µi(tk+1), the total variation of

arm i in batch k. The sum of second differences in
Equation 7 can be bounded as follows: on each batch
of TΥ−1 rounds, each second difference is bounded by
maxi∈K∆k

i . When we sum over the batches, we get
T∑
t=1

µhtit (t, π)− µit(t) ≤
T

Υ

Υ−1∑
k=0

max
i∈K

∆k
i ≤

TVT
Υ

. (9)

Indeed, in the middle term, we have a maximum on the
summed variation of arm i in batch k. On the right-
hand side, we have VT which bounds the sum over the
rounds of maximal variation of the arms (see Equa-
tion 6). Thus, the right-hand side is larger because
the maximum of sums is smaller than the sum of max-
imums. We can then choose Υ = Õ

(
T 1/3V

2/3
T K−1/3

)
to minimise the sum of Equation 8 and 9. It leads to
the leading term of our Theorem 1. Notice that we still
have to handle the first pull of each arm in each batch.
If we bound roughly each first pull by VT , we would get
KΥVT ∼ Õ

(
V

5/3
T

)
which would be the leading term

for large VT . Our Lemma 6 is more careful such that
it leads to a second order term when KVT ≤ o (T ).

5 Rested rotting bandits

Setup We use the rotting setup of Seznec et al.
(2019), which extends the one of Levine et al. (2017).
This setup is rested non-stationary bandits: the change
in arm’s reward is triggered by the pulls. Hence, we

have µi(t, n) = µi(n). Thus, we note that µhi (t, π) =

µhi (Ni, t−1) = 1
h

∑h−1
s=0 µi(Ni, t−1 − s). With a slight

abuse of notations, we will also use µ̂hi (Ni, t−1) ,
µ̂hi (t, π)4. Let

L , max
i∈K

max
n∈{0,...,T−1}

µi(n)− µi(n− 1),

with µi(−1) , max
j∈K

µj(0). (10)

Hence, L bounds both the variation of µis between
two consecutive pulls and the gaps between arms at
the first pulls. This is an important quantity for the
rested rotting analysis because the minimax rate for
the noise-free case is O(KL) (Heidari et al., 2016).

Theoretical guarantees The analysis of RAW-UCB
is straightforward from the analysis of FEWA due to their
similarity. Thus, we recover the problem independent
and dependent bounds (see Seznec et al. (2019) for a
sketch of the proof, and App. F for a detailed analysis).
Proposition 6 (gap-free bound). Let π ∈ {πF, πR}
tuned with α ≥ 5 or π ∈ {πEF, πER} tuned with α ≥ 4
and m = 2. For any rotting bandit scenario with means
{µi}i satisfying Assumption 1 with bounded decay L
and any time horizon T , π suffers an expected regret,

E [RT (π)] ≤ Cπσ
√

log (T )
(√

KT +K
)

+ 6KL.

Proposition 7 (gap-dependent bound). π ∈ {πF, πR}
tuned with α ≥ 5 (or π ∈ {πEF, πER} tuned with α ≥ 4
and m = 2) suffers an expected regret,

E [RT (π)] ≤
∑
i∈K

(
C2
πσ

2 log (T )

∆i,h+
i, T−1

+ Cπσ
√

log (T ) + 6L

)

with h+
i,T ,max

{
h≤1+

C2
πσ

2log T

∆2
i,h−1

}
, and the pseudo-gap

∆i,h , min
j∈K

µj
(
N?
j,T − 1

)
− µhi

(
N?
i,T + h

)
.

RAW-UCB matches the minimax rate (Prop. 6) up to
poly-logarithmic factors. RAW-UCB improves over FEWA’s
problem-dependent guarantee by a factor 4 (Prop. 7).
Following Remark 1 of Seznec et al. (2019), one can
identify ∆i,h = ∆i in the stationary setting. It gives
almost the same guarantee than in Theorem 3 when
ΥT = 1 (stationary case). The difference comes from
the increased α for the rested case. Indeed, in the
rested case, the regret at each round t can be as bad as
Lt. Hence, we reduce the probability of the bad event
ξt (see Prop. 2). When the reward means are bounded
(e.g. for Bernoullis), we can decrease the lower bound
on α by one in Propositions 6 and 7.

4The average of the observations depends on the realiza-
tion of the noise εt at time t. Yet, these h samples of noise
are i.i.d. and thus do not perturb the analysis (see Prop. 2).
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6 Real-word data experiment on
Yahoo! Front Page

R6A - Yahoo! Front page today module user
click log dataset This dataset was used for the Ex-
ploration and Exploitation Challenge5 at ICML 2012
and inspired new algorithms. Among them we mention
the work of Tracà and Rudin (2015) who noticed the
non-stationary trend and took advantage of it. Since
then the dataset continues to be a benchmark6 for non-
stationary bandits (Liu et al., 2018; Cao et al., 2019).
It contains the history of clicks on news articles of 45
millions users in the first ten days of May 2009. We
use three features in this dataset: timestamp (rounded
every 5 minutes), article_id, and click.

A real decaying scenario Every day, between 6pm
and 6am EST (12 hours), we notice a decreasing trend
in click probability. It suggests that people in the US
read less and less news during the evening and night.
For every day, we keep all the articles which have been
recommended at every timestamp during the 12 hours.
For these articles, we use a rolling average window
of 30000 in order to estimate the probability of click
for each article at each timestamp 7. We use the real
total traffic for each timestamp. We highlight that
we do not enforce any of our assumptions to create
reward functions to be aligned with our setup. In
particular, we do not enforce them to be piecewise
constant nor to be decreasing. At each round, the
learner receives 10 reward samples in order to reduce
the cost of computation.

Algorithms and Parameters. We compare
RAW-UCB, FEWA, Exp3.S and GLR-UCB. We refer to
Appendix G for a discussion about missing algorithms
and tuning. Note that our goal is to compare
algorithms with the same tuning in the rested and
restless benchmark.

Results We display the results for two different days.
On day 2, there are several switches of optimal arms
with many near-optimal ones: tracking the best arm
is an "hard" problem. On day 7, one arm consistently
dominates the others by far. Hence, it is an "easy"
case where good algorithms should have a logarithmic
regret rate. We show the six other days and running
time in App. G.2.

5http://explochallenge.inria.fr/
6As it allows for offline evaluations as the actions were

samples uniformly.
7For each timestamp, we average the values given by

rolling average. These values are close to each other because
the number of click opportunity per article in the same
timestamp is small compared to 30000.
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Figure 1: Left: rewards from the Yahoo! dataset for
two days. Right: average regret over 500 runs.

RAW-UCB vs FEWA. The two algorithms compute the
same statistics and share most of their analysis. Yet,
RAW-UCB consistently outperforms FEWA on the full
(rested and restless) benchmark. The difference be-
tween the two is even more significant in the restless
case. Moreover, RAW-UCB is also simpler to implement
and faster to run. Its theoretical tuning α = 4 gets
reasonable result, while theoretical FEWA is impracti-
cal. Finally, its empirical tuning αR = 1.4 is similar
to the asymptotic optimal tuning of UCB and shows
good performance on both rested and restless problems.
By contrast, FEWA with αF = 0.06 shows worse perfor-
mance with larger deviation on the restless benchmark.

RAW-UCB vs Exp3.S. In Appendix G.1, we show that
random exploration of Exp3.S leads to high regret
rate in rested rotting bandits. Unsurprisingly, Exp3.S
recover more reasonable performance on the restless
benchmark, on which it has theoretical guarantees. Yet,
it is consistently outperformed by RAW-UCB when we
tune the confidence bounds. It is particularly true on
easy instance, e.g. on day 7. Indeed, on these cases,
we expect logarithmic regret rate for RAW-UCB.

RAW-UCB vs GLR-UCB (no active exploration).
GLR-UCB shows good results on the rested benchmark
though it is less consistent than RAW-UCB. On the rest-
less benchmark, GLR-UCB shows similar result than
RAW-UCB. Yet, we highlight that 1) GLR-UCB needs the
knowledge of the horizon to tune its change-detector; 2)
we use an efficient version of RAW-UCB which runs ∼ 10
times faster than GLR-UCB. In fact, the two algorithms
are similar: they are UCB index policies, they recover
logarithmic rate on easy restless rotting bandits prob-
lems and hence they would both suffer near-linear worst
case regret rate in the general restless setting (when
active exploration is turned off for GLR-UCB). The main
difference is that RAW-UCB scans its history to select its
rotting UCB’s window, while GLR-UCB scans its history
to detect significant changes and restart.

http://explochallenge.inria.fr/
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