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Abstract

Optimization in the presence of sharp (non-
Lipschitz), unpredictable (w.r.t. time and
amount) changes is a challenging and largely
unexplored problem of great significance. We
consider the class of piecewise Lipschitz func-
tions, which is the most general online set-
ting considered in the literature for the prob-
lem, and arises naturally in various combi-
natorial algorithm selection problems where
utility functions can have sharp discontinu-
ities. The usual performance metric of ‘static’
regret minimizes the gap between the pay-
off accumulated and that of the best fixed
point for the entire duration, and thus fails
to capture changing environments. Shifting
regret is a useful alternative, which allows
for up to s environment shifts. In this work
we provide an O(y/sdTlogT + sT'=#) re-
gret bound for g-dispersed functions, where
B roughly quantifies the rate at which dis-
continuities appear in the utility functions
in expectation (typically 8 > 1/2 in prob-
lems of practical interest [Balcan et al., 2019]
Balcan et al., 2018a]). We also present a
lower bound tight up to sub-logarithmic fac-
tors. We further obtain improved bounds
when selecting from a small pool of experts.
We empirically demonstrate a key application
of our algorithms to online clustering prob-
lems on popular benchmarks.

1 Introduction

Online optimization is well-studied in the online
learning community [Cesa-Bianchi and Lugosi, 2006},
Hazan et al., 2016]. It consists of a repeated game
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with T iterations. At iteration ¢, the player chooses
a point p; from a compact decision set C C R?; after
the choice is committed, a bounded utility function
ut : C — [0, H] is revealed. We treat u; as a reward
function to be maximized, although one may also con-
sider minimizing a loss function. The goal of the player
is to minimize the regret, defined as the difference
between the online cumulative payoff (i.e. Zle u(pt))
and the cumulative payoff using an optimal offline
choice in hindsight. In many real world problems,
like online routing [Awerbuch and Kleinberg, 2008|
Talebi et al., 2018, detecting spam email/bots
[Sculley and Wachman, 2007, [Cormack et al., 2008]
and ad/content ranking [Wauthier et al., 2013|
Combes et al., 2015], it is often inadequate to assume
a fixed point will yield good payoff at all times. It
is more natural to compute regret against a stronger
offline baseline, say one which is allowed to switch
the point a few times (say s shifts), to accommodate
‘events’ which significantly change the function values
for certain time periods. The switching points are
neither known in advance nor explicitly stated during
the course of the game. This stronger baseline is known
as shifting regret [Herbster and Warmuth, 1998].

Shifting regret is a particularly relevant metric for on-
line learning problems in the context of algorithm con-
figuration. This is an important family of non-convex
optimization problems where the goal is to decide in
a data-driven way what algorithm to use from a large
family of algorithms for a given problem domain. In the
online setting, one has a configurable algorithm such as
an algorithm for clustering data [Balcan et al., 2017],
and must solve a series of related problems, such as
clustering news articles each day for a news reader or
clustering drugstore sales information to detect disease
outbreaks. For problems of this nature, significant
events in the world or changing habits of buyers might
require changes in algorithm parameters, and we would
like the online algorithms to adapt smoothly.

Related work: We present the first results for shift-
ing regret for non-convex utility functions which
potentially have sharp discontinuities.  Restrict-
ing attention to specific kinds of decision sets C
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and utility function classes yields several impor-
tant problems. If C is a convex set and utility
functions are concave functions (i.e. corresponding
loss functions are convex), we get the Online Con-
vex Optimization (OCO) problem [Zinkevich, 2003,
which is a generalization of online linear regression
|[Kivinen and Warmuth, 1997| and prediction with ex-
pert advice [Littlestone and Warmuth, 1994]. Algo-
rithms with O(v/sT log NT') regret are known for the
case of s shifts for prediction with N experts and
OCO on the N-simplex [Herbster and Warmuth, 1998
|Cesa-Bianchi et al., 2012| using weight-sharing or reg-
ularization. We show how to extend the result
to arbitrary compact sets of experts, and more
general utility functions where convexity can no
longer be exploited. Our key insight is to view
the regularization as simultaneously inducing mul-
tiplicative weights update with restarts matching
all possible shifted expert sequences, which allows
us to use the dispersion condition introduced in
[Balcan et al., 2018a]. Related notions like adaptive
regret [Hazan and Seshadhri, 2007], strongly adaptive
regret [Daniely et al., 2015} |Jun et al., 2017|, dynamic
regret |Zinkevich, 2003, |Jadbabaie et al., 2015 and
sparse experts setting [Bousquet and Warmuth, 2002|
have also been studied for finite experts.

Intuitively, a sequence of piecewise L-Lipschitz func-
tions is well-dispersed if not too many functions are
non-Lipschitz in the same region in C. An assumption
like this is necessary, since, even for piecewise constant
functions, linear regret is unavoidable in the worst
case |Cohen-Addad and Kanade, 2017]. Our shifting
regret bounds are O(y/sdT logT + sT'~#) which im-
ply low regret for sufficiently dispersed (large enough
B) functions. In a large range of applications, one
can show g > % |Balcan et al., 2018a]. This allows
us to obtain tight regret bounds modulo subloga-
rithmic terms, providing a near-optimal characteri-
zation of the problem. Our analysis also readily ex-
tends to the closely related notion of adaptive regret
|[Hazan and Seshadhri, 2007|. Note that our setting
generalizes the Online Non-Convex Learning (ONCL)
problem where all functions are L-Lipschitz through-
out [Maillard and Munos, 2010} [Yang et al., 2018| for
which shifting regret bounds have not been studied.

We demonstrate the effectiveness of our algorithm in
solving the algorithm selection problem for a fam-
ily of clustering algorithms parameterized by differ-
ent ways to initialize k-means |Balcan et al., 2018b|.
We consider the problem of online clustering, but un-
like prior work which studies individual data points
arriving in an online fashion [Liberty et al., 2016],
[Rakhlin et al., 2007], we look at complete clustering
instances from some distribution(s) presented sequen-

tially. Our experiments provide the first empirical
evaluation of online algorithms for piecewise Lipschitz
functions — prior work is limited to theoretical analy-
sis |Balcan et al., 2018a| or experiments for the batch
setting [Balcan et al., 2018b]. Our results also have
applications in non-convex online problems like portfo-
lio optimization [Merton, 1976] and online non-convex
SVMs |Ertekin et al., 2010]. More broadly, for appli-
cations where one needs to tune hyperparameters that
are not ‘nice’, our results imply it is necessary and
sufficient to look at dispersion.

2 Problem setup

Consider the following repeated game. At each round
1 <t < T we are required to choose p; € C C ]Rd, are
presented a piecewise L-Lipschitz function u; : C —
[0, H] and experience reward w;(p;).

In this work we will study s-shifted regret and (m-
sparse, s-shifted) regret notions defined below.

Definition 1. The s-shifted regret (‘tracking regret’ in
[Herbster and Warmuth, 1998]) is given by

s t;—1
E max

ek Z Z (ue(p) — ut(pr))

to=1<ty - <ty=T+1 =1 t=ti—1

Note that for the i-th phase (i € [s]) given by [t;—1,t; —
1], the offline algorithm uses the same point p}. The
usual notion of regret compares the payoff of the online
algorithm to the offline strategies that pick a fixed point
p* € C for all t € [T] but here we compete against more
powerful offline strategies that can use up to s distinct
points p; by switching the expert s — 1 times. For
s = 1, we retrieve the standard static regret.

Definition 2. Eztend Definition [1] with an additional
constraint on the number of distinct experts used, |{p} |
1< < s}’ < m. We call this (m-sparse, s-shifted)
regret [Bousquet and Warmuth, 2002)].

This restriction makes sense if we think of the adver-
sary as likely to reuse the same experts again, or the
changing environment to experience recurring events
with similar payoff distributions.

Without further assumptions, no algorithm achieves
sublinear regret, even when the payout functions are
piecewise constant |[Cohen-Addad and Kanade, 2017].
We will characterize our regret bounds in terms of the
‘dispersion’ |Balcan et al., 2018a, |Balcan et al., 2019
of the utility functions, which roughly says that discon-
tinuities are not too concentrated. Several other restric-
tions can be seen as a special case [Rakhlin et al., 2011}
|Cohen-Addad and Kanade, 2017].
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Definition 3. The sequence of wutility functions
Ui, ..., ur is B-dispersed for the Lipschitz constant L
if, for all T and for all e > T~ at most O(eT) func-
tions (the soft-O notation suppresses dependence on
quantities beside €, T and (3) are not L-Lipschilz in any
ball of size € contained in C. Further if the utility func-
tions are obtained from some distribution, the random
process generating them is said to be [B-dispersed if the
above holds in expectation, i.e. if for all T and for all
e>T75,

E max |{t | u¢ not L-Lipschitz in B(p,e)}|| < O(€T)
pe

For ‘static’ regret, a continuous version of exponential
weight updates gives a tight bound of O(vVdT + T"'~7)
[Balcan et al., 2018a]. They further show that in sev-
eral cases of practical interest one can prove dispersion
with 3 = 1/2 and the algorithm enjoys O(V/dT) regret.
This algorithm may, however, have Q(T") s-shifted re-
gret even with a single switch (s = 2), and hence is not
suited to changing environments (Appendix .

3 Algorithms with low shifting regret

In this section we describe online algorithms with good
shifting regret, but defer the actual regret analysis
to Section [d] First we present a discretization based
algorithm that simply uses a finite expert algorithm
given a discretization of C. This algorithm will give us
the reasonable target regret bounds we should shoot
for, although the discretization results in exponentially
many experts.

Algorithm 1 Discrete Fixed Share Forecaster

Input: 3, the dispersion parameter

1. Obtain a T~ #-discretization D of C (i.e. any ¢ € C
is within 777 of some d € D)

2. Apply an optimal algorithm for finite experts
with points in D as the experts (e.g. fixed share
|[Herbster and Warmuth, 1998§])

We introduce a continuous version of the fixed share
algorithm (Algorithm . We maintain weights for
all points similar to the Exponential Forecaster of
[Balcan et al., 2018a] which updates these weights in
proportion to their exponentiated scaled utility e**+(-)
(A € (0,1/H] is a step size parameter which controls
how aggressively the algorithm updates its weights).
The main difference is to update the weights with a
mixture of the exponential update and a constant ad-
ditive boost at all points in some proportion « (the
exploration parameter, optimal value derived in Sec-
tion which remains fixed for the duration of the

game. This allows the algorithm to balance exploita-
tion (exponential update assigns high weights to points
with high past utility) with exploration, which turns
out to be critical for success in changing environments.
We will show this algorithm has good s-shifted re-
gret in Section [d] It also enjoys good adaptive regret
[Hazan and Seshadhri, 2007] (see Appendix [D)).

Algorithm 2 Fixed Share Exponential Forecaster
(Fixed Share EF)

Input: step size parameter \ € (0,1/H], exploration
parameter « € [0,1]

1. wi(p)=1forall peC
2. Foreacht=1,2,...,T":

i W= [ wi(p)dp
ii. Sample p with probability proportional to wy(p),
i.e. with probability p;(p) = wtv(rp)
iii. Observe u(-) ’
iv. Let e;(p) = e*t(Pa,(p). For each p € C, set

wia(p) == )e) + ey [ el (1)

Notice that it is not clear how to implement the Al-
gorithm [2] from its description. We cannot store all
the weights or sample easily since we have uncountably
many points p € C. We will show how to efficiently
sample according to p; without necessarily computing
it exactly or storing the exact weights in Section

Algorithm 3 Generalized Share Exponential Fore-
caster (Generalized Share EF)

Input: step size parameter A € (0,1/H], exploration
parameter « € [0, 1], discount rate y € [0, 1]

1. wi(p)=1forall peC
2. Foreacht=1,2,...,T:

W= fwlp)dp
ii. Sample p with probability proportional to w;(p),
_ wi(p)

i.e. with probability p:(p) = =7+

iii. Let e;(p) = e (Pwy(p) and B, =

For each p € C, set wii1(p) to
(1 —a)ed(p) + o ([ ec(p)dp) S Bipi(p)

e~V (t=1%)
23:1 e—(t—3j) "

As it turns out adding equal weights to all points for
exploration does not allow us to exploit recurring en-
vironments of the (m-sparse, s-shifted) setting very
well. To overcome this, we replace the uniform update
with a prior consisting of a weighted mixture of all the
previous probability distributions used for sampling
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(Algorithm . Notice that this includes uniformly ran-
dom exploration as the first probability distribution
p1(+) is uniformly random, but the weight on this dis-
tribution decreases exponentially with time according
to discount rate vy (more precisely, it decays by a factor
e~ 7 with each time step). While exploration in Algo-
rithm [2] is limited to starting afresh, here it includes
partial resets to explore again from all past states, with
an exponentially discounted rate (cf. Theorems @ @

4 Analysis of algorithms

We will now analyse the algorithms in Section [3] At a
high level, the algorithms have been designed to ensure
that the optimal solution, and its neighborhood, in
hindsight have a large total density. We achieve this
by carefully setting the parameters, in particular the
exploration parameter which controls the rate at which
we allow our confidence on ‘good’ experts to change.
Lipschitzness and dispersion are then used to ensure
that solutions sufficiently close to the optimum are also
good on average.

4.1 Regret bounds

In the remainder of this section we will have the
following setting. We assume the utility functions
ut : C — [0, H|,t € [T] are piecewise L-Lipschitz and
B-dispersed (definition , where C C R? is contained
in a ball of radius R.

Theorem 4. Let R"(T, s, N) denote the s-shifted
regret for the finite experts problem on N experts, for
the algorithm used in step 2 of Algorithm[1. Then Algo-
rithm I 1| enjoys s-shifted regret RC(T, s) which satisfies

RO(T,5) < RF (T, 5, (3RT?)") +(sH+L)O(T' ).

The proof of Theorem [ is straightforward using the
definition of dispersion and is deferred to Appendix [A]
This gives us the following target bound for our more
efficient algorithms.

Corollary 5. The s-shifted regret of Algorithm (1] is
O(H\/sT(dlog(RT?) +log(T/s)) + (sH + L)T*~7).

Proof. There are known algorithms e.g.  Fixed-
Share ([Herbster and Warmuth, 1998]) which obtain
Rfinite(T s N) < O(y/sT log(NT/s)). Applying Theo-
rem [4] gives the desired upper bound. O

Under the same conditions, we will show the following
bounds for our algorithms. In the following statements,
we give approximate values for the parameters «, v and
A under the assumptions m < s,s < T. See proofs in
Appendix [C] for more precise values.

Theorem 6. The s-shifted regret of Algorithm[3 with
a=s/T and \ = \/s(dlog(RT?) +log(T/s))/T/H is
O(H\/sT(dlog(RT?) +log(T/s)) + (sH + L)T*~5).

Remark. The algorithms assume knowledge of
s/T, the average number of shifts per time. For
unknown s, the strongly adaptive algorithms of
[Daniely et al., 2015, [Jun et al., 2017 can be used
with the same meta-algorithms and substituting contin-
uwous exponential forecasters as black-box algorithms.

Similarly for Algorithm [3| we can show low (m-sparse,
s-shifted) regret as well. (In particular this implies
s-shifted regret almost as good as Algorithm )

Theorem 7. The (m-sparse, s-shifted) regret of Al-
gorithm @ is O(H+/T(mdlog(RT?) + slog(mT/s)) +
(mH + L)T*P) for a = s/T, v = s/mT and \ =
V/(mdlog(RTF) + slog(T/s))/T/H.

4.2 Proof sketch and insights

We start with some observations about the weights W,
in Algorithm [2]

Lemma 8 (Algorithm . W1 = [, M P, (p)dp.
The update rule had the uniform exploration
term scaled just appropriately so this relation is sat-
isfied. We will now relate W, with weights resulting
from pure exponential updates, i.e. o = 0 in Algo-
rithm [2[ (also the Exponential Forecaster algorithm of
[Balcan et al., 2018a]). The following definition corre-
sponds to weights for running Exponential Forecaster
starting at some time 7.

Definition 9. For any p € C and 7 < 7' € [T] define
w(p;7,7") to be the weight of expert p, and W(T, 7' to
be the normalizing constant, if we ran the Fxponential
Forecaster of [Balcan et al., 2018d] starting from time

T up tz’ll time 7', i.e. w(p,T ) = A X wle) gnd
= Jow(p; 7, 7")dp.

We consider Algorithm [4] obtained by a slight mod-
ification in the update rule of Fixed Share EF
(Algorithm [2)) which makes it easier to analyze. Es-
sentially we replace the deterministic a-mixture by a
randomized one, so at each turn we either explicitly
‘restart’ with probability a by putting the same weight
on each point, or else apply the exponential update.
We note that Algorithm []is introduced to simplify the
proof of Theorem [f] and in particular does not result
in low regret itself. The issue is that even though the
weights are correct in expectation (Lemma, their
ratio (probability p:(p)) is not. In particular, the op-
timal parameter value of a for Fixed Share EF allows
the possibility of pure exponential updates over a long
period of time with a constant probability in Algorithm
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which implies linear regret (see Appendix Bl Theo-
rem . This also makes the implementation of Fixed
Share EF somewhat trickier (Section [f]).

Algorithm 4 Random Restarts Exponential Fore-
caster (Random Restarts EF)

Input: step size parameter A € (0,1/H], exploration
parameter « € [0, 1]

1. W(p)=1forall peC
2. Foreacht=1,2,...,T:

i. Wt = fC wt dp

ii. Sample p with probability proportional to w;(p),
_ W(p)

= 5

iii. Sample z; uniformly in [0, 1] and set

i.e. with probability p:(p)

s (0) e Papy (p) ifzp <1—a
Wr1(p) = Aut(p)
fce%&(p)d’) otherwise

The expected weights of Algorithm [4] (over the coin
flips used in weight setting) are the same as the actual
weights of Algorithm I 2| (proof in Appendix [C

Lemma 10. (Algorithm [3) For each t € [1],
we(p) = E[ws(p)] and Wy = E[W,], where the expecta-
tions are over random restarts z; = {z1, ..., 2t—1}-

The next lemma provides intuition for looking at our
algorithm as a weighted superposition of several ex-
ponential update subsequences with restarts. This
novel insight establishes a tight connection between the
algorithms and is crucial for our analysis.

Lemma 11. (Algorithm @) Wri1 equals the sum

17 S
22 avOL—aHWW

sE[T] to=1<ty1--<ts=T+1

Proof Sketch. Each term corresponds to the weight
when we pick a number s € [T'] for the number of times
we start afresh with a uniformly random point p at
times ts = {t1,...,ts—1} and do the regular exponen-
tial weighted forecaster in the intermediate periods. We
have a weighted sum over all these terms with a factor
a/VOL(C) for each time we restart and (1 — «) for each
time we continue with the Exponential Forecaster. [

We will now prove Theorem[] The main idea is to show
that the normalized exploration helps the total weights
to provide a lower bound for the algorithm payoff. Also
the total weights are competitive against the optimal
payoff as they contain the exponential updates with
the optimal set of switching points in Lemma [T1] with
a sufficiently large (‘probability’) coefficient.

Proof sketch of Theorem [ We provide an upper and
lower bound to YZ+L. The upper bound uses Lemma,
B] and helps us lower bound the performance of the
algorithm (see Appendix [C]) as

Wrat (P(A)(e’” - 1>)

(2)

where P(A) is the expected total payoff for Algorithm
We now upper bound the optimal payoff OPT by

providing a lower bound for vaﬁ*l . By Lemma [11| we
have
s~ 1( S
Wri 2 VoL (C W ti_1t7)

by dropping all terms save those that ‘restart’ exactly at
the OPT expert switches t§.,. Now using S-dispersion
we can show (full proof in Appendix |C)

Wri1
Wy, —

a* 1 -«
(RT#B)sd

) AOPT—(sH+L)O(T' 7))

Putting together with the upper bound , rearranging
and optimizing the difference for o and A concludes
the proof. (See Appendix |C|for a full proof.) O

We now analyze Algorithm [3] for the sparse experts
setting. We can adapt proofs of Lemmas [§] and [T1] to
easily establish Lemmas [12] and

Lemma 12 (Algorithm . Wi = [, NP, (p)dp.

Lemma 13. Let m(p) = Z:;i Bipi(p). For Algo-
rithm @ Wri1 can be shown to be equal to the sum

Z Z a* (1 _Q)TisHW(’/Tti_l;tiflvti)

SsE[T) to=1<...ts=T+1 i=1

= [ p(p)w(p;T,7")dp

Corollary 14. Wz > a1 — a)T~ tW(m,t TYW,, for
allt <T.

where W (p;7,7)

Proof. Consider the probability of last ‘reset’ (setting
we(p) = Wym(p)) at time ¢ when computing Wr 1 as
the expected weight of a random restart version which
matches Algorithm [3] till time ¢. O

Now to prove Theorem[7} we show that the total weight
is competitive with running exponential updates on all
partitions (in particular the optimal partition) of [T
into m subsets with s switches, intuitively the property
of restarting exploration from all past points crucially
allows us to “jump” across intervals where a given expert
was inactive (or bad).



Learning piecewise Lipschitz functions in changing environments

Proof sketch of Theorem [1 We provide an upper and
lower bound to WXL similar to Theorem Using
Lemma [[7 we can show that inequality [2] holds here
as well. By Corollary [14] E and Lemma [23| (which relates
7¢(.) to past weights, proved in Appendix , and (-
dispersion we can show a better lower bound Putting
together the lower and upper bounds, rearranging and
optimizing for -, a, A concludes the proof. O

5 Efficient implementation

In this section we show that the Fixed Share Expo-
nential Forecaster algorithm (Algorithm |2)) can be im-
plemented efficiently when w;’s are piecewise concave
(dimishing returns). In particular we overcome the
need to explicitly compute and update wy(p) (there are
uncountably infinite p in C) by showing that we can
sample the points according to p:(p) directly.

The high-level strategy is to show (Lemma that
pi(p) is a mixture of ¢ distributions which are Exponen-
tial Forecaster distributions from [Balcan et al., 2018a]

ie. pilp) = s
Ci. As shown in [Balcan et al., 2018a] these distribu-
tions can be approximately sampled from (exactly in
the one-dimensional case, C C R), summarized below
as Algorithm BDV-18. We need to sample from one of
these ¢ distributions with probability Cy ; to get the dis-
tribution p;, and we can approximate these coeflicients
efficently (or compute exactly in one-dimensional case).
The rest of the section discusses how to do these ap-
proximations efficiently, and with small extra expected
regret. Asymptotically we get the same bound as the
exact algorithm. (Formal proofs in Appendix .

for each 1 <4 < ¢, with proportions

Algorithm BDV-18: Simply integrate pieces of the
exponentiated utility function, pick a piece with prob-
ability proportional to its integral, and sample from
that piece. [Lovéasz and Vempala, 2006] show how to
efficient sample from and integrate logconcave distribu-
tions. See [Balcan et al., 2018a] for more details.

The coefficients have a simple form in terms of normal-
izing constants W;’s of the rounds so far, so we first
express Wyy1 in terms of Wy’s from previous rounds
and some W (i, j)’s

Lemma 15. In Algorithm[3, for t > 1,

Wi =(1 — o)W (1, t 4 1)+
t
(1—a) 1
VOL ;[ Q) TTWW (it + 1)

As indicated above, p;(p) is a mixture of ¢ distributions.

Lemma 16. In Algorithm @ for t > 1, pi(p) =

S 1C“w<p,z 0

) The coefficients Cy; are given by

1 i=t=
Chi= o 1=t>1
(1—a)Weor WG o <y

W W(i,t—1)

and (Cy 1, ..., Chy) lies on the probability simplex A1

The observations above allow us to write the algorithms
for efficiently implementing Fixed Share EF, for which
we obtain formal guarantees in Theorem We present
an approximate algorithm (Algorithm [5)) with the same
expected regret as in Theorem |§| (and also present an
exact algorithm, Algorithm@in Appendix ford =1).
We say Algorithm [5|gives a (7, () estimate of Algorithm
i.e. with probability at least 1 —(, its expected payoff
is within a factor of e” of that of Algorithm

Algorithm 5 Fixed Share Exponential Forecaster -
efficient approximate implementation

Input: approximation parameter 1 € (0, 1), confidence
parameter ¢ € (0,1)

1. Wy = VOL(C)

2. Foreacht=1,2,...,T:

i. Estimate C} ; using Lemma@ for each 1 < j <t.

ii. Sample ¢ with probability C; ;.

iii. Sample p with probability approximately propor-
tional to w(p;i,t) by running Algorithm BDV-
18 with approximation-confidence parameters
(n/3.¢/2).

iv. Estimate W;41 using Lemma [I5] 15} Algorithm BDV-
18 to get (1/6T,1/2T?) estimates for all W (r,7')
and memoize values of W;,i < t.

Theorem 17. If utility functions are piecewise con-
cave and L-Lipschitz, we can approximately sample
a point p with probability p,y1(p) in time O(Kd*T?)
for approzimation parameters n = ¢ = 1/V/T and

Vs(dIn(RTP) +1n(T/s))/T/H and enjoy the
same regret bound as the exact algorithm. (K is number
of discontinuities in u;’s).

Note that in this section we concerned ourselves with
developing a poly(d,T) algorithm. For special cases
of practical interest, like one-dimensional piecewise
constant functions, we can implement much faster
O(K log KT) algorithms as noted in Section

6 Lower bounds

We prove our lower bound for C = [0,1] and H = 1.
Also we will consider functions which are S-dispersed
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and 0-Lipschitz (piecewise constant). For such utility
functions uy, ..., ur we have shown in Section [ that
the s-shifted regret is O(y/sTlogT + sT'~7). Here we
will establish a lower bound of Q(v/sT + sT 7).

We show a range of values of s, 8 where the stated
lower bound is achieved. For s = 1, this improves over
the lower bound construction of [Balcan et al., 2018a]
where the lower bound is shown only for 8 =1/2. In
particular our results establish an almost tight charac-
terization of static and dynamic regret under dispersion.

Theorem 18. For each 3 > llcc’)ggif, there exist util-
ity functions uq,...,

up : [0,1] — [0,1] which are (-
dispersed, and the s-shifted regret of any online algo-
rithm is Q(V/sT + sT 7).

Proof. We perform the construction in ©(s) phases,
each phase accumulating Q(+/7/s+T*~7) regret, yield-
ing the desired lower bound.

Let I; = [0,1]. In the first phase, for the first %Tlfﬁ
functions we have a single discontinuity in the interval
(% (1 - 3—18) , % (1 + 3—18)) C (%, %) The functions have
payoff 1 before or after (with probability 1/2 each)
their discontinuity point, and zero elsewhere. We intro-
duce 377 functions each for the same discontinuity
point, and set the discontinuity points 77 apart for

[B-dispersion. This gives us ;/_3 > — 1 potential points
1 2 (1/33 _ 1) _
T8 -

3,3], 80 we can support 3715
% — 377 such functions (% — 3T # > 0 since
B> los3s) By, 31| (Appendix|F| lat
TosT ) BY emma( ppen 1x we accumulate

Q(4/ Tf?’%m) = Q(4/T/s) regret for this part of the
phase in expectation. Let I{ be the interval from among
[0,3(1—35)] and [5 (1 + 55), 1] with more payoff in
the phase so far. The next function has payoff 1 only at
first or second half of I] (with probability 1/2) and zero
everywhere else. Any algorithm accumulates expected
regret 1/2 on this round. We repeat this in successively
halved intervals. [-dispersion is satisfied since we use
only ©(T*~#) functions in the interval I’ of size greater
than 1/3, and we accumulate an additional Q(T'~7)
regret. Notice there is a fixed point used by the optimal
adversary for this phase.

Finally we repeat the construction inside the largest
interval with no discontinuities at the end of the last
phase for the next phase. Note that at the i-th phase
the interval size will be ©(3). Indeed at the end
of the first round we have ‘unused’ intervals of size
s(1-35),1(1—-%),s(1=%),... At the i = 27-
th phase, we’ll be repeating inside an interval of size
71 (1—35) = ©(3). This allows us to run ©(s)
phases and get the desired lower bound (intervals must
be of size at least % to support the construction). O

inside |

7 Experiments

The simplest demonstration of significance of our al-
gorithm in a changing environment is to consider the
2-shifted regret when a single expert shift occurs. We
consider an artifical online optimization problem first,
and will then look at applications to online clustering.
Let C = [0,1]. Define utility functions

w9 (p) = {; and u) (p) = {

Now consider the instance where u(?)(p) is presented
for the first 7'/2 rounds and u(!) (p) is presented for the
remaining rounds. We observe constant average regret
for the Exponential Forecaster algorithm, while Fixed
Share regret decays as O(1/+/T) (Figure [2). While the
example is simple and artificial, it qualitatively captures
why Fixed Share dominates Exponential Forescaster
here — because the best expert changes and the old
expert is no longer competitive. (cf. Appendix
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Figure 2: Average 2-shifted regret vs game duration
T for a game with single expert shift. Color scheme:
Exponential Forecaster, Fixed Share EF

[Arthur and Vassilvitskii, 2007] proposed k-means++,
a celebrated algorithm which shows the impor-
tance of initial seed centers in clustering using
the k-means algorithm (also called Llyod’s method).
[Balcan et al., 2018Db] generalize it to (@, 2)-Lloyds++-
clustering, which interpolates between random initial
seeds (vanilla k-means, & = 0), k-means++ (a = 2)
and farthest-first traveral (& = oo0) [Gonzalez, 1985
Dasgupta and Long, 2005] using a single parameter a.
The clustering objective (we use the Hamming distance
to the optimal clustering, i.e. the fraction of points
assigned to different clusters by the algorithm and the
target clustering) is a piecewise constant function of
a, and the best clustering may be obtained for a value
of & specific to a given problem domain. In an online
problem, where clustering instances arrive in a sequen-
tial fashion, determining good values of & becomes
an online optimization problem on piecewise Lipshitz
functions.
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Figure 1: Average 2-shifted regret vs game duration 7" for online clustering against 2-shifted distributions. Color

scheme: Exponential Forecaster, Fixed Share EF,

We perform our evaluation on four benchmark datasets
to cover a range of examples-set sizes, N and num-
ber of clusters, k: MNIST, 28 x 28 binary images
of handwritten digits with 60,000 training examples
for 10 classes [Deng, 2012]; Omniglot, 105 x 105 bi-
nary images of handwritten characters across 30 al-
phabets with 19,280 examples [Lake et al., 2015]; Om-
niglot_small_ 1, a “minimal" Omniglot split with only
5 alphabets and 2720 examples.

We consider a sequence of clustering instances drawn
from the four datasets and compare our algorithms
Fixed Share EF (Algorithm [2) and Generalized Share
EF (Algorithm [3)) with the Exponential Forecaster algo-
rithm of [Balcan et al., 2018a]. At each time t < T <
60 we sample a subset of the dataset of size 100. For
each T, we take uniformly random points from half
the classes (even class labels) at times t = 1,...,7T/2
and from the remaining classes (odd class labels) at
T/2 <t <T. We determine the hamming cost of
(@, 2)-Lloyds++-clustering for o € C = [0, 10] which is
used as the piecewise constant loss function (or payoff
is the fraction of points assigned correctly) for the on-
line optimization game. Notice the Lipschitz constant
L = 0 since we have piecewise constant utility, and
utility function values lie in [0,1]. We set exploration
parameter « = 1/T and decay parameter v = 1/T in
our algorithms. We plot average 2-shifted regret until
time T (i.e. Rr/T) and take average over 20 runs to
get smooth curves. (Figure . Unlike Figure 2] the
optimal clustering parameters before the shift might be
relatively competitive to new optimal parameters. So
the Exponential Forecaster performance is not terrible,
although our algorithms still outperform it noticeably.

We observe that our algorithms have significantly lower
regrets (about 15-40% relative for the datasets con-
sidered, for T > 40) compared to the Exponential
Forecaster algorithm across all datasets. We also note
that the exact advantage of adding exploration to ex-
ponential updates varies with datasets and problem

instances. In Appendix [G] we have compiled further
experiments that reaffirm the strengths of our approach
against different changing environments and also com-
pare against the static setting.

Remark. For the applications considered above, the
utility functions are piecewise constant with d = 1. For
these it is possible to simply maintain the weight on each
piece of Lyui(p) in O(K log Kt) time for round t where
each u(+) has O(K) pieces by using a simple interval
tree data structure [Cohen-Addad and Kanade, 2017].
The tree lazily maintains weight for each of O(Kt)
pieces, takes O(log Kt) time each for lazy insertion of
O(K) new pieces and allows drawing with probability
proportional to weight in O(log Kt) time. Similarly
O(K log Kt) updates are possible for Algorithm @ Sec-
tion [3] addresses the harder problem of polynomial time
implementation of Algorithm[3 for arbitrary d.

8 Discussion and open problems

We presented approaches which trade off exploitation
with exploration for the online optimization problem
to obtain low shifting regret for the case of general
non-convex functions with sharp but dispersed dis-
continuities. Optimizing for the stronger baseline of
shifting regret leads to empirically better payout, as
we have shown via experiments bearing applications
to algorithm configuration. Our focus here is on the
full-information setting which corresponds to the entire
utility function being revealed at each iteration, and
we present almost tight theoretical results for it. Other
relevant settings include bandit and semi-bandit feed-
back where the function value is revealed for only the
selected point or a subset of the space containing the
point. It would be interesting to obtain low shifting
regret in these settings [Auer et al., 2002].
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