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7 Appendix

7.1 Additional Results for Section 3

The following lemma provides upper bounds on the expected gradient of the worst-possible MKL-SGD
solution that lies in a ball around w∗. Simultaneously satisfying the following bound with the one in Lemma
3 may lead to an infeasible set of ε and N ′. And thus we use Lemma 4 in conjunction with 3.

Lemma 6. Let us assume that MKL-SGD converges to w̄MKL. For any w̄MKL ∈ Br(w∗) that satisfies
assumptions N1, N2, A4 and A5, there exists N ′ ≥ N and ε′ ≤ ε such that,∥∥∥∥∥∥

∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL)

∥∥∥∥∥∥
≤ min

{
(1− εk)L‖w̄MKL −w∗‖, εkG(w)

}
The proof for lemma 2 can be found in the Appendix Section 7.2.8

7.1.1 Squared loss in the scalar setting with outliers centered at different points

We will assume that without loss of generality all the outliers will lie on the same side of w∗. If that’s not the
case, the bounds which show in the subsequent part will be even stronger. Without loss of generality, assume
0 < wb1 < wb2 < · · · < wb|B| .

The loss functions and w̃ are redefined as follows:

fi(w) =

{
li(w − w∗)2 ∀ i /∈ O
li(w − wbi)2 ∀ i ∈ O,

(14)

w̃ :=

{
w

∣∣∣∣ w = min
λ∈(0,1)

[
λw∗ + (1− λ) min

j
wbj

]
, flm(w) = flM (w)

}
(15)

Once again by simple analysis of different points of intersection, we can describe a closed form expression of
w̃ as follows:

w̃ =

√
lmw

∗ +
√
lM̃wbM̃√

lm +
√
lM̃

where M̃ = arg maxj∈O
√
ljwbj and κ =

lM
lm

and ρ =
mini wbi
maxi wbi

Condition 2. p̂ <
1

1 +
κ

ρ

(
1 +

1√
κ

)
− 1

When ρ = 1, condition 2 becomes identical to condition 1.

Lemma 7. If Condition 2 is satisfied and the loss functions and w̃ are defined as in equation 26. Now let
us start at a point where the highest probabilities are assigned to all the bad samples, even in that case, the
stationary point attained by MKL-SGD will be such that the highest probabilities are assigned to the good
samples.

7.2 Proofs and supporting lemmas

7.2.1 Proof of Lemma 1

Proof. Proof. F̃ (w) =
∑
i pmi(w)(w). Let us fix a w such that pi = pi(w). We know that for any pi,∑

i pifi(w) is strongly convex in w with parameter λw. This implies

∇F̃ (w)>(w −w∗) ≥ λw‖w −w∗‖2
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A naive bound for the above Lemma can be:

∇F̃ (w)>(w −w∗) ≥ min
i
pi
∑
i

fi(w) ≥ λmin
i
pi︸ ︷︷ ︸

λw

‖w −w∗‖2

7.2.2 Proof of Theorem 1

Proof. By the definition of the noiseless framework, w∗ is the unique optimum of F (w) and lies in the
optimal set of each fi(.). We will prove this theorem by contradiction. Assume there exists some ŵ 6= w∗

that also satisfies optimum of ∇F̃ (ŵ) = 0. At ŵ, we have 0 =< ∇F̃ (ŵ), ŵ −w∗ >= λ‖ŵ −w∗‖2. This
implies ŵ = w∗.

Theorem 1 and Assumption 2 guarantee that λw > 0. If f(w) is strongly convex and g(w) is convex, then we
know that f(w) + g(w) is strongly convex. On similar lines we can show that λ > 0 by splitting the terms in

˜F (w) as pminF (w) and (F̃ (w)− pminF (w)). The first term has λ > 0 (Assumption 2) and the second term
has λ = 0 (since it is convex). Note, pmin is a positive constant independent of w and so the above lemma is
for all w.

7.2.3 Proof of the claim in Section 3

We will first describe the problem setting again for ease of analysis before elaborating on the proof.

Problem setting Let us assume good and bad samples are centered at the same point with different
Lipschitz constants. The loss functions are given as follows:

fi(w) =

{
li(w − w∗)2 ∀ i /∈ O
li(w − wB)2 ∀ i ∈ O,

(16)

where |O| = b such that n = g + b. Let lm = mini/∈O li and Let lM = maxi∈O li and lmax = mini∈[n] li,

lmin = mini∈[n] li. Let us define κ =
lmax
lmin

≥ lM
lm

. Let us define w̃ as follows:

w̃ :=

{
w | w = min

α
αw∗ + (1− α)wB , α ∈ (0, 1),

flm(w) = flM (w)

}
(17)

By observation, we know for the scalar case w̃ =

√
lmw

∗ +
√
lMwB√

lm +
√
lM

. Since we are initializing at w0, the

probability of picking bad samples is p̂.

Proof. Assume we start at wB , such that the outlier functions will have the highest weights. Without loss of
generality, the probability of picking sample j in the bad set is pmj(wB)(wB).

Let w̄ indicate the stationary point of MKL-SGD assuming fixed pi(wB) centered at wB . The probabilities
will not change until we reach w̃. At w̄, we have:∑

i/∈O
pi(wB)∇fi(w̄) = −

∑
j∈O

pj(wB)∇fj(w̄)

∑
i/∈O

pi(wB)li(w̄ − w∗) = −
∑
j∈O

pj(wB)lj(w̄ − wB)

w̄ =

∑
i/∈O pi(wB)liw

∗ +
∑
j∈O pj(wB)ljwB∑

i/∈O pi(wB)li +
∑
j∈O pj(wB)lj
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If w̄ is closer to wB then w̃, then the local minima w̄ exists, else we will escape that local minima, since at w̃,
the probabilities change.

When is w̄ < w̃?

A sufficient condition for that is: ∑
j∈O pj(wB)ljwB∑

i/∈O pi(wB)li +
∑
j∈O pj(wB)lj

≤
√
lMwB√

lm +
√
lM

1

1 +
∑

i/∈O pi(wB)li∑
j∈O pj(wB)lj

≤ 1

1 +
√
lm√
lM√

lm√
lM
≤
∑
i/∈O pi(wB)li∑
j∈O pj(wB)lj

We just need,
√
lm√
lM
≤
∑
i/∈O pi(wB)lm∑
j∈O pj(wB)lM√

lm√
lM
≤ (1− p̂)lm

p̂lM

p̂

1− p̂ ≤
√
lm
lM

p̂ ≤ 1

1 +
√

lM
lm

If p̂ ≤ 1

1 +
√
κ

, then the above inequality is satisfied.

This was the condition for the point of intersection between the curves of good sample with the smallest l
and the bad sample with the largest l. What happens between w∗ and w̃?

Next, we evaluate the closest point of intersection to w̃ between w∗ and w̃ and do that recursively.

√
lm1√
lM1

≤ (1− p̂)lm
p̂lM

p̂ ≤ 1

1 +
√

lM
lm

√
lM
lM1

√
lm1

lm

Similarly, if p̂ ≤ 1

1 +
√
κ

1.5 , then the above inequality is satisfied.

7.2.4 Proof of Lemma 2

Let w̄ be a stationary point of MKL-SGD . Now, we analyze the loss landscape on the line joining w∗ and
wC where wC = Cw̄ is any arbitrary point 4 in the landscape at a distance as far as the farthest outlier
from w∗. Let C be a very large number.

4Note that we just need wC for the purpose of landscape analysis and it is not a parameter of the algorithm
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The loss functions and w̃ are redefined as follows:

fi(w) =

{
li‖w −w∗‖2 ∀ i ∈ O
li‖w −wbi‖2 ∀ i /∈ O,

w̃ :=

w

∣∣∣∣ w = min
α∈(0,1)

αw∗ + (1− α)wC ,

flm(w) = flM (w)


where |O| = b such that n = g + b. Let lm = mini/∈O li and Let lM = maxi∈O li and lmax = mini∈[n] li,

lmin = mini∈[n] li. Let us define κ =
lmax
lmin

≥ lM
lm

.

Now at w̄, we have ∇F̃ (w̄) = 0. Let us assume that the outliers are chosen in such a way that at wC , all the
outliers have the lowest loss. As stated in the previous lemma, the results hold irrespective of that. This
implies:

∑
i/∈O

pi(wC)∇fi(w̄) = −
∑
j∈O

pj(wC)∇fj(w̄)

∑
i/∈O

pi(wC)li(w̄ −w∗) = −
∑
j∈O

pj(wC)lj(w̄ −wbj )

w̄ =

∑
i/∈O pi(wC)liw

∗ +
∑
j∈O pj(wC)ljwbj∑

i/∈O pi(wC)li +
∑
j∈O pj(wC)lj

By triangle inequality, ‖w̄ −w∗‖ ≤
∑
j∈O pj(wC)lj

∥∥wbj −w∗
∥∥∑

i/∈O pi(wC)li +
∑
j∈O pj(wC)lj

Without loss of generality assume that the outliers are ordered as follows: ‖wb1 −w∗‖ ≤ ‖wb2 −w∗‖ ≤
· · · ≤

∥∥wb|O| −w∗
∥∥.

Now w̃ be some point of intersection of function in the set of clean samples and a function in the set of
outliers to w∗. Let θj be the angle between the line connecting wbj and w∗ to the line connecting wC to
w∗. For any two curves with Lipschitz constants li and lj , the halfspaces passing through the weighted mean
are also the region where both functions have equal values.

Thus,

w̃ =

√
liw
∗ +

√
ljwbj√

li +
√
lj

.

‖w̃ −w∗‖ =

√
lj
∥∥wbj −w∗

∥∥√
lj +
√
li

Let γ denote the following ratio:

γ =
minj∈O

∥∥wbj −w∗
∥∥

maxj∈O
∥∥wbj −w∗

∥∥ =
2δ

δmax



Vatsal Shah, Xiaoxia Wu and Sujay Sanghavi

Now, we want: ∑
j∈O pj(wC)lj

∥∥wbj −w∗
∥∥∑

i/∈O pi(wC)li +
∑
j∈O pj(wC)lj

≤
√
ltj√

ltj +
√
lg

∥∥wbj −w∗
∥∥

cos θj
=
‖w̃ −w∗‖

cos θj∑
j∈O pj(wC)lj

∥∥wbj −w∗
∥∥∑

i/∈O pi(wC)li +
∑
j∈O pj(wC)lj

≤
∑
j∈O pj(wC)lj

∥∥wb|O| −w∗
∥∥∑

i/∈O pi(wC)li +
∑
j∈O pj(wC)lj

≤
√
ltj√

ltj +
√
lg

∥∥wbj −w∗
∥∥

cos θj∑
j∈O pj(wC)lj∑

i/∈O pi(wC)li +
∑
j∈O pj(wC)lj

≤
√
ltj√

ltj +
√
lg

∥∥wbj −w∗
∥∥

cos θj
∥∥wb|O| −w∗

∥∥∑
j∈O pj(wC)lj∑

i/∈O pi(wC)li +
∑
j∈O pj(wC)lj

≤
√
ltj√

ltj +
√
lg

γ

cos θj

For simplicity, Γ =
γ

cos θj
, then we have:

∑
j∈O pj(wC)lj∑

i/∈O pi(wC)li +
∑
j∈O pj(wC)lj

≤
√
ltj√

ltj +
√
lg

Γ

1

Γ

(√
lg√
ltj

+ 1

)
− 1 ≤ (1− p̂)lm

p̂lM
≤
∑
i/∈O pi(wC)li∑
j∈O pj(wC)lj

p̂

1− p̂ ≤
lm
lM

1
Γ − 1 + 1

Γ

√
lg√
ltj

p̂ ≤ 1

1 + κ
(

1
Γ − 1 +

√
κ

Γ

) ≤ 1

1 + lM
lm

(
1
Γ − 1 + 1

Γ

√
lg√
ltj

)

Replacing Γ =
γ

cos θj
, and let q =

cos θj
γ − 1 +

cos θj
√
κ

γ the condition to guarantee that bad local minima do

no exist is p̂ ≤ 1

1 + κq
and q > 0.

Note: In the vector case, for example there exists a fine tradeoff between how large θj can be and if for large
θj , the loss corresponding to the outlier will be one of the lowest. Understanding that tradeoff is beyond the
scope of this paper.

Note that, the lemma 2 leads to a very strong worst-case guarantee. It states that the farthest optimum
will always be within a bowl of distance r from w∗ no matter where we initialize. Moreover, as long as the
condition is satisfied no matter where the outliers lie (can be adversarially chosen), MKL-SGD always has
the propensity to bring the iterates to a ball of radius r around w∗. However, when the necessary conditions
for its convergence are violated, the guarantees are initialization dependent. Thus, all the discussions in the
rest of this section will be with respect to these worst case guarantees. However, as we see in the experimental
section for both neural networks and linear regression, random initialization also seems to perform better
than SGD.

Effect of κ A direct result of Lemma 2 is that higher the condition number of the set of quadratic loss
functions, lower is the fraction ε of outliers the MKL-SGD can tolerate. This is because large κ results

in a small value of
1

1 + κq
. This implies that p̂ has to be small which in turn requires smaller fractions fo

corruptions, ε.

Effect of γ: The relative distance of the outliers from w∗ plays a critical role in the condition for Lemma
2. We know that γ ∈ (0, 1]. γ = 1 implies the outliers are equidistant from the optimum w∗. Low values
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of γ lead to a large q leading to the violation of the condition with p̂ (since RHS in the condition is very
small), which implies that one bad outlier can guarantee that the condition in Lemma 2 are violated. The
guarantees in the above lemma are only when the outliers are not adversarially chosen to lie at very high
relative distances from w∗. One way to avoid the set of outliers far far away from the optimum is to have a
filtering step at the start of the algorithm like the one in Diakonikolas et al. [2018]. We will refer this in
Experiments.

Effect of cos θj,w̄: At first glance, it may seem that cos θj,w̄ = 0 may cause 1 + κq < 0 and since p̂(w) > 0,
the condition in Lemma 2 may never be satisfied. Since, the term cos θj,w̄ shows up in the denominator of the
loss associated with outlier centered at wbj . Thus, low values of cos θj,w̄ implies high value of loss associated
with the function centered at wbj which in turn implies the maximum probability attained by that sample
can never be in the top-|O| probabilities for that w̄.

7.2.5 Proof of Lemma 3

Proof. At w̄SGD, ∇F̃ (w̄SGD) = 0. Then,

∑
i/∈O
∇fi(w̄SGD) = −

∑
i∈O
∇fi(w̄SGD)∥∥∥∥∥∥

∑
i/∈O
∇fi(w̄SGD)

∥∥∥∥∥∥ =

∥∥∥∥∥∑
i∈O
∇fi(w̄SGD)

∥∥∥∥∥∥∥∥∥∥∥
∑
i/∈O
∇fi(w̄SGD)

∥∥∥∥∥∥ ≤
∑
i

‖∇fi(w̄SGD)‖

≤
∑
i

L‖w̄SGD −w∗‖

= (1− ε)nL‖w̄SGD −w∗‖ (18)∥∥∥∥∥∑
i∈O
∇fi(w̄SGD)

∥∥∥∥∥ ≤∑
i∈O
‖∇fi(w̄SGD)‖

≤
∑
i∈O

G(w̄SGD)

≤ εG(w̄SGD) (19)

∥∥∥∥∥∑
i∈O
∇fi(w̄SGD)

∥∥∥∥∥ = min (εnG(w̄SGD), (1− ε)nL‖w̄SGD −w∗‖)
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7.2.6 Proof of Lemma 4

Proof. At w̄MKL, ∇F̃ (w̄MKL) = 0. This implies∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL) = −
∑
i∈O

pi(w̄MKL)∇fi(w̄MKL)

Multiplying both sides by (w̄MKL −w∗)∑
i/∈O

pi(w̄MKL) < ∇fi(w̄MKL), w̄MKL −w∗ > = −
∑
i∈O

pi(w̄MKL) < ∇fi(w̄MKL), w̄MKL −w∗ > (20)

< ∇F̃G(w̄MKL), w̄MKL −w∗ > = −
∑
i∈O

pi(w̄MKL) < ∇fi(w̄MKL), w̄MKL −w∗ >

Lower bounding the LHS using Lemma 1 and m = m(w̄MKL)5 ,
(21)

m‖w̄MKL −w∗‖2 ≤
∥∥∥< ∇F̃G(w̄MKL), w̄MKL −w∗ >

∥∥∥ = LHS (22)

RHS ≤
∥∥∥∥∥−∑

i∈O
pi(w̄MKL) < ∇fi(w̄MKL), w̄MKL −w∗ >

∥∥∥∥∥
m‖w̄MKL −w∗‖2 ≤

∑
i∈O

pi(w̄MKL)‖< ∇fi(w̄MKL), w̄MKL −w∗ >‖

m‖w̄MKL −w∗‖2 ≤
∑
i∈O

pi(w̄MKL)‖∇fi(w̄MKL)‖‖w̄MKL −w∗‖

m‖w̄MKL −w∗‖2 ≤
∑
i∈O

pi(w̄MKL)‖w̄MKL −w∗‖G(w̄SGD)

m‖w̄MKL −w∗‖ ≤ εkG(w̄SGD) (23)

7.2.7 Proof of Theorem 2

Proof. There exists an ε′ ≤ ε such that in Lemma 3, we have

(1− ε)L‖w̄SGD −w∗‖ ≥ εG(w̄SGD)

Combining above equation with Lemma 4, we get

(1− ε)L‖w̄SGD −w∗‖ ≥ εG(w̄SGD) ≥ ε λ
ε2
‖w̄MKL −w∗‖

⇒ ‖w̄MKL −w∗‖ ≤ (1− ε)Lεk−1

λ
‖w̄SGD −w∗‖

Picking a large enough k, we can guarantee that
(1− ε)Lεk−1

λ
< 1

7.2.8 Proof of Lemma 6

Proof. From the definition of good samples in the noiseless setting, we know that fi(w
∗) = 0 ∀ i /∈ O.

Similarly, for samples belonging to the outlier set, fi(w
∗) > 0 ∀ i ∈ O. There exists a ball around the

optimum of radius r such that fi(w) ≤ fj(w) ∀i /∈ O, j ∈ O,w ∈ Or(w∗). Assume that N ′ ≥ N and ε′ ≤ ε,
such that ‖w̄MKL −w∗‖ ≤ r.
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At w̄MKL, ∇F̃ (w̄MKL) = 0. This implies∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL) = −
∑
i∈O

pi(w̄MKL)∇fi(w̄MKL)∥∥∥∥∥∥
∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL)

∥∥∥∥∥∥ =

∥∥∥∥∥∑
i∈O

pi(w̄MKL)∇fi(w̄MKL)

∥∥∥∥∥∥∥∥∥∥∥
∑
i/∈O

pi(w̄MKL)∇fi(w̄MKL)

∥∥∥∥∥∥ ≤
∑
i

pi(w̄MKL)‖∇fi(w̄MKL)‖

≤
∑
i

pi(w̄MKL)L‖w̄MKL −w∗‖

= (1− εk)L‖w̄MKL −w∗‖ (24)∥∥∥∥∥∑
i∈O

pi(w̄MKL)∇fi(w̄MKL)

∥∥∥∥∥ ≤∑
i∈O

pi(w̄MKL)‖∇fi(w̄MKL)‖

≤
∑
i∈O

pi(w̄MKL)G(w̄MKL)

≤ εkG(w̄MKL) (25)

7.2.9 Proof of Lemma 7

Problem Setting: We will assume that without loss of generality all the outliers will lie on the same side
of w∗. If that’s not the case, the bounds which show in the subsequent part will be even stronger. Without
loss of generality, assume 0 < wb1 < wb2 < · · · < wb|B| .

The loss functions and w̃ are redefined as follows:

fi(w) =

{
li(w − w∗)2 ∀ i /∈ O
li(w − wbi)2 ∀ i ∈ O,

(26)

w̃ :=

{
w

∣∣∣∣ w = min
λ∈(0,1)

[
λw∗ + (1− λ) min

j
wbj

]
, flm(w) = flM (w)

}
(27)

Once again by simple analysis of different points of intersection, we can describe a closed form expression of
w̃ as follows:

w̃ =

√
lmw

∗ +
√
lMwbM√

lm +
√
lM

where M̃ = arg maxj∈O
√
ljwbj ,M = arg maxi∈O li,m = arg maxi/∈O li.

Here, |G| = g and |O| = b such that n = g + b. Let lm = mini/∈O li and Let lM = maxi∈O li and

lmax = mini∈[n] li, lmin = mini∈[n] li. Let us define κ =
lmax
lmin

≥ lM
lm

. Let γ =
wb1
wb|B|

Proof. Assume we start at wb1 , such that the outlier functions will have the highest weights. If any one of
the outlier functions does not have the top |B| probabilities at wb1 , then p̂ in the subsequent bounds will be
smaller and will still satisfy the final condition. Without loss of generality, the probability of picking sample
j in the bad set is pmj(wb1

)(wb1). Note that, we assume that w̃ lies between w∗ and wb1 and the outlier
functions have the highest weights at wb1 . If that’s not the case, our bounds are still satisfied since there will
be atleast one term which will not be a part of p̂ and so w̄ will be even closer to w∗.
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Let w̄ indicate the stationary point of MKL-SGD assuming fixed pi(wB) centered at wB . The probabilities
will not change until we reach w̃. At w̄, we have:∑

i/∈O
∇fi(w̄) = −

∑
j∈O
∇fj(w̄)

∑
i/∈O

pi(wb1)li(w̄ − w∗) = −
∑
j∈O

pj(wb1)lj(w̄ − wb1)

w̄ =

∑
i/∈O pi(wb1)liw

∗ +
∑
j∈O pj(wb1)ljwb1∑

i/∈O pi(wb1)li +
∑
j∈O pj(wb1)lj

If w̄ is closer to wb1 then w̃, the local minima w̄ exists, since the probabilities don’t change before we reach w̃
starting from wb1 moving towards w∗.

When is w̄ < w̃

A sufficient condition for that is:∑
j∈O pj(wb1)ljwbj∑

i/∈O pi(wb1)li +
∑
j∈O pj(wb1)lj

≤
∑
j∈O pj(wb1)ljwbM∑

i/∈O pi(wb1)li +
∑
j∈O pj(wb1)lj

≤
√
lM̃wbM̃√

lm +
√
lM̃

1

1 +
∑

i/∈O pi(wb1
)li∑

j∈O pj(wb1
)lj

≤ γ

1 +
√
lm√
lM̃

≤
wb

M̃

wbM

1 +
√
lm√
lM̃√

lm√
lM̃
≤
∑
i/∈O pi(wb1)li∑
j∈O pj(wb1)lj

We have,

1 +

√
lm√
lM̃
≤ γ

(
1 +

(1− p̂)lm
p̂lM

)
≤ γ

(
1 +

∑
i/∈O pi(wb1)li∑
j∈O pj(wb1)lj

)
1

γ

(
1 +

√
lm√
lM̃

)
− 1 ≤ (1− p̂)lm

p̂lM

p̂lM
(1− p̂)lm

≤ 1

1
γ

(
1 +

√
lm√
lM̃

)
− 1

p̂

(1− p̂) ≤
lm
lM

1

1
γ

(
1 +

√
lm√
lM̃

)
− 1

p̂ ≤ 1

1 +

lM

(
1
γ

(
1 +

√
lm√
lM̃

)
− 1

)
lm

≤ 1

1 +
lM
lm

(
1
γ − 1 +

√
lm

γ
√
lM̃

)

Thus, for the minima to not exist, we need: p̂ ≤ 1

1 + κ
((

1
γ − 1

)
+
√
κ
γ

)
The condition for any other pair of li, lj is similar. This is because if we replace m by m1 in the square root,
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the final step of the analysis simplifies to:

p̂ ≤ 1

1 + lM
lm

((
1
γ − 1

)
+
√

lm1

lM̃

1
γ

) (28)

If p̂ ≤ 1

1 + κ
((

1
γ − 1

)
+
√
κ
γ

) , then the above equation is satisfied and thus the equivalent condition still

remains the same.

7.3 Additional results and proofs for Section 5

Consider the sample size n with bad set(outlier) O and good set G such that |G| = n− |O|. Define

Fgood(w) =
1

|G|
∑
i∈G

fi(w).

We assume:
(1) (Stationary Point) Assume w∗ is the solution for the average loss function of good sample such that

∇Fgood(w∗) = 0 but ∇fi(w∗) 6= 0,∀i ∈ O

(2) (Strong Convexity) Fgood(w) is strongly convex with parameters λgood i.e.,

〈∇Fgood(w)−∇Fgood(w∗),w −w∗〉 ≥ λgood‖w −w∗‖2

(3) (Gradient Lipschitz) fi(w) has Li Liptchitz gradient i.e.,

‖∇fi(w)−∇fi(w∗)‖ ≤ Li‖w −w∗‖

Theorem 4. (Distance to w∗)

Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li) min

i∈G
pi(wt)

)
‖wt −w∗‖2 +Rt (29)

where

Rt =− 2ηt
∑
i∈G

pi(wt)〈wt −w∗,∇fi(w∗)〉

+ 2η2
t

∑
i∈G

pi(wt)‖∇fi(w∗)‖2 + η2
t

∑
i∈O

pi(wt)‖∇fi(wt)‖2 + 2ηt
∑
i∈O

pi(wt) (fi(w
∗)− fi(wt))

Proof. Observe first that for each component function i.e. ,

〈w − v,∇fi(w)−∇fi(v)〉 ≥ 1

Li
‖fi(w)− fi(v)‖2

For detailed proof, see Lemma A.1 in [Needell et al., 2014].

For each individual component function fi(w), we have

‖wt+1 −w∗‖2 =‖wt −w∗‖2 + η2
t ‖∇fi(wt)‖2 − 2ηt〈wt −w∗,∇fi(wt)〉

≤‖wt −w∗‖2 + 2η2
t ‖∇fi(wt)−∇fi(w∗)‖2 + 2η2

t ‖∇fi(w∗)‖2 − 2ηt〈wt −w∗,∇fi(wt)〉
≤‖wt −w∗‖2 + 2η2

tLi〈wt −w∗,∇fi(wt)−∇fi(w∗)〉+ 2η2
t ‖∇fi(w∗)‖2

− 2ηt〈wt −w∗,∇fi(wt)〉
=‖wt −w∗‖2 − 2ηt(1− ηt sup

i
Li)〈wt −w∗,∇fi(wt)−∇fi(w∗)〉+ 2η2

t ‖∇fi(w∗)‖2

− 2ηt〈wt −w∗,∇fi(w∗)〉
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We next take an expectation with respect to the choice of i conditional on wt

Ei
[
‖wt+1 −w∗‖2|wt

]
≤‖wt −w∗‖2 − 2ηt(1− ηt sup

i
Li)

〈
wt −w∗,

∑
i∈G

pi(wt) (∇fi(wt)−∇fi(w∗))
〉

︸ ︷︷ ︸
Term1

− 2ηt〈wt −w∗,
∑
i∈G

pi(wt)∇fi(w∗)〉+ 2η2
t

∑
i∈G

pi(wt)‖∇fi(w∗)‖2

+ η2
t

∑
i∈O

pi(wt)‖∇fi(wt)‖2 + 2ηt 〈w∗ −wt,
∑
i∈O

pi(wt)∇fi(wt)〉︸ ︷︷ ︸
Term2

(30)

Now we first bound Term1 as follows

Term1 ≤ min
i∈G

pi(wt)
∑
i∈G

〈
wt −w∗,∇fi(wt)−∇fi(w∗)

〉
≤ min

i∈G
pi(wt)λgood‖wt+1 −w∗‖2

For Term2 we apply the property of the convex function 〈∇fi(v),w − v〉 ≤ fi(w)− fi(v)

Term2 ≤
∑
i∈O

pi(wt) (fi(w
∗)− fi(wt))

Putting the upper bound of Term1 and Term2 back to (30) gives

Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li) min

i∈G
pi(wt)

)
‖wt −w∗‖2 +Rt (31)

where

Rt =− 2ηt
∑
i∈G

pi(wt)〈wt −w∗,∇fi(w∗)〉

+ 2η2
t

∑
i∈G

pi(wt)‖∇fi(w∗)‖2 + η2
t

∑
i∈O

pi(wt)‖∇fi(wt)‖2 + 2ηt
∑
i∈O

pi(wt) (fi(w
∗)− fi(wt))

We have the following corollary that for noiseless setting, if we can have some good initialization, MKL-SGD
is always better than SGD even the corrupted data is greater than half. For noisy setting, we can also perform
better than SGD with one more condition: the noise is not large than the distance ‖∆t‖2. This condition
is not mild in the sense that ‖wt − w∗‖2 is always greater than ‖w̄SGD − w∗‖2 for SGD algorithm and
‖w̄MKL −w∗‖2 for MKL-SGD.

Corollary 1. Suppose we have |G| ≤ n
2 . At iteration t for ηt ≤ 1

supi Li
, the parameter wt satisfies

supi∈G fi(wt) ≤ infj∈O fj(wt). Moreover, assume the noise level at optimal w∗ satisfies

either ‖∇fi(w∗)‖ ≤
λgood(1− ηt supi Li)/n

1 +
√

1 + ηt(1− ηt supi Li)λgood/n
‖wt −w∗‖, for i ∈ G (32)

or
∑
i∈G
‖∇fi(w∗)‖2 ≤

(
λgood(1− ηt supi Li)|G|/n√

n+
√√

n+ ηt(1− ηt supi Li)λgood|G|/n

)2

‖wt −w∗‖2. (33)

Using the same setup, the vanilla SGD and MKL-SGD (K=2) algorithms yield respectively

SGD Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li)
|G|
n

)
‖wt −w∗‖2 +R

(SGD)
t

MKL-2 Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li)
|G|
n

)
‖wt −w∗‖2 +R

(MKL2)
t
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where

R
(MKL2)
t ≤ R(SGD)

t .

Proof. Start from the inequality 30 in the proof of Theorem 4. We have Term1 as follows:

Term1 =
|G|
n

〈
wt −w∗,

∑
i∈G

pi(wt)

|G|/n (∇fi(wt)−∇fi(w∗))
〉

=
|G|
n
〈wt −w∗,∇Fgood(wt)−∇Fgood(w∗)〉

+
|G|
n

∑
i∈G

(
pi(wt)

|G|/n −
1

|G|

)
〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

≥λgood
|G|
n
‖wt −w∗‖2 +

∑
i∈G

(
pi(wt)−

1

n

)
〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

Putting the terms back to (30), we have for ηt ≤ 1/(supi Li)

Ei
[
‖wt+1 −w∗‖2|wt

]
≤
(

1− 2ηtλgood(1− ηt sup
i
Li)
|G|
n

)
‖wt −w∗‖2 +Rt (34)

where

Rt =− 2ηt(1− ηt sup
i
Li))

∑
i∈G

(
pi(wt)−

1

n

)
〈wt −w∗,∇fi(wt)−∇fi(w∗)〉

− 2ηt
∑
i∈G

pi(wt)〈wt −w∗,∇fi(w∗)〉

+ 2η2
t

∑
i∈G

pi(wt)‖∇fi(w∗)‖2 + η2
t

∑
i∈O

pi(wt)‖∇fi(wt)‖2 + 2ηt
∑
i∈O

pi(wt) (fi(w
∗)− fi(wt))

Now we analyse the term Rt for vanilla SGD and MKL-SGD(K = 2) respectively. For vanilla SGD, we have
pi(wt) = 1

n and
∑
i∈G ∇fi(w∗) = 0, which results in

R
(SGD)
t =

2η2
t

n

∑
i∈G
‖∇fi(w∗)‖2 +

η2
t

n

∑
i∈O
‖∇fi(wt)‖2 +

2ηt
n

∑
i∈O

(fi(w
∗)− fi(wt))

Note that MKL-SGD for K = 2 have

pmi(w)(w) =
2(n− i)
n(n− 1)

(35)

where m1(w),m2(w),m3(w), . . .mn(w) are the indices of data samples for some w:

fm1(w)(w) ≤ fm2(w)(w) ≤ · · · ≤ fmn(w)(w)
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Suppose the iteration wt satisfies that fi(wt) < fj(wt) for i ∈ G, j ∈ O. For |G| ≤ n
2 , we have for

R
(MKL2)
t =− 2ηt(1− ηt sup

i
Li)

|G|∑
i=1

(n− 2i+ 1)

n(n− 1)
〈wt −w∗,∇fmi

(wt)−∇fmi
(w∗)〉

+ 2ηt

|G|∑
i=1

2(n− i)
n(n− 1)

(
〈w∗ −wt,∇fi(w∗)〉+ ηt‖∇fi(w∗)‖2

)
+ η2

t

n∑
i=|G|+1

2(n− i)
n(n− 1)

‖∇fi(wt)‖2 + 2ηt

n∑
i=|G|+1

2(n− i)
n(n− 1)

(fi(w
∗)− fi(wt))

≤− 2ηt(1− ηt sup
i
Li)
|G|λgood
n(n− 1)

‖wt −w∗‖2

+
4ηt
n

|G|∑
i=1

(
‖w∗ −wt‖‖∇fi(w∗)‖+ ηt‖∇fi(w∗)‖2

)
+

n∑
i=|G|+1

η2
t

n
‖∇fi(wt)‖2 +

n∑
i=|G|+1

2ηt
n

(fi(w
∗)− fi(wt))

We will have R
(MKL2)
t ≤ R(SGD)

t if the following inequality holds

(1− ηt sup
i
Li)
|G|λgood
(n− 1)

‖wt −w∗‖2 ≥
|G|∑
i=1

(
2‖w∗ −wt‖‖∇fi(w∗)‖+ ηt‖∇fi(w∗)‖2

)
. (36)

Indeed, for the noise level ‖∇fi(w∗)‖2 satisfying (32) we have for i ∈ G,

(1− ηt sup
i
Li)

λgood
(n− 1)

‖wt −w∗‖2 ≥ 2‖w∗ −wt‖‖∇fi(w∗)‖+ ηt‖∇fi(w∗)‖2.

Summing up the terms in i ∈ G, we get (36). For the noise level ‖∇fi(w∗)‖2 satisfying (33) we have

(1− ηt sup
i
Li)

λgood|G|
(n− 1)

‖wt −w∗‖2 ≥

2‖w∗ −wt‖
√
n
∑
i∈G
‖∇fi(w∗)‖2 + ηt

∑
i∈G
‖∇fi(w∗)‖2


≥ 2‖w∗ −wt‖

∑
i∈G
‖∇fi(w∗)‖+ ηt

∑
i∈G
‖∇fi(w∗)‖2.

which results in (36).

7.4 More experimental results

7.4.1 Linear Regression

Here, we show that there exists a trade-off for MKL-SGD between the rate of convergence and robustness
the algorithm provides against outliers depending on the value of the parameter k. Larger the k, more robust
is the algorithm, but slower is the rate of convergence. The algorithm outperforms median loss SGD and
SGD. We also experimented with other order statistics and observed that for most general settings MKL-SGD
was the best to pick. Note that the outliers are chosen from N (0, 1) distribution independently of the data
sample.
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(c) k=5

Figure 6: Comparing the performance of MKL-SGD , SGD and Median loss SGD in the noiseless setting,
d = 50.
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0 10000 20000 30000 40000 50000

Number of epochs

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

E
st

im
at

io
n

E
rr

or
(E

xp
ec

te
d

M
ov

in
g

A
ve

ra
ge

)

ε = 0.200

Min-k Loss SGD
SGD
Median Loss SGD

(c) k=9

Figure 7: Comparing the performance of MKL-SGD , SGD and Median loss SGD in the noisy setting, d = 10,
Noise variance=0.0001
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Figure 8: Comparing the performance of MKL-SGD , SGD and Median loss SGD in the noiseless setting,
d = 25, Noise variance=0.01

7.4.2 Neural Network Experiments

Here, we show that in presence of outliers instead of tuning other hyperparameters like learning rate, tuning
over k might lead to significant gains in performances for deep neural networks. To illustrate this we play
around with two commonly used noise models: random noise and directed noise. In the random noise model,
the outlier label is randomly assigned while for the directed noise model for some class ‘a’, the outlier is
assigned the same label ‘b’, similarly all the outliers for class ‘b’ are assigned label ‘c’ and so on.
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Dataset MNIST with 2-layer CNN (Directed Noise)
Optimizer SGD MKL-SGD Oracle

ε
α

1.0 0.9 0.8 0.7 0.6 0.5 1.0

0.1 96.76 97.23 95.89 97.47 96.34 94.54 98.52
0.2 92.54 95.81 95.58 97.46 97.03 95.76 98.33
0.3 85.77 91.56 93.59 95.30 96.54 95.96 98.16
0.4 71.95 78.68 82.25 85.93 91.29 94.20 97.98

Table 2: In this experiments, we train a standard 2 layer CNN on subsampled MNIST (5000 training samples
with labels corrupted using random label noise). We train over 80 epochs using an initial learning rate of
0.05 with the decaying schedule of factor 5 after every 30 epochs. The reported accuracy is based on the true
validation set. The results of the MNIST dataset are reported as the mean of 5 runs. For the MKL-SGD
algorithm, we introduce a more practical variant that evaluates k sample losses and picks a batch of size αk
where k = 10.

Dataset MNIST with 2-layer CNN (Random Noise)
Optimizer SGD MKL-SGD Oracle

ε
α

1.0 0.9 0.8 0.7 0.6 0.5 1.0

0.1 96.91 97.9 98.06 97.59 96.49 94.43 98.44
0.2 93.94 95.5 96.16 97.02 97.04 96.25 98.18
0.3 87.14 90.71 91.60 92.97 94.54 95.36 97.8
0.4 71.83 74.31 76.6 78.30 77.58 80.86 97.16

Table 3: In this experiments, we train a standard 2 layer CNN on subsampled MNIST (5000 training samples
with labels corrupted using random label noise). We train over 80 epochs using an initial learning rate of
0.05 with the decaying schedule of factor 5 after every 30 epochs. The reported accuracy is based on the true
validation set. The results of the MNIST dataset are reported as the mean of 5 runs. For the MKL-SGD
algorithm, we introduce a more practical variant that evaluates k sample losses and picks a batch of size αk
where k = 10.

Dataset CIFAR-10 with Resnet-18 (Directed Noise)
Optimizer SGD MKL-SGD Oracle

ε
α

1.0 0.9 0.8 0.7 0.6 0.5 1.0

0.1 79.1 77.52 79.57 81.00 81.94 80.53 84.56
0.2 72.29 69.58 70.17 72.76 77.77 78.93 84.40
0.3 63.96 61.43 60.46 61.58 66.49 69.57 84.66
0.4 52.4 51.53 51.04 51.07 53.57 51.2 84.42

Table 4: In this experiments, we train Resnet 18 on CIFAR-10 (50000 training samples with labels corrupted
using directed label noise). We train over 200 epochs using an initial learning rate of 0.05 with the decaying
schedule of factor 5 after every 90 epochs. The reported accuracy is based on the true validation set. The
results of the CIFAR-10 dataset are reported as the mean of 3 runs. For the MKL-SGD algorithm, we
introduce a more practical variant that evaluates k sample losses and picks a batch of size αk where k = 16.

7.5 Conclusions and Future Work

7.5.1 Conclusions
In this paper, we propose MKL-SGD that is computationally inexpensive, has linear convergence (upto a
certain neighborhood) and is robust against outliers. We analyze MKL-SGD algorithm under noiseless and
noisy settings with and without outliers. MKL-SGD outperforms SGD in terms of generalization for both
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linear regression and neural network experiments. MKL-SGD opens up a plethora of challenging questions
with respect to understanding convex optimization in a non-convex landscape which will be discussed in the
Appendix.

7.5.2 Future Work

To ensure consistency, i.e. ‖w̄MKL −w∗‖ → 0, we require that k ≥ nε + 1. In all other cases, there will
be a non-zero contribution from the outliers which keeps the MKL-SGD solution from exactly converging
to w∗. In this paper, we consider unknown ε and thus k should be a hyperparameter. For neural network
experiments in the Appendix, we show that tuning k as a hyperparameter can lead to significant improvements
in performance in presence of outliers.

The obvious question is if it is possible to provide worst case guarantees for a larger subset of problems using
smarter initialization techniques. It will be interesting to analyze the tradeoff between better generalization
guarantees offered by large k and rates of convergence. The worst case analysis in the noisy setting for
standard convex optimization losses remains an open problem. As we show in the previous set of experiments,
in presence of noise, tuning the hyperparameter k can provide significant boosts to the performance.
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