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Abstract

We investigate and provide new insights on
the sampling rule called Top-Two Thompson
Sampling (TTTS). In particular, we justify its
use for fixed-confidence best-arm identifica-
tion. We further propose a variant of TTTS
called Top-Two Transportation Cost (T3C),
which disposes of the computational burden
of TTTS. As our main contribution, we pro-
vide the first sample complexity analysis of
TTTS and T3C when coupled with a very nat-
ural Bayesian stopping rule, for bandits with
Gaussian rewards, solving one of the open
questions raised by Russo (2016). We also
provide new posterior convergence results for
TTTS under two models that are commonly
used in practice: bandits with Gaussian and
Bernoulli rewards and conjugate priors.

1 Introduction

In multi-armed bandits, a learner repeatedly chooses
an arm to play, and receives a reward from the as-
sociated unknown probability distribution. When the
task is best-arm identification (BAI), the learner is not
only asked to sample an arm at each stage, but is also
asked to output a recommendation (i.e., a guess for
the arm with the largest mean reward) after a certain
period. Unlike in another well-studied bandit setting,
the learner is not interested in maximizing the sum
of rewards gathered during the exploration (or mini-
mizing regret), but only cares about the quality of her
recommendation. As such, BAI is a particular pure
exploration setting (Bubeck et al., 2009).

Formally, we consider a finite-arm bandit model, which
is a collection of K probability distributions, called
arms A , {1, . . . ,K}, parametrized by their means
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µ1, . . . , µK . We assume the (unknown) best arm is
unique and we denote it by I

? , argmaxi µi. A best-
arm identification strategy (In, Jn, ⌧) consists of three
components. The first is a sampling rule, which selects
an arm In at round n. At each round n, a vector of re-
wards Yn = (Yn,1, · · · , Yn,K) is generated for all arms
independently from past observations, but only Yn,In is
revealed to the learner. Let Fn be the �-algebra gener-
ated by (U0, I1, Y1,I1 , U1, · · · , In, Yn,In , Un), then In is
Fn�1-measurable, i.e., it can only depend on the past
n � 1 observations, and some exogenous randomness,
materialized into Un�1 ⇠ U([0, 1]). The second com-
ponent is a Fn-measurable recommendation rule Jn,
which returns a guess for the best arm, and thirdly,
the stopping rule ⌧ , a stopping time with respect to
(Fn)n2N, decides when the exploration is over.

BAI is studied within several theoretical frameworks.
In this paper we consider the fixed-confidence set-
ting, introduced by Even-dar et al. (2003). Given a
risk parameter � 2 [0, 1], the goal is to ensure that
the probability to stop and recommend a wrong arm,
P [J⌧ 6= I

? ^ ⌧ < 1], is smaller than �, while minimiz-
ing the expected total number of samples to make this
accurate recommendation, E [⌧ ]. The most studied al-
ternative setting is the fixed-budget setting for which
the stopping rule ⌧ is fixed to some (known) maxi-
mal budget n, and the goal is to minimize the error
probability P [Jn 6= I

?] (Audibert and Bubeck, 2010).
Note that these two frameworks are very different in
general and do not share transferable regret bounds
(see Carpentier and Locatelli 2016 for an additional
discussion).

Most existing sampling rules for the fixed-confidence
setting depend on the risk parameter �. Some
of them rely on confidence intervals such as
LUCB (Kalyanakrishnan et al., 2012), UGapE (Gabil-
lon et al., 2012), or lil’UCB (Jamieson et al.,
2014); others are based on eliminations such as
SuccessiveElimination (Even-dar et al., 2003) and
ExponentialGapElimination (Karnin et al., 2013).
The first known sampling rule for BAI that does not
depend on � is the tracking rule proposed by Gariv-
ier and Kaufmann (2016), which is proved to achieve
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the minimal sample complexity when combined with
the Chernoff stopping rule when � goes to zero. Such
an anytime sampling rule (neither depending on a risk
� or a budget n) is very appealing for applications,
as advocated by Jun and Nowak (2016) who introduce
the anytime best-arm identification framework. In this
paper, we investigate another anytime sampling rule
for BAI: Top-Two Thompson Sampling (TTTS), and
propose a second anytime sampling rule: Top-Two
Transportation Cost (T3C).

Thompson Sampling (Thompson, 1933) is a Bayesian
algorithm well known for regret minimization, for
which it is now seen as a major competitor to UCB-
typed approaches (Burnetas and Katehakis, 1996;
Auer et al., 2002; Cappé et al., 2013). However, it is
also well known that regret minimizing algorithms can-
not yield optimal performance for BAI (Bubeck et al.,
2011; Kaufmann and Garivier, 2017) and as we opt
Thompson Sampling for BAI, then its adaptation is
necessary. Such an adaptation, TTTS, was given by
Russo (2016) along with two other top-two sampling
rules TTPS and TTVS. By choosing between two differ-
ent candidate arms in each round, these sampling rules
enforce the exploration of sub-optimal arms, which
would be under-sampled by vanilla Thompson sam-
pling due to its objective of maximizing rewards.

While TTTS appears to be a good anytime sampling
rule for fixed-confidence BAI when coupled with an
appropriate stopping rule, so far there is no theoretical
support for this employment. Indeed, the (Bayesian-
flavored) asymptotic analysis of Russo (2016) shows
that under TTTS, the posterior probability that I

? is
the best arm converges almost surely to 1 at the best
possible rate. However, this property does not by itself
translate into sample complexity guarantees. Since the
result of Russo (2016), Qin et al. (2017) proposed and
analyzed TTEI, another Bayesian sampling rule, both
in the fixed-confidence setting and in terms of poste-
rior convergence rate. Nonetheless, similar guarantees
for TTTS have been left as an open question by Russo
(2016). In the present paper, we answer the question
whether we can obtain fixed-confidence guarantees and
optimal posterior convergence rates for TTTS. In addi-
tion, we propose T3C, a computationally more favor-
able variant of TTTS and extend the fixed-confidence
guarantees to T3C as well.

Contributions (1) We propose a new Bayesian sam-
pling rule, T3C, which is inspired by TTTS but easier to
implement and computationally advantageous (2) We
investigate two Bayesian stopping and recommenda-
tion rules and establish their �-correctness for a ban-
dit model with Gaussian rewards.1 (3) We provide

1hereafter ‘Gaussian bandits’ or ‘Gaussian model’

the first sample complexity analysis of TTTS and T3C
for a Gaussian model and our proposed stopping rule.
(4) Russo’s posterior convergence results for TTTS were
obtained under restrictive assumptions on the models
and priors, which exclude the two mostly used mod-
els in practice: Gaussian bandits with Gaussian priors
and bandits with Bernoulli rewards2 with Beta priors.
We prove that optimal posterior convergence rates can
be obtained for those two as well.

Outline In Section 2, we restate TTTS and intro-
duce T3C along with our proposed recommendation
and stopping rules. Then, in Section 3, we describe
in detail two important notions of optimality that are
invoked in this paper. The main fixed-confidence anal-
ysis follows in Section 4, and further Bayesian optimal-
ity results are given in Section 5. Numerical illustra-
tions are given in Section 6.

2 Bayesian BAI Strategies

In this section, we give an overview of the sampling
rule TTTS and introduce T3C. We provide details for
Bayesian updating for Gaussian and Bernoulli models
respectively, and introduce associated Bayesian stop-
ping and recommendation rules.

2.1 Sampling rules

Both TTTS and T3C employ a Bayesian machinery and
make use of a prior distribution ⇧1 over a set of pa-
rameters ⇥, which is assumed to contain the unknown
true parameter vector µ. Upon acquiring observa-
tions (Y1,I1 , · · · , Yn�1,In�1), we update our beliefs ac-
cording to Bayes’ rule and obtain a posterior distribu-
tion ⇧n which we assume to have density ⇡n w.r.t. the
Lebesgue measure. Russo’s analysis is requires strong
regularity properties on the models and priors, which
exclude two important useful cases we consider in this
paper: (1) the observations of each arm i follow a
Gaussian distribution N (µi,�

2) with common known
variance �2, with imposed Gaussian prior N (µ1,i,�

2
1,i),

(2) all arms receive Bernoulli rewards with unknown
means, with a uniform (Beta(1, 1)) prior on each arm.

Gaussian model For Gaussian bandits with a
N (0,2) prior on each mean, the posterior distribution
of µi at round n is Gaussian with mean and variance
that are respectively given by

Pn�1
`=1 1{I` = i}Y`,I`

Tn,i + �2/2
and

�
2

Tn,i + �2/2
,

where Tn,i ,
Pn�1

`=1 1{I` = i} is the number of selec-
tions of arm i before round n. For the sake of simplic-

2hereafter ‘Bernoulli bandits’
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ity, we consider improper Gaussian priors with µ1,i = 0
and �1,i = +1 for all i 2 A, for which

µn,i =
1

Tn,i

n�1X

`=1

1{I` = i}Y`,I` and �
2
n,i =

�
2

Tn,i
.

Observe that in this case the posterior mean µn,i co-
incides with the empirical mean.

Beta-Bernoulli model For Bernoulli bandits with
a uniform (Beta(1, 1)) prior on each mean, the poste-
rior distribution of µi at round n is a Beta distribution
with shape parameters ↵n,i =

Pn�1
`=1 1{I` = i}Y`,I` +1

and �n,i = Tn,i �
Pn�1

`=1 1{I` = i}Y`,I` + 1.

Now we briefly recall TTTS and introduce T3C. The
pseudo-code of TTTS and T3C are shown in Algo-
rithm 1.

Description of TTTS At each time step n, TTTS has
two potential actions: (1) with probability �, a param-
eter vector ✓ is sampled from ⇧n, and TTTS chooses to
play I

(1)
n , argmaxi2A ✓i, (2) and with probability

1 � �, the algorithm continues sampling new ✓0 until
we obtain a challenger I

(2)
n , argmaxi2A ✓

0
i that is

different from I
(1)
n , and TTTS chooses to play I

(2)
n .

Description of T3C One drawback of TTTS is that,
in practice, when the posteriors become concentrated,
it takes many Thompson samples before the challenger
I
(2)
n is obtained. We thus propose a variant of TTTS,

called T3C, which alleviates this computational burden.
Instead of re-sampling from the posterior until a differ-
ent candidate appears, we define the challenger as the
arm that has the lowest transportation cost Wn(I

(1)
n , i)

with respect to the first candidate (with ties broken
uniformly at random).

Let µn,i be the empirical mean of arm i and µn,i,j ,
(Tn,iµn,i + Tn,jµn,j)/(Tn,i + Tn,j), then we define

Wn(i, j) ,
⇢

0 if µn,j � µn,i,

Wn,i,j +Wn,j,i otherwise,
(1)

where Wn,i,j , Tn,id (µn,i, µn,i,j) for any i, j and
d(µ;µ0) denotes the Kullback-Leibler between the dis-
tribution with mean µ and that of mean µ

0. In the
Gaussian case, d(µ;µ0) = (µ� µ

0)2/(2�2) while in the
Bernoulli case d(µ;µ0) = µ ln(µ/µ0) + (1 � µ) ln(1 �
µ)/(1� µ

0). In particular, for Gaussian bandits

Wn(i, j) =
(µn,i � µn,j)2

2�2(1/Tn,i + 1/Tn,j)
1{µn,j < µn,i}.

Note that under the Gaussian model with improper
priors, one should pull each arm once at the beginning
for the sake of obtaining proper posteriors.

Algorithm 1 Sampling rule (TTTS/T3C)
1: Input: �
2: for n 1, 2, · · · do

3: sample ✓ ⇠ ⇧n

4: I(1)  argmaxi2A ✓i
5: sample b ⇠ Bern(�)
6: if b = 1 then

7: evaluate arm I(1)

8: else

9: repeat sample ✓0 ⇠ ⇧n

10: I(2)  argmaxi2A ✓
0
i TTTS

11: until I(2) 6= I(1)

12: I(2)  argmini 6=I(1) Wn(I
(1), i), cf. (1) T3C

13: evaluate arm I(2)

14: end if

15: update mean and variance
16: t = t+ 1
17: end for

2.2 Rationale for T3C

In order to explain how T3C can be seen as an approxi-
mation of the re-sampling performed by TTTS, we first
need to define the optimal action probabilities.

Optimal action probability The optimal action
probability an,i is defined as the posterior probability
that arm i is optimal. Formally, letting ⇥i be the
subset of ⇥ such that arm i is the optimal arm,

⇥i ,
⇢
✓ 2 ⇥

���� ✓i > max
j 6=i

✓j

�
,

then we define

an,i , ⇧n(⇥i) =

Z

⇥i

⇡n(✓)d✓. (2)

With this notation, one can show that under TTTS,

⇧n

⇣
I
(2)
n = j|I(1)n = i

⌘
=

an,jP
k 6=i an,k

. (3)

Furthermore, when i coincides with the empirical best
mean (and this will often be the case for I

(1)
n when n

is large due to posterior convergence) one can write

an,j ' ⇧n (✓j � ✓i) ' exp (�Wn(i, j)) ,

where the last step is justified in Lemma 2 in the
Gaussian case (and Lemma 26 in Appendix I.3 in the
Bernoulli case). Hence, T3C replaces sampling from
the distribution (3) by an approximation of its mode
which is easy to compute. Note that directly comput-
ing the mode would require to compute an,j , which is
much more costly than the computation of Wn(i, j)3.

3TTPS (Russo, 2016) also requires the computation of
an,i, thus we do not report simulations for it in Sec. 6.
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2.3 Stopping and recommendation rules

In order to use TTTS or T3C as the sampling rule
for fixed-confidence BAI, we need to additionally de-
fine stopping and recommendation rules. While Qin
et al. (2017) suggest to couple TTEI with the “frequen-
tist” Chernoff stopping rule (Garivier and Kaufmann,
2016), we propose in this section natural Bayesian
stopping and recommendation rules. They both rely
on the optimal action probabilities defined in (2).

Bayesian recommendation rule At time step n,
a natural candidate for the best arm is the arm with
largest optimal action probability, hence we define

Jn , argmax
i2A

an,i .

Bayesian stopping rule In view of the recommen-
dation rule, it is natural to stop when the posterior
probability that the recommended action is optimal is
large, and exceeds some threshold cn,� which gets close
to 1. Hence our Bayesian stopping rule is

⌧� , inf

⇢
n 2 N : max

i2A
an,i � cn,�

�
. (4)

Links with frequentist counterparts Using the
transportation cost Wn(i, j) defined in (1), the Cher-
noff stopping rule of Garivier and Kaufmann (2016)
can actually be rewritten as

⌧
Ch.
� , inf

⇢
n 2 N : max

i2A
min

j2A\{i}
Wn(i, j) > dn,�

�
. (5)

This stopping rule is coupled with the recommendation
rule Jn = argmaxi µn,i.

As explained in that paper, Wn(i, j) can be interpreted
as a (log) Generalized Likelihood Ratio statistic for re-
jecting the hypothesis H0 : (µi < µj). Through our
Bayesian lens, we rather have in mind the approxi-
mation ⇧n(✓j > ✓i) ' exp {�Wn(i, j)}, valid when
µn,i > µn,j , which permits to analyze the two stop-
ping rules using similar tools, as will be seen in the
proof of Theorem 2.

As shown later in Sec. 4, ⌧� and ⌧Ch.
� prove to be fairly

similar for some corresponding choices of the thresh-
olds cn,� and dn,�. This similarity endorses the use
of the Chernoff stopping rule in practice, which does
not require the (heavy) computation of optimal ac-
tion probabilities. Still, our sample complexity anal-
ysis applies to the two stopping rules, and we believe
that a frequentist sample complexity analysis of a fully
Bayesian-flavored BAI strategy is a nice theoretical
contribution.

Useful notation We follow the notation of Russo
(2016) and define the following measures of effort al-
located to arm i up to time n,

 n,i , P [In = i|Fn�1] and  n,i ,
nX

l=1

 l,i.

In particular, for TTTS we have

 n,i = �an,i + (1� �)an,i
X

j 6=i

an,j

1� an,j
,

while for T3C

 n,i = �an,i+(1��)
X

j 6=i

an,j
1{Wn(j, i) = mink 6=j Wn(j, k)}

#
��argmink 6=j Wn(j, k)

�� .

3 Two Related Optimality Notions

In the fixed-confidence setting, we aim for building �-
correct strategies, i.e. strategies that identify the best
arm with high confidence on any problem instance.
Definition 1. A strategy (In, Jn, ⌧) is �-correct if for
all bandit models µ with a unique optimal arm, it holds
that Pµ [J⌧ 6= I

? ^ ⌧ < 1]  �.

Among �-correct strategies, seek the one with the
smallest sample complexity E [⌧�]. So far, TTTS has not
been analyzed in terms of sample complexity; Russo
(2016) focuses on posterior consistency and optimal
convergence rates. Interestingly, both the smallest
possible sample complexity and the fastest rate of pos-
terior convergence can be expressed in terms of the
following quantities.
Definition 2. Let ⌃K = {! :

PK
k=1 !k = 1,!k � 0}

and define for all i 6= I
?

Ci(!,!
0) , min

x2I
!d(µI? ;x) + !

0
d(µi;x),

where d(µ, µ0) is the KL-divergence defined above and
I = R in the Gaussian case and I = [0, 1] in the
Bernoulli case. We define

�? , max
!2⌃K

min
i 6=I?

Ci(!I? ,!i),

�?� , max
!2⌃K
!I?=�

min
i 6=I?

Ci(!I? ,!i). (6)

The quantity Ci(!I? ,!i) can be interpreted as a
“transportation cost”4 from the original bandit in-
stance µ to an alternative instance in which the mean
of arm i is larger than that of I?, when the proportion
of samples allocated to each arm is given by the vec-
tor ! 2 ⌃K . As shown by Russo (2016), the ! that
maximizes (6) is unique, which allows us to define the
�-optimal allocation !� in the following proposition.

4for which Wn(I
?, i) is an empirical counterpart
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Proposition 1. There is a unique solution !� to the
optimization problem (6) satisfying !�

I? = �, and for
all i, j 6= I

?, Ci(�,!
�
i ) = Cj(�,!

�
j ).

For models with more than two arms, there is no closed
form expression for �?� or �?, even for Gaussian bandits
with variance �2 for which we have

�?� = max
!:!I?=�

min
i 6=I?

(µI? � µi)2

2�2(1/!i + 1/�)
.

Bayesian �-optimality Russo (2016) proves that
any sampling rule allocating a fraction � to the optimal
arm ( n,I?/n ! �) satisfies 1 � an,I? � e

�n(�?
�+o(1))

(a.s.).We define a Bayesian �-optimal sampling rule
as a sampling rule matching this lower bound, i.e. sat-
isfying  n,I?/n ! � and 1� an,I?  e

�n(�?
�+o(1)).

Russo (2016) proves that TTTS with parameter � is
Bayesian �-optimal. However, the result is valid
only under strong regularity assumptions, excluding
the two practically important cases of Gaussian and
Bernoulli bandits. In this paper, we complete the pic-
ture by establishing Bayesian �-optimality for those
models in Sec. 5. For the Gaussian bandit, Bayesian
�-optimality was established for TTEI by Qin et al.
(2017) with Gaussian priors, but this remained an
open problem for TTTS.

A fundamental ingredient of these proofs is to establish
the convergence of the allocation of measurement effort
to the �-optimal allocation:  n,i/n ! !

�
i for all i,

which is equivalent to Tn,i/n ! !
�
i (cf. Lemma 4).

�-optimality in the fixed-confidence setting In
the fixed confidence setting, the performance of an
algorithm is evaluated in terms of sample complex-
ity. A lower bound given by Garivier and Kauf-
mann (2016) states that any �-correct strategy satisfies
E [⌧�] � (�?)�1 ln (1/(3�)).

Observe that �? = max�2[0,1] �
?
� . Using the same

lower bound techniques, one can also prove that under
any �-correct strategy satisfying Tn,I?/n ! �,

lim inf
�!0

E [⌧�]

ln(1/�)
� 1

�?�
.

This motivates the relaxed optimality notion that we
introduce in this paper: A BAI strategy is called
asymptotically �-optimal if it satisfies

Tn,I?

n
! � and lim sup

�!0

E [⌧�]

ln(1/�)
 1

�?�
.

In the paper, we provide the first sample complex-
ity analysis of a BAI algorithm based on TTTS (with
the stopping and recommendation rules described in
Sec. 2), establishing its asymptotic �-optimality.

As already observed by Qin et al. (2017), any sampling
rule converging to the �-optimal allocation (i.e. satis-
fying Tn,i/n ! w

�
i for all i) can be shown to satisfy

lim sup�!0 ⌧�/ ln(1/�)  (�?�)
�1 almost surely, when

coupled with the Chernoff stopping rule. The fixed
confidence optimality that we define above is stronger
as it provides guarantees on E [⌧�].

4 Fixed-Confidence Analysis

In this section, we consider Gaussian bandits and the
Bayesian rules using an improper prior on the means.
We state our main result below, showing that TTTS
and T3C are asymptotically �-optimal in the fixed con-
fidence setting, when coupled with appropriate stop-
ping and recommendation rules.
Theorem 1. With CgG the function defined in Corol-
lary 10 of Kaufmann and Koolen (2018), which satis-
fies CgG(x) ' x+ ln(x), we introduce the threshold

dn,� = 4 ln(4 + ln(n)) + 2CgG

✓
ln((K � 1)/�)

2

◆
. (7)

The TTTS and T3C sampling rules coupled with either

• the Bayesian stopping rule (4) with threshold

cn,� = 1� 1p
2⇡

e
�
⇣p

dn,�+
1p
2

⌘2

and recommendation rule Jt = argmaxi an,i, or
• the Chernoff stopping rule (5) with threshold dn,�

and recommendation rule Jt = argmaxi µn,i,

form a �-correct BAI strategy. Moreover, if all the
arms means are distinct, it satisfies

lim sup
�!0

E [⌧�]

log(1/�)
 1

�?�
.

We now give the proof of Theorem 1, which is divided
into three parts. The first step of the analysis is to
prove the �-correctness of the studied BAI strategies.
Theorem 2. Regardless of the sampling rule, the stop-
ping rule (4) with the threshold cn,� and the Chernoff
stopping rule (5) with threshold dn,� defined in (7) sat-
isfy P [⌧� < 1^ J⌧� 6= I

?]  �.

To prove that TTTS and T3C allow to reach a �-optimal
sample complexity, one needs to quantify how fast the
measurement effort for each arm is concentrating to
its corresponding optimal weight. For this purpose,
we introduce the random variable

T
"
� , inf

⇢
N 2 N : max

i2A
|Tn,i/n� !

�
i |  ", 8n � N

�
.

The second step of our analysis is a sufficient condi-
tion for �-optimality, stated in Lemma 1. Its proof is
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given in Appendix F. The same result was proven for
the Chernoff stopping rule by Qin et al. (2017).
Lemma 1. Let �,� 2 (0, 1). For any sampling rule
which satisfies E

h
T

"
�

i
< 1 for all " > 0, we have

lim sup
�!0

E [⌧�]

log(1/�)
 1

�?�
,

if the sampling rule is coupled with stopping rule (4),

Finally, it remains to show that TTTS and T3C meet
the sufficient condition, and therefore the last step,
which is the core component and the most technical
part our analysis, consists of showing the following.

Theorem 3. Under TTTS or T3C, E
h
T

"
�

i
< +1.

In the rest of this section, we prove Theorem 2 and
sketch the proof of Theorem 3. But we first highlight
some important ingredients for these proofs.

4.1 Core ingredients

Our analysis hinges on properties of the Gaussian
posteriors, in particular on the following tail bounds,
which follow from Lemma 1 of Qin et al. (2017).
Lemma 2. For any i, j 2 A, if µn,i  µn,j

⇧n [✓i � ✓j ] 
1
2
exp

⇢
� (µn,j � µn,i)

2

2�2
n,i,j

�
, (8)

⇧n [✓i � ✓j ] �
1p
2⇡

exp

⇢
� (µn,j � µn,i + �n,i,j)

2

2�2
n,i,j

�
, (9)

where �2
n,i,j , �

2
/Tn,i + �

2
/Tn,j.

This lemma is crucial to control an,i and  n,i, the op-
timal action and selection probabilities.

4.2 Proof of Theorem 2

We upper bound the desired probability as follows

P [⌧� <1^ J⌧� 6= I?] 
X

i 6=I?

P [9n 2 N : an,i > cn,�]


X

i 6=I?

P [9n 2 N : ⇧n(✓i � ✓I?) > cn,�, µn,I? µn,i]


X

i 6=I?

P [9n 2 N : 1� cn,� > ⇧n(✓I?> ✓i), µn,I? µn,i] .

The second step uses the fact that as cn,� � 1/2, a
necessary condition for ⇧n(✓i � ✓I?) � cn,� is that
µn,i � µn,I? . Now using the lower bound (9), if µn,I? 
µn,i, the inequality 1� cn,� > ⇧n(✓I? > ✓i) implies

(µn,i � µn,I?)2

2�2
n,i,I?

�
 s

ln
1p

2⇡(1� cn,�)
� 1p

2

!2

= dn,�,

where the equality follows from the expression of cn,�
as function of dn,�. Hence to conclude the proof it
remains to check that

P

"
9n2N :µn,i � µn,I?,

(µn,i�µn,I?)
2

2�2
n,i,I?

�dn,�

#


�

K�1
. (10)

To prove this, we observe that for µn,i � µn,I? ,

(µn,i � µn,I?)
2

2�2
n,i,I?

= inf
✓i<✓I?

Tn,id(µn,i; ✓i) + Tn,I?d(µn,I?; ✓I?)

 Tn,id(µn,i;µi) + Tn,I?d(µn,I?;µI?).

Corollary 10 of Kaufmann and Koolen (2018) then al-
lows us to upper bound the probability

P [9n 2 N : Tn,id(µn,i;µi) + Tn,I?d(µn,I? , µI?) � dn,�]

by �/(K � 1) for the choice of threshold given in (7),
which completes the proof that the stopping rule (4)
is �-correct. The fact that the Chernoff stopping rule
with the above threshold dn,� given above is �-correct
straightforwardly follows from (10).

4.3 Sketch of the proof of Theorem 3

We present a unified proof sketch of Theorem 3 for
TTTS and T3C. While the two analyses follow the same
steps, some of the lemmas given below have different
proofs for TTTS and T3C, which can be found in Ap-
pendix D and E respectively.

We first state two important concentration results,
that hold under any sampling rule.
Lemma 3. [Lemma 5 of Qin et al. 2017] There exists
a random variable W1, such that for all i 2 A,

8n 2 N, |µn,i � µi|  �W1

s
log(e+ Tn,i)

1 + Tn,i
a.s.,

and E
⇥
e
�W1

⇤
< 1 for all � > 0.

Lemma 4. There exists a random variable W2, such
that for all i 2 A,

8n 2 N, |Tn,i � n,i|  W2

p
(n+ 1) log(e2 + n) a.s.,

and E
⇥
e
�W2

⇤
< 1 for any � > 0.

Lemma 3 controls the concentration of the posterior
means towards the true means and Lemma 4 estab-
lishes that Tn,i and  n,i are close. Both results rely
on uniform deviation inequalities for martingales.

Our analysis uses the same principle as that of TTEI:
We establish that T

"
� is upper bounded by some ran-

dom variable N which is a polynomial of the random
variables W1 and W2 introduced in the above lemmas,
denoted by Poly(W1,W2) , O(W c1

1 W
c2
2 ), where c1
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and c2 are two constants (that may depend on the
arms’ means and the constant hidden in the O). As
all exponential moments of W1 and W2 are finite, N
has a finite expectation as well, concluding the proof.

The first step to exhibit such an upper bound N is to
establish that every arm is pulled sufficiently often.
Lemma 5. Under TTTS or T3C, there exists N1 =
Poly(W1,W2) s.t.

8n � N1, 8i, Tn,i �
r

n

K
, a.s..

Due to the randomized nature of TTTS and T3C, the
proof of Lemma 5 is significantly more involved than
for a deterministic rule like TTEI. Intuitively, the pos-
terior of each arm would be well concentrated once the
arm is sufficiently pulled. If the optimal arm is under-
sampled, then it would be chosen as the first candidate
with large probability. If a sub-optimal arm is under-
sampled, then its posterior distribution would possess
a relatively wide tail that overlaps with or cover the
somehow narrow tails of other overly-sampled arms.
The probability of that sub-optimal arm being chosen
as the challenger would be large enough then.

Combining Lemma 5 with Lemma 3 straightforwardly
leads to the following result.
Lemma 6. Under TTTS or T3C, fix a constant " >

0, there exists N2 = Poly(1/",W1,W2) s.t. 8n �
N2, 8i 2 A, |µn,i � µi|  ".

We can then deduce a very nice property about the
optimal action probability for sub-optimal arms from
the previous two lemmas. Indeed, we can show that

8i 6= I
?
, an,i  exp

⇢
��

2
min

16�2

r
n

K

�

for n larger than some Poly(W1,W2), where �min is
the smallest mean difference among all the arms.

Plugging this in the expression of  n,i, one can easily
quantify how fast  n,I? converges to �, which eventu-
ally yields the following result.
Lemma 7. Under TTTS or T3C, fix " > 0, then there
exists N3 = Poly(1/",W1,W2) s.t. 8n � N3,

����
Tn,I?

n
� �

����  ".

The last, more involved, step is to establish that
the fraction of measurement allocation to every sub-
optimal arm i is indeed similarly close to its optimal
proportion !�

i .
Lemma 8. Under TTTS or T3C, fix a constant " > 0,
there exists N4 = Poly(1/",W1,W2) s.t. 8n � N4,

8i 6= I
?
,

����
Tn,i

n
� !

�
i

����  ".

The major step in the proof of Lemma 8 for each sam-
pling rule, is to establish that if some arm is over-
sampled, then its probability to be selected is expo-
nentially small. Formally, we show that for n larger
than some Poly(1/",W1,W2),

 n,i

n
� !

�
i + ⇠ )  n,i  exp {�f(n, ⇠)} ,

for some function f(n, ⇠) to be specified for each sam-
pling rule, satisfying f(n) � C⇠

p
n (a.s.). This result

leads to the concentration of  n,i/n, thus can be easily
converted to the concentration of Tn,i/n by Lemma 4.

Finally, Lemma 7 and Lemma 8 show that T "
� is upper

bounded by N , max(N3, N4), which yields

E[T "
� ]  max(E [N3] ,E [N4]) < 1.

5 Optimal Posterior Convergence

Recall that an,I? denotes the posterior mass assigned
to the event that action I

? (i.e. the true optimal arm)
is optimal at time n. As the number of observations
tends to infinity, we want the posterior distribution to
converge to the truth. In this section we show equiv-
alently that the posterior mass on the complementary
event, 1� an,I? , the event that arm I

? is not optimal,
converges to zero at an exponential rate, and that it
does so at optimal rate �?� .

Russo (2016) proves a similar theorem under three
confining boundedness assumptions (see Russo 2016,
Assumption 1) on the parameter space, the prior den-
sity and the (first derivative of the) log-normalizer of
the exponential family. Hence, the theorems in Russo
(2016) do not apply to the two bandit models most
used in practice, which we consider in this paper: the
Gaussian and Bernoulli model.

In the first case, the parameter space is unbounded, in
the latter model, the derivative of the log-normalizer
(which is e⌘/(1+e

⌘)) is unbounded. Here we provide a
theorem, proving that under TTTS, the optimal, expo-
nential posterior convergence rates are obtained for the
Gaussian model with uninformative (improper) Gaus-
sian priors (proof in Appendix H), and the Bernoulli
model with Beta(1, 1) priors (proof in Appendix I).
Theorem 4. Under TTTS, for Gaussian bandits with
improper Gaussian priors and for Bernoulli bandits
with uniform priors, it holds almost surely that

lim
n!1

� 1

n
log(1� an,I?) = �?� .
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Figure 1: black dots represent means and oranges lines represent medians.

Sampling rule T3C TTTS TTEI BC D-Tracking Uniform UGapE
Execution time (s) 1.6⇥ 10�5 2.3⇥ 10�4 1⇥ 10�5 1.4⇥ 10�5 1.3⇥ 10�3 6⇥ 10�6 5⇥ 10�6

Table 1: average execution time in seconds for different sampling rules.

6 Numerical Illustrations

This section is aimed at illustrating our theoretical
results and supporting the practical use of Bayesian
sampling rules for fixed-confidence BAI.

We experiment with 3 Bayesian sampling rules: T3C,
TTTS and TTEI with � = 1/2, against the Direct Track-
ing (D-Tracking) of Garivier and Kaufmann (2016)
(which is adaptive to �), UGapE of Gabillon et al.
(2012), and a uniform baseline. To make fair com-
parisons, we use the stopping rule (5) and associated
recommendation rule for all of the sampling rules ex-
cept for UGapE which has its own stopping rule.

We further include a top-two variant of the Best Chal-
lenger (BC) heuristic (see Ménard, 2019). BC selects
the empirical best arm bIn with probability � and the
maximizer of Wn(bIn, j) with probability 1��, but also
performs forced exploration (selecting any arm sam-
pled less than

p
n times at round n). T3C can thus

be viewed as a variant of BC in which no forced explo-
ration is needed to converge to !� , due to the noise
added by replacing bIn with I

(1)
n . This randomization

is crucial as BC without forced exploration can fail: we
observed that on bandit instances with two identical
sub-optimal arms, BC has some probability to alternate
forever between these two arms and never stop.

We consider two simple instances with arm means
given by µ1 = [0.5 0.9 0.4 0.45 0.44999], and µ2 =
[1 0.8 0.75 0.7]. We run simulations for both Gaussian
(� = 1) and Bernoulli bandits, with a risk parameter
� = 0.01. Fig. 1 reports the empirical distribution of
⌧� under the different sampling rules, estimated over
1000 independent runs. We also indicate the values
of N? , log(1/�)/�? (resp. N

?
0.5 , log(1/�)/�?0.5), the

theoretical minimal number of samples needed for any
strategy (resp. any 1/2-optimal strategy). In Ap-
pendix C, we illustrate how the empirical stopping
time of T3C matches the theoretical one.

These figures provide several insights: (1) T3C is
competitive with, and sometimes slightly better than
TTTS/TTEI in terms of sample complexity. (2) The
UGapE algorithm has a larger sample complexity than
the uniform sampling rule, which highlights the im-
portance of the stopping rule in the fixed-confidence
setting. (3) The fact that D-Tracking performs best
is not surprising, since it converges to !�?

and achieves
minimal sample complexity. However, in terms of com-
putation time, D-Tracking is much worse than others,
as shown in Table 1, which reports the average execu-
tion time of one step of each sampling rule for µ1 in
the Gaussian case. (4) TTTS also suffers from com-
putational costs, whose origins are explained in Sec. 2,
unlike T3C or TTEI. Although TTEI is already computa-
tionally more attractive than TTTS, its practical bene-
fits are limited to the Gaussian case, since the Expected
Improvement (EI) does not have a closed form beyond
this case and its approximation would be costly. In
contrast, T3C can be applied for other distributions.

7 Conclusion

We have advocated the use of a Bayesian sampling
rule for BAI. In particular, we proved that TTTS and a
computationally advantageous approach T3C, are both
�-optimal in the fixed-confidence setting, for Gaussian
bandits. We further extended the Bayesian optimal-
ity properties (Russo, 2016) to more practical choices
of models and prior distributions. In order to be opti-
mal, these sampling rules would need the oracle tuning
�
? = argmax�2[0,1] �

?
� , which is not feasible. In future

work, we will investigate the efficient online tuning
of � to circumvent this issue. We also wish to ob-
tain explicit finite-time sample complexity bound for
these Bayesian strategies, and justify the use of these
appealing anytime sampling rules in the fixed-budget
setting. The latter is often more plausible in appli-
cation scenarios such as BAI for automated machine
learning (Li et al., 2017; Shang et al., 2019).
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