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Abstract

The presence of outliers can potentially sig-
nificantly skew the parameters of machine
learning models trained via stochastic gra-
dient descent (SGD). In this paper we pro-
pose a simple variant of the SGD method:
in each step, first choose a set of k samples,
then from these choose the one with the
smallest current loss, and do an SGD-like
update with this chosen sample. Vanilla
SGD corresponds to k = 1, i.e. no choice;
k ≥ 2 represents a new algorithm that is
however effectively minimizing a non-convex
surrogate loss. Our main contribution is a
theoretical analysis of the robustness prop-
erties of this idea for machine learning prob-
lems which are sums of convex losses; these
are backed up with synthetic and neural
network experiments.

1 Introduction

This paper focuses on machine learning problems
that can be formulated as optimizing the sum of n
convex loss functions:

min
w

F (w) (1)

where F (w) = 1
n

∑n
i=1 fi(w) is the sum of convex,

continuously differentiable loss functions.

Stochastic gradient descent (SGD) is a popular way
to solve such problems when n is large; the simplest
SGD update is:

SGD: wt+1 = wt − ηt∇fit(wt) (2)
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where the sample it is typically chosen uniformly at
random from [n].

However, as is well known, the performance of SGD
and most other stochastic optimization methods is
highly sensitive to the quality of the available train-
ing data. A small fraction of outliers can cause SGD
to converge far away from the true optimum. While
there has been a significant amount of work on more
robust algorithms for special problem classes (e.g.
linear regression, PCA etc.) in this paper our ob-
jective is to make a modification to the basic SGD
method itself; one that can be easily applied to the
many settings where vanilla SGD is already used in
the training of machine learning models.

We call our method Min-k Loss SGD (MKL-SGD)1,
given below. In each iteration, we first choose a set
of k samples and then select the sample with the
smallest current loss in that set; this sample is then
used for the update step.

Algorithm 1 MKL-SGD

1: Initialize w0

2: Given samples D = (xt, yt)
∞
t=1

3: for t = 1, . . . do
4: Choose a set St of k samples
5: Select it = arg mini∈St

fi(wt)
6: Update wt+1 = wt − η∇fit(wt)
7: end for
8: Return wt

The effectiveness of our algorithm relies on a simple
observation: in a situation where most samples ad-
here to a model but a few are outliers skewing the
output, the outlier points that contribute the most to
the skew are often those with high loss. In this paper,
our focus is on the stochastic setting for standard
convex functions. We show that it provides a certain
degree of robustness against outliers/bad training
samples that may otherwise skew the estimate.

1Code: https://github.com/vatsal2020/mkl

https://github.com/vatsal2020/mkl
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Our Contributions

• To keep the analysis simple yet insightful, we
define three and natural deterministic problem
settings - noiseless with no outliers, noiseless
with outliers, and noisy with outliers - in which
we study the performance of MKL-SGD . In all of
these settings the individual losses are assumed
to be convex, and the overall loss is additionally
strongly convex. We are interested in finding
the optimum w∗ of the “good” samples, but we
do not a-priori know which samples are good
and which are outliers.

• The expected MKL-SGD update (over the ran-
domness of sample choice) is not the gradient of
the original loss function (as would have been
the case with vanilla SGD); it is instead the
gradient of a different non-convex surrogate loss,
even for the simplest and friendliest setting of
noiseless with no outliers. Our first result estab-
lishes that this non-convexity however does not
yield any bad local minima or fixed points for
MKL-SGD in this particular setting, ensuring
its success.

• We next turn to the setting of noiseless with
outliers, where the surrogate loss can now po-
tentially have many spurious local minima. We
show that by picking a value of k high enough
(depending on a condition number of the loss
functions that we define) the local minima of
MKL-SGD closest to w∗ is better than the
(unique) fixed point of SGD.

• We establish the convergence rates of MKL-SGD
- with and without outliers - for both the noise-
less and noisy settings .

• We back up our theoretical results with both
synthetic linear regression experiments that pro-
vide insight, as well as encouraging results on
the MNIST and CIFAR-10 datasets.

2 Related Work

The related work can be divided into the following
four main subparts:

Stochastic optimization and weighted sam-
pling The proposed MKL-SGD algorithm inher-
ently implements a weighted sampling strategy to
pick samples. Weighted sampling is one of the popu-
lar variants of SGD that can be used for matching
one distribution to another (importance sampling),
improving the rate of convergence, variance reduc-
tion or all of them has been considered in [Kahn
and Marshall, 1953, Strohmer and Vershynin, 2009,

Zhao and Zhang, 2015, Katharopoulos and Fleuret,
2018]. Other popular weighted sampling techniques
include [Needell et al., 2014, Moulines and Bach,
2011, Lee and Sidford, 2013]. Without the assump-
tion of strong convexity for each fi(.), the weighted
sampling techniques often lead to biased estimators
which are difficult to analyze. Another idea that is
analogous to weighted sampling includes boosting
[Freund et al., 1999] where harder samples are used
to train subsequent classifiers. However, in presence
of outliers and label noise, learning the hard samples
may often lead to over-fitting the solution to these
bad samples. This serves as a motivation for picking
samples with the lowest loss in MKL-SGD .

Robust linear regression Learning with bad
training samples is challenging and often intractable
even for simple convex optimization problems. For
example, OLS is quite susceptible to arbitrary cor-
ruptions by even a small fraction of outliers. Least
Median Squares (LMS) and least trimmed squares
(LTS) estimator proposed in [Rousseeuw, 1984, V́ı̌sek
et al., 2002, Vı́̌sek, 2006] are both sample efficient,
have a relatively high break-down point, but require
exponential running time to converge. [Huber, 2011]
provides a detailed survey on some of these robust
estimators for OLS problem. Recently, [Bhatia et al.,
2015, 2017, Shen and Sanghavi, 2019] have proposed
robust learning algorithms for linear regression which
require the computation of gradient over the entire
dataset. In this version, our focus is on stochastic
optimization in presence of outliers.

Robust optimization Robust optimization has
received a renewed impetus following the works in
[Diakonikolas et al., 2019, Lai et al., 2016, Charikar
et al., 2017, Awasthi et al., 2014]. In most mod-
ern machine learning problems, however, simulta-
neous access to gradients over the entire dataset is
time consuming and often, infeasible. [Diakoniko-
las et al., 2018, Prasad et al., 2018] provides robust
meta-algorithms for stochastic optimization under
adversarial corruptions. However, both these algo-
rithms require the computation of one or many prin-
cipal components per epoch which requires atleast
O(p2) computation ([Anaraki and Hughes, 2014]).
In contrast, MKL-SGD algorithm runs in O(k) com-
putations per iteration where k is the number of
loss evaluations per epoch. In this paper, we don’t
consider the adversarial model, our focus is on the
simpler corruption model where we consider outliers
as defined in the next section.

Label noise in deep learning [Angluin and
Laird, 1988, Kumar et al., 2010, Bengio et al., 2009]
describe different techniques to learn in presence
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of label noise and outliers. [Rolnick et al., 2017]
showed that deep neural networks are robust to ran-
dom label noise especially for datasets like MNIST
and CIFAR10. [Jiang et al., 2017, Ren et al., 2018]
propose optimization methods based on re-weighting
samples that often require significant pre-processing.
In this paper, our aim is to propose a computation-
ally inexpensive optimization approach that can also
provide a certain degree of robustness.

3 Problem Setup

We make the following assumptions about our prob-
lem setting (1). Let O be the set of outlier samples;
this set is unknown to the algorithm. We denote the
optimum of the non-outlier samples by w∗, i.e.

w∗ := arg min
w

∑
i/∈O

fi(w)

In this paper we show that MKL-SGD allows us to
estimate w∗ without a-priori knowledge of the set O,
under certain conditions.

Assumption 1 (Individual losses). Each fi(w)
is convex in w, with Lipschitz continuous gradients
with constant Li.

‖∇fi(w1)−∇fi(w2)‖ ≤ Li‖w1 −w2‖

Define L := maxiLi. It is common to also assume
strong convexity of the overall loss function F (·).
Here, since we are dropping samples, we need a
slightly stronger assumption.

Assumption 2 (Overall loss). For any n− k size
subset S of the samples, we assume the loss function∑

i∈S fi(w) is strongly convex in w. Recall k is the
size of the sample set in the MKL-SGD algorithm.

Assumption 3 (Equal minimum values). Each
of the functions fi(.) shares the same minimum value
minw fi(w) = minw fj(w) ∀ i, j.

Assumption 3 is often satisfied by most standard
loss functions such as squared loss, hinge loss, etc.
We are now in a position to define three problem
settings we will consider in this paper. For each i let
Ci := {ŵ : ŵ = arg minw fi(w)} denote the set of
optimal solutions (there is more than one since fi(·)
is convex but not strongly convex). Denote d(a, S)
as the shortest distance between point a and set S.

Noiseless setting with no outliers: As a first
step and sanity check, we consider what happens in
the easiest case: where there are no outliers. There is
also no “noise”, by which we mean that the optimum

w∗ we seek is also in the optimal set of every one of
the individual sample losses, i.e.

w∗ ∈ Ci for all i.

In this case, vanilla SGD (and many other methods)
will converge to w∗ as well; we just study this setting
as a first step and also to build insight.

Outlier setting: Finally, we consider the case where
a subset O of the samples are outliers. Specifically,
we assume that for outlier samples the w∗ we seek
lies far from their optimal sets, while for the others
it is in the optimal sets:

d(w∗, Ci) ≥ 2δ for all i ∈ O
w∗ ∈ Ci for all i /∈ O

Note that vanilla SGD on the entire loss function
will not converge to w∗.

Noisy setting: As a second step, we consider the
case when samples are noisy but there are no outliers.
We model noise by allowing w∗ to be outside of indi-
vidual optimal sets Ci, but not too far; specifically,

No outliers d(w∗, Ci) ≤ δ for all i

With outliers d(w∗, Ci) ≤ δ for all i /∈ O
d(w∗, Ci) > 2δ for all i ∈ O

For the noisy setting, we will focus on the convergence
guarantees. We will show that MKL-SGD gets close
to w∗ in this setting; again in this case vanilla SGD
will do so as well for the no outliers setting.

4 Understanding MKL-SGD

We now build some intuition for MKL-SGD with
some simple notation and looking at some simple
settings. Recall MKL-SGD takes k samples and
then retains the one with lowest current loss; this
means it is sampling non-uniformly. For any w,
let m1(w),m2(w),m3(w), . . .mn(w) be the sorted
order w.r.t. the loss at that w, i.e.

fm1(w)(w) ≤ fm2(w)(w) ≤ · · · ≤ fmn(w)(w)

Recall that for a sample to be the one picked by
MKL-SGD for updating w, it needs to first be part
of the set of k samples, and then have the lowest
loss among them. A simple calculation shows that
probability that the ith best sample mi(w) is the one
picked by MKL-SGD is given by

pmi(w)(w) =



(
n−i
k−1

)(
n
k

) without replacement

(n− (i− 1))k − (n− i)k
nk

with replacement

(3)
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In the rest of the paper, we will focus on the “with
replacement” scenario for ease of presentation; this
choice does not change our main ideas or results.
With this notation, we can rewrite the expected
update step of MKL-SGD as

E[w+|w] = w − η
∑
i

pmi(w)∇fmi(w)(w)

To simplify the notation in the rest of the paper, we
relabel the above update term by defining as follows:

∇F̃ (w) :=
∑
i

pmi(w)∇fmi(w)(w)

Underlying this notation is the idea that, in expec-
tation, MKL-SGD is akin to gradient descent on a
surrogate loss function F̃ (·) which is different from
the original loss function F (·); indeed if needed this
surrogate loss can be found (upto a constant shift)
from the above gradient. We will not do that ex-
plicitly here, but instead note that even with all our
assumptions, indeed even without any outliers or
noise, this surrogate loss can be non-convex. It is
thus important to understand MKL-SGD in all of
our settings, which is what we build to now.

4.1 Noiseless setting with no outliers

As a first step (and for the purposes of sanity check),
we look at MKL-SGD in the simplest setting when
there are no outliers and no noise. Recall from above
that this means that w∗ is in the optimal set of every
single individual loss fi(·). However as mentioned
above, even in this case the surrogate loss can be
non-convex, as seen e.g. in Figure 1 for a simple
example. However, in the following lemma we show

Figure 1: Non-convexity of the surface plot with
three samples in the two-dimensional noiseless linear
regression setting

that even though the overall surrogate loss F̃ (·) is
non-convex, in this no-noise no-outlier setting it has
a special property with regards to the point w∗.

Lemma 1. In the noiseless setting, for any w there
exists a λw > 0 such that

∇F̃ (w)>(w −w∗) ≥ λw‖w −w∗‖2. (4)

This lemma implies that on the line between any
point w and the point w∗, the surrogate loss func-
tion F̃ is convex from any point – even though it is
not convex overall. If λw in (4) is replaced with a
constant λ, this condition is called Restricted Secant
Inequality (RSI) [Karimi et al., 2016]. RSI property
can imply Polyak- Lojasiewicz Inequality, which is
often assumed for non-convex optimization and pos-
sibly can achieve fast convergence using SGD or its
variants [Karimi et al., 2016, Lei et al., 2017, Vaswani
et al., 2018, Xie et al., 2019].

We will utilize this lemma to establish our first result:
in the noiseless setting with no outliers, w∗ is the
only fixed point (in expectation) of MKL-SGD.

Theorem 1 (Unique stationary point). For the
noiseless setting with no outliers, and under assump-
tions 1− 3, the expected MKL-SGD update satisfies
∇F̃ (w) = 0 if and only if w = w∗.

4.2 Outlier setting

In presence of outliers, the surrogate loss can have
multiple local minima that are far from w∗ and
indeed potentially even worse than what we could
have obtained with vanilla SGD on the original loss
function. We now analyze MKL-SGD in the simple
setting of scalar functions and squared losses; and
then show how these results provide useful insights
into the landscape of MKL-SGD loss function for
standard vector settings. We would like to point
out that the analysis in the next part serves as a
clean template and can be extended for many other
standard loss functions used in convex optimization.

Squared loss in the scalar setting: Figure 2
will be a handy tool for visualizing and understand-
ing both the notation and results of this subsection.
Consider the case where all losses are squared losses,
with all the clean samples centered at w∗ and all
the outliers at wB , but all having different Lipschitz
constants. Specifically, consider:

fi(w) =

{
li(w − w∗)2 ∀ i /∈ O
li(w − wB)2 ∀ i ∈ O,

(5)

Let lm := mini/∈O li and Let lM := maxi∈O li and
lmax = maxi∈[n] li, lmin = mini∈[n] li. Let us define

κ =
lmax
lmin

≥ lM
lm

. We initialize MKL-SGD at w0 =

wB, a point where the losses of outlier samples are
0 and all the clean samples have non-zero losses.
As a result at wB, MKL-SGD has a tendency to
pick all the outlier samples with a higher probability
than any of the clean samples. This does not bode
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well for the algorithm since this implies that the final
stationary point will be heavily influenced by outliers.
Let w̄MKL be the stationary point of MKL-SGD for
this scalar case when initialized at wB .

Let us define w̃ as follows:

w̃ :=

{
w | w = min

α
αw∗ + (1− α)wB ,

α ∈ (0, 1), flm(w) = flM (w)

}
(6)

Thus, w̃ is the closest point to wB on the line joining
wB and w∗ where the loss function of one of the clean
samples and one of the outliers intersect as illustrated
in Figure 2.

By observation, we know for the above scalar case

w̃ =

√
lmw

∗ +
√
lMwB√

lm +
√
lM

. Let p̂(w0) =
∑
j∈O pj(w0)

represent the total probability of picking outliers at
the starting point w0. The maximum possible value
attained by p̂(w0) over the entire landscape is:

p̂max = max
w

p̂(w) =

|O|∑
i=1

pmi(w)(w) (7)

where for any w, pmi(w)(w) are ordered i.e.
pm1(w)(w) > pm2(w)(w) > · · · > pmn(w)(w). The
next condition gives a sufficient condition to avoid all
the bad local minima no matter where we initialize
for the simple scalar case:

Condition 1. p̂max <
1

1 + κ
√
κ

To further elaborate on this, for the loss functions
and w̃ defined in equations (5) and (6) respectively,
if condition 1 is not satisfied, then we cannot say
anything about where MKL-SGD converges. How-
ever, if condition 1 holds true, then we are in Case
1 (Figure 2), i.e. the stationary point attained by
MKL-SGD will be such that it is possible to avoid
the existence of the first bad local minima. The first
bad local minima occurs by solving the optimization
problem where the top-|O| highest probabilities are
assigned to the bad samples.

Following the above analysis recursively, we can show
that all other subsequent bad local minimas are
avoided as well, until we reach the local minima
which assigns the largest (n − |O|) probabilities to
the clean samples. This indicates that irrespective
of where we initialize in the 1D landscape, we are
bound to end up at a local minima with the highest
probabilities assigned to the clean samples. In the
latter part of this section, we will show that MKL-
SGD solution attained when Case 1 holds is provably
better than the SGD solution. However, if condition

Figure 2: Illustration with conditions when bad local
minima will or will not exist. Here, we demonstrate
that even if we start at an initialization wB that
assigns the highest probabilities to bad samples (red),
it is possible to avoid the existence of a bad local
minima if Condition 1 is satisfied. Recursively, we
show in Lemma 2 that it is possible to avoid all bad
local minima and reach a good local minima (where
the good samples have the highest probabilities)

1 is false (Case 2, Figure 2), then it is possible that
MKL-SGD gets stuck at any one of the many local
minimas that exist close to the outlier center wB and
we cannot say anything about the relative distance
from w∗.

A key takeaway from the above condition is that for
a fixed n as κ increases, we can tolerate smaller p̂
and consequently smaller fraction of corruptions ε.
For a fixed ε and n, increasing the parameter k (upto
k < n

2 ) in MKL-SGD leads to an increase in p̂ and
thus increasing k can lead to the violation of the
above condition. This happens because samples with
lower loss will be picked with increasing probability
as k increases and as a result the propensity of MKL-
SGD to converge towards the closest stationary point
it encounters is higher.

For the scalar setting with squared loss and all the
outliers are centered at the same point, the condition
to avoid the worst MKL-SGD solution does not de-
pend on the location of wB . However, this is usually
not the case. We will provide a detailed description
of the analogous setting where outliers are centered
at different points in the Appendix.

Squared loss in the vector setting The loss
functions are redefined as follows:

fi(w) =

{
li‖w −w∗‖2 ∀ i /∈ O
li‖w −wbi‖2 ∀ i ∈ O,

(8)

Without loss of generality, assume that 2δ <
‖wb1 −w∗‖ ≤ ‖wb2 −w∗‖ ≤ · · · ≤

∥∥wb|O| −w∗
∥∥

and γ =
2δ∥∥wb|O| −w∗

∥∥ . Let w̄ be any stationary

attained by MKL-SGD. Suppose θi,w̄ be the an-
gle between the line passing through wbi and w∗

and the line connecting w̄ and w∗. Let us define
θM,w̄ := maxi θi,w̄ and κ = maxi∈[n] li/mini∈[n] li.
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At w∗, by definition, we know that ∀ i /∈ O, fi(w
∗) =

0 and ∀ j ∈ O, fj(w
∗) > 0. By continuity arguments,

there exists a ball of radius r > 0 around w∗, Br(w∗),
defined as follows:

Br(w∗) =

{
w | fi(w) < fj(w) ∀ i /∈ O, j ∈ O,

‖w −w∗‖ ≤ r

}
(9)

In the subsequent lemma, we show that that it is
possible to drift into the ball Br(w∗) where the clean
samples have the highest probability or lowest loss2.

Lemma 2. Consider the loss function and Br(w∗)
defined in equations (8) and (9) respectively. Suppose

q =
cos θM,w̄

γ
− 1 +

√
κ cos θM,w̄

γ
> 0

and p̂max as defined in Equation (7) satisfies

p̂max ≤
1

1 + κq
.

Starting from any initialization w0, for any station-
ary point w̄ attained by MKL-SGD, we have that

w̄ ∈ Br(w∗)

In other words, initializing at any point in the land-
scape, the final stationary point attained by MKL-
SGD will inevitably assign the largest n− |O| prob-
abilities to the clean samples. The proof is availabe
in Appendix Section 7.2.4. For the scalar case, d = 1,
we have θj,w̄ = 0 ∀ j. If γ = 1 and all the outliers are
centered at the same point, then in the scalar setting
the condition in Lemma 2 reduces to condition 1.
Note that, the above lemma leads to a very strong
worst-case guarantee. It states that the farthest opti-
mum for MKL-SGD will always be within a bowl of
distance r from w∗ no matter where we initialize as
long as the conditions are satisfied. The proof and
further discussion on other parameters in Lemma 2
is deferred to Appendix Section 7.2.4.

Analysis for the general outlier setting: In
this part, we analyze the fixed point equations associ-
ated with MKL-SGD and SGD and try to understand
the behavior in a ball Br(w∗) around the optimum.

For the sake of simplicity, we will assume that
‖∇fi(w)‖ ≤ G ∀ i ∈ O. Next, we analyze the fol-
lowing two quantities: i) distance of w̄SGD from w∗

and distance of the any of the solutions attained by
w̄MKL from w∗.

Lemma 3. Let w̄SGD indicate the solution attained
SGD. Under assumptions 1-3, there exists an ε′ such
that for all ε ≤ ε′,

εG ≤ (1− ε)L‖w̄SGD −w∗‖
2It is trivial to show the existence of a ball of radius

r > 0 for any set of continuously differentiable fi(.).

Using Lemma 1, we will define λ as follows:

λ := min
w

λw (10)

Assumption 2 ensures that λ > 0, however the lower
bounds for this λ are loss function dependent.

Lemma 4. Let w̄MKL be any first order stationary
point attained by MKL-SGD . Under assumptions
1-3, for a given ε < 1 and λ as defined in equation
(10), there exists a k′ such that for all k ≥ k′,

‖w̄MKL −w∗‖ ≤ εkG/λ

Finally, we show that any solution attained by MKL-
SGD is provably better than the solution attained
by SGD. We would like to emphasize that this is
a very strong result. The MKL-SGD has numer-
ous local minima and here we show that even the
worst3 solution attained by MKL-SGD is closer to
w∗ than the solution attained by SGD. Let us define
α(ε, L, k, λ) = (1− ε)Lεk−1/λ

Theorem 2. Let w̄SGD and w̄MKL be the the sta-
tionary points attained by SGD and MKL-SGD al-
gorithms respectively for the noiseless setting with
outliers. Under assumptions 1-3, for any w̄MKL ∈
Br(w∗) and λ defined in equation (10), there exists
an ε′ and k′ such that for all ε ≤ ε′ and k ≥ k′, we
have α(ε, L, k, λ) < 1 and,

‖w̄MKL −w∗‖ < α(ε, L, k, λ)‖w̄SGD −w∗‖ (11)

For squared loss in scalar setting, we claimed that for
a fixed n and ε, using a large k may not be a good
idea. Here, however once we are in the ball, Br(w∗),
using larger k (any k < n

2 ), reduces α(ε, L, k, λ) and
allows MKL-SGD to get closer to w∗.

The conditions required in Lemma 2 and Theorem 2
enable us to provide guarantees for only a subset of
relatively well-conditioned problems. We would like
to emphasize that the bounds we obtain are worst
case bounds and not in expectation. As we will note
in the Section 6 and the Appendix, however these
bounds may not be necessary, for convex optimization
problems MKL-SGD easily outperforms SGD.

5 Convergence Rates

In this section, we go back to the in expectation con-
vergence analysis which is standard for the stochastic
settings. For smooth functions with strong convexity,
[Moulines and Bach, 2011, Needell et al., 2014] pro-
vided guarantees for linear rate of convergence. We

3farthest solution from w∗
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restate the theorem here and show that the theorem
still holds for the non-convex landscape obtained by
MKL-SGD in noiseless setting.

Lemma 5 (Linear Convergence [Needell et al.,
2014]). Let F (w) = E[fi(w)] be λ-strongly convex.
Set σ2 = E[‖∇fi(w∗)‖2] with w∗ := argminF (w).

Suppose η ≤ 1

supi Li
. Let ∆t = w∗ −wt. After T

iterations, SGD satisfies:

E
[
‖∆T ‖2

]
≤ (1− 2ηĈ)T ‖∆0‖2 + ηRσ (12)

where Ĉ = λ(1− η supi Li) and Rσ = σ2/Ĉ.

In the noiseless setting, we have ‖∇fi(w∗)‖ = 0 and
so σ := 0. w∗ in (12) is the same as w∗ stated in
Theorem 1. Even though above theorem is for SGD,
it still can be applied to our algorithm 1. At each
iteration there exists a parameter λwt that could be
seen as the strong convexity parameter (c.f. Lemma
1). For MKL-SGD, the parameter λ in (12) should
be λ = mint λwt

. Thus, MKL-SGD algorithm still
guarantees linear convergence result but with an
implication of slower speed of convergence than SGD.

However, Lemma 5 will not hold for MKL-SGD in
noisy setting since the objective is not strongly con-
vex. Even for noiseless setting, the rate of conver-
gence for MKL-SGD in Lemma 5 is not tight. The
upper bound in (12) is loosely set to the constant
λ := mint λwt for all iterations. Using a per-iterate
analysis, we provide a general bound for any stochas-
tic algorithm (c.f. Theorem 3) for both noiseless and
noisy setting in absence and presence of outliers.

Theorem 3 (Distance to w∗). Let ∆t = w∗−wt.
Denote the strong convexity parameter λgood for all
the good samples. Let

ψ = 2ηtλgood(1− ηt sup
i
Li) min

i/∈O
pi(wt)

Suppose at tth iteration, the stepsize is set as ηt,
then conditioned on the current parameter wt, the
expectation of the distance between the wt+1 and w∗

can be upper bounded as:

Ei
[
‖∆t+1‖2|wt

]
≤ (1− ψ) ‖∆t‖2 + ηtRt (13)

where

Rt = 2
∑
i/∈O

pi(wt)
(
〈∆t,∇fi(w∗)〉+ ηt‖∇fi(w∗)‖2

)
+
∑
i∈O

pi(wt)
(
ηt‖∇fi(wt)‖2 + 2 (fi(w

∗)− fi(wt))
)

Theorem 3 implies that for any stochastic algorithm
in the both noisy and noiseless setting, the presence
of outliers can make the upper bound (Rt) much

worse due to an extra term (the second term in Rt).
The second term in Rt has a lower bound that could
be an increasing function of |O|. However, its impact
can be reduced by appropriately setting pi(wt), for
instance using a larger k in MKL-SGD. Corollary 1
in the Appendix also provides a sufficient condition
when MKL-SGD is always better than standard SGD
(in terms of its distance from w∗ in expectation).

The convergence rate depends on the constant ψ ∝
mini/∈O pi(wt). Note that this term mini/∈O pi(wt) is
not too small for our algorithm MKL-SGD since it is
a minimum amongst all good samples (not including
the outliers). However, when compared with vanilla
SGD where mini/∈O pi(wt) = 1/N , mini/∈O pi(wt)
with pi(wt) defined in (3) for MKL-SGD, in some
sense, could be smaller than 1/N .

To understand the residual term Rt. Let us take the
noiseless setting with outliers for an example. We
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Figure 3: Comparing the performance of MKL-SGD
(k = 2) and SGD for different values of κ in noiseless
linear regression against varying fraction of outliers.
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Figure 4: Comparing the performance of MKL-SGD
(k = 2) and SGD for different values of κ in noisy
linear regression against varying fraction of outliers.
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Dataset MNIST CIFAR10

ε
Optimizer

SGD MKL-SGD Oracle SGD MKL-SGD Oracle

0.1 96.76 96.49 98.52 79.1 81.94 84.56
0.2 92.54 95.76 98.33 72.29 77.77 84.40
0.3 85.77 95.96 98.16 63.96 66.49 84.66
0.4 71.95 94.20 97.98 52.4 53.57 84.42

Table 1: Comparing the test accuracy of SGD and MKL-SGD (k = 5/3) over MNIST and CIFAR-10 datasets
in presence of corruptions via directed label noise.
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Figure 5: Comparing training loss, test loss and test accuracy of MKL-SGD and SGD. Parameters: ε = 0.2,
k = 2, b = 16. The training loss is lower for SGD which means that SGD overfits to the noisy data. The
lower test loss and higher accuracy demonstrates the robustness MKL-SGD provides for corrupted data.

have ∇fi(w∗) = 0 and fi(w
∗) = 0 for all i /∈ O. But

for i ∈ O, ∇fi(w∗) 6= 0 and fi(w
∗) 6= 0. Then the

term Rt can be reduced to

Rt =
∑
i∈O

pi(wt)
(
ηt‖∇fi(wt)‖2 + 2(fi(w

∗)− fi(wt))
)

If we are at the same point wt for both SGD and
MKL-SGD and pi(wt) < 1/N for i ∈ O, we have

R
(SGD)
t > R

(MKL)
t . It means that MKL-SGD enjoys

linear convergence, with a good speed proportional to
mini/∈O pi(wt) (but not necessarily faster than vanilla
SGD) up to a neighborhood of potentially smaller
radius than vanilla SGD.

6 Experiments

In this section, we compare the performance of MKL-
SGD and SGD for synthetic datasets for linear re-
gression and small-scale neural networks.

6.1 Linear Regression

For simple linear regression, we assume that Xi are
sampled from normal distribution with different con-
dition numbers. Xi ∼ N (0,D) where D is a diagonal
matrix such that D11 = κ and Dii = 1 for all i). We
compare the performance of MKL-SGD and SGD for
different values of κ (Figs. 3 and 4) under noiseless
and noisy settings against varying levels of corruption
ε. It is important to note that different κ values cor-
respond to different rates of convergence. To ensure

fair comparison, we run the algorithms till the error
values stop decaying and take the distance of w∗

from the exponential moving average of the iterates.

6.2 Neural Networks

For deep learning experiments, we corrupt the data
using directed noise model. In this corruption model,
all the samples of class a that are in error are as-
signed the same wrong label b. This is a stronger
corruption model than corruption by random noise.
For the MKL-SGD algorithm, we run a more prac-
tical batched (size b) variant such that if k = 2 the
algorithm picks b/2 samples out of b sample loss
evaluations. The results in Oracle are obtained by
running SGD over only non-corrupted samples.

MNIST: We train standard 2 layer convolutional
network on subsampled MNIST (5000 samples with
labels). We train over 80 epochs using an initial
learning rate of 0.05 with the decaying schedule of
factor 5 after every 30 epochs. The results of the
MNIST dataset are averaged over 5 runs.

CIFAR10: We train Resnet-18 [He et al., 2016] on
CIFAR-10 (50000 training samples with labels) for
over 200 epochs using an initial learning rate of 0.05
with the decaying schedule of factor 5 after every 90
epochs. The reported accuracy is based on the true
validation set. The results of the CIFAR-10 dataset
are averaged over 3 runs.
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