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Abstract

We study the problem of differentially pri-
vate clustering under input-stability as-
sumptions. Despite the ever-growing vol-
ume of works on differential privacy in gen-
eral and differentially private clustering in
particular, only three works (Nissim et al.,
2007; Wang et al., 2015; Huang and Liu,
2018) looked at the problem of privately
clustering “nice” k-means instances, all
three relying on the sample-and-aggregate
framework and all three measuring util-
ity in terms of Wasserstein distance be-
tween the true cluster centers and the cen-
ters returned by the private algorithm. In
this work we improve upon this line of
works on multiple axes. We present a sim-
pler algorithm for clustering stable inputs
(not relying on the sample-and-aggregate
framework), and analyze its utility in both
the Wasserstein distance and the k-means
cost. Moreover, our algorithm has straight-
forward analogues for “nice” k-median in-
stances and for the local-model of differen-
tial privacy.

1 Introduction

In recent years differential privacy (Dwork et al.,
2006b) has been established as the de-facto gold
standard of privacy preserving data analysis. The
notion of differential privacy guarantees that any
single datum has a limited effect on the outcome
of the algorithm, and so it is often presented as a
formal notion of robustness. Indeed, it is commonly
believed that objectives which are sensitive to the
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change of a single datapoint are hard to approxi-
mate in a differentially private manner. One such
notorious example is the median, which may shift
drastically by a single datapoint.

And yet, the median is easy to approximate on stable
instances (Nissim et al., 2007). In fact, the median
problem was the first to be studied in the context
of the interplay between input-stability notions and
the stability enforced by differential privacy. In fact,
at the very same paper, Nissim et al. (2007) gave
the first differentially private algorithm for cluster-
ing well-separated k-means instances, a notion first
introduced by Ostrovsky et al. (2012). A k-means
clustering instance is called ¢-well separated (or sim-
ply ¢-separated) if the ratio of the optimal k-means
cost to the optimal (k — 1)-means cost is at most ¢2.
Following the work of Ostrovsky et al., several other
works have related other notions of input-stability to
clustering (Balcan et al., 2009; Awasthi et al., 2010;
Bilu and Linial, 2010; Kumar and Kannan, 2010;
Awasthi et al., 2012).

The construction of differentially private k-means
clustering algorithms has attracted a lot of attention
over the last 14 years.! In particular, three works —
the work of Nissim et al. (2007) and two followup
papers (Wang et al., 2015; Huang and Liu, 2018) —
have constructed private k-means algorithms for sta-
ble instances. While several interesting concepts
arise from these three works, their algorithms — and
more importantly, their analysis — can be tighten
up, simplified, and at the same time be applied in
a broader setting. Our work does precisely this: we
simplify the existing constructions for private clus-
tering on stable instances, while improving upon
their analysis and relating the well-separability no-

'Blum et al. (2005); Nissim et al. (2007); Feldman
et al. (2009); McSherry (2009); Gupta et al. (2010); Mo-
han et al. (2012); Wang et al. (2015); Nock et al. (2016);
Su et al. (2016); Nissim et al. (2016); Feldman et al.
(2017); Balcan et al. (2017); Nissim and Stemmer (2018);
Huang and Liu (2018); Kaplan and Stemmer (2018);
Stemmer (2020)



tion to other notions of stability, applicable for both
the k-means and the k-median objectives. Moreover,
we give the first local-differentially private algorithm
for clustering well-separated instances.

Before formally presenting our results, we describe
our setting more precisely. Consider an input
database X containing n points in R?. In k-means
clustering, the goal is to identify a set C' of k centers
in R¢, approximately minimizing the sum of squared
distances from each input point to its nearest cen-
ter, a quantity referred to as the cost of the centers.
That is,

costx(C) = min [z — ¢|*.
oo X ceC

We denote the lowest possible cost as OPTj(X).
As minimizing the k-means objective is NP-hard,
the literature has focused on approximation algo-
rithms, with the current (non-private) state-of-the-
art achieving a multiplicative error of 6.357 (Ahma-
dian et al., 2017). That is, their algorithm identifies
a set of k centers whose cost is no more than 6.357
times the lowest possible cost. Furthermore, for well-
separated instances, the works mentioned above ob-
tain significantly improved guarantees, with error ar-
bitrarily close to 1 (non-privately).?

In our context, every input point € X is assumed
to be the (private) information of one individual
(such as a location or a text file), and we would like
to identify a set of centers C' with low cost while at
the same time providing differential privacy for the
points in X.

Definition 1.1 (Dwork et al. (2006c)). A random-
ized algorithm A : X" — 'Y is (e,d) differentially
private if for every two databases X, X' € X™ that
differ in one row, and every set T CY, we have

PrlA(X) e T) <e® - PrlA(X') € T| +6.

Unlike in the non-private literature, it is known that
every private algorithm for approximating the k-
means must have an additive error (even computa-
tionally unbounded algorithms), which scales with
the diameter of the input space. Hence, a stan-
dard assumption for private k-means is that the in-
put points come from the d-dimensional ball of ra-
dius A around the origin B(0,A). This is the set-
ting we consider in this work, where we fix A = 1
for the introduction. As private k-means algorithms

2Ostrovsky et al. (2012); Balcan et al. (2009);
Awasthi et al. (2010); Bilu and Linial (2010); Kumar
and Kannan (2010); Awasthi et al. (2012)

have both multiplicative and additive errors, differ-
ent guarantees can easily be incomparable. Typi-
cally (though not always), one aims to minimize the
multiplicative error while keeping the additive error
at most polylogarithmic in the size of the database
(note that an additive error of size | X| is meaning-
less). The current state-of-the-art construction for
private k-means by Kaplan and Stemmer (2018) ob-
tains O(1) multiplicative error and poly(log(n), k, d)
additive error.

Given the success of (non-private) stability-based
clustering algorithms, it is not surprising that such
stability assumptions were also utilized in the pri-
vacy literature, specifically by Nissim et al. (2007);
Wang et al. (2015); Huang and Liu (2018). However,
the error measure pursued in these three works is dif-
ferent. Instead of aiming to find & centers with low
k-means cost, these three works aim to find centers
that are close to the optimal centers in terms of the
Wasserstein distance, defined as follows.

Definition 1.2 (Wasserstein (1969)). Let C =
(c1,...,cx) € (RY* and C = (¢4,...,¢) € (RYF
be two sets of centers. The Wasserstein distance be-
tween C and C is the LI distance under the best
possible permutation m of the centers in each set.

Nissim et al. (2007) presented a private algorithm
that, for a ¢-separated instance, computes k centers
of Wasserstein distance at most O(kT‘/E - ¢?) from
the optimal k-means centers. Wang et al. (2015) ex-
tended the results of Nissim et al. to subspace clus-
tering® with similar error bounds. Finally, Huang
and Liu (2018), presented a clever algorithm that
reduced the error down to O(¢?) — a significant im-
provement over the previous error bounds of Nissim
et al. (2007) and Wang et al. (2015). In addition,
Huang and Liu (2018) showed that their error bound
is tight, and that Wasserstein distance of O(¢?) is
the best possible under differential privacy (for ¢-
separated instances).

We comment that even though a set of centers C
might be close to the optimal centers C' in terms
of the Wasserstein distance, say dw/(C, C’) = 7,
the k-means cost of costx(C) might be as big as
OPTy(X) + | X| -2 That is, the additive error ob-
tained by translating a bound on the Wasserstein
distance to a bound on the k-means cost scales with
|X|. In this work we are aiming for an additive error
of at most polylog|X|, which means that approx-
imation guarantees w.r.t. the Wasserstein distance

3In subspace clustering we aim to group the data
points into clusters so that data points in a single cluster
lie approximately on a low-dimensional linear subspace.



do not imply (in general) satisfactory approximation
guarantees w.r.t. the k-means cost.

Our Contribution and Organization. First,
we establish equivalence between several notions of
input-stability for clustering problems. This result
is given in the preliminaries, Section 2, and should
come as no surprise considering all of these notions
(and others) yield a PTAS for the clustering prob-
lem (Ostrovsky et al., 2012; Awasthi et al., 2010).
Second, we present our — absurdly simple — private
algorithm for clustering well-separated instances in
Section 3, which can be summarized as follows: run
an arbitrary (private) k-means approximation algo-
rithm and then take a Lloyd-step (averaging only
the points with clear preference for one center over
all others). We give a short proof arguing that the
result of applying an algorithm with a worst-case
guarantee of v-approximation* to the k-means ob-
jective on a ¢-well separable instance is (effectively)
a (14 O(¢?))-approximation, provided v is small in
comparison to ¢ 2. We obtain the following theo-
rem.

Theorem 1.3 (informal). There exists an (e,9)-
differentially private algorithm such that the follow-
ing holds. Let X be a database containing n points
in the d-dimensional ball B(0,1), and assume that
X is ¢-separated for k-means for ¢ = O(1) (suffi-
ciently small). When applied to X, the algorithm
returns (w.h.p.) a set of k centers C' satisfying

costx (C") < (1+0(¢?)) - OPTL(X) + A,

for A < BYVaEVE),
~ €

We analyze this algorithm’s utility also in terms of
Wasserstein distance, as follows.

Theorem 1.4 (informal). There ezists an (e,9)-
differentially private algorithm such that the follow-
ing holds. Let X be a database containing n points
in the d-dimensional ball B(0,1). Assume that X is
¢-separated for k-means for ¢ = O(1) (sufficiently
small), and assume that OPTj_1(X) 2 W'

When applied to X, the algorithm returns (w.h.p.) a
set of k centers C' satisfying

dW(Cv Cl) < O(¢2)7
where C' are the optimal k-means centers.

The error bound in this theorem matches the state-
of-the-art result of Huang and Liu (2018), and offers

“With an additive error, as analyzed in Theorem 3.3.

some improvements in terms of the requirement on
OPTy_1(X).°

Due to the simplicity of our algorithm, we give its
local-model analogue and k-median analogue in Sec-
tions 5 and 4 respectively. This is the first locally-
private clustering algorithm for well-separated in-
stances (even w.r.t. the Wasserstein distance). Un-
like our algorithm, previous constructions (Nissim
et al., 2007; Wang et al., 2015; Huang and Liu,
2018) are based on the sample-and-aggregate frame-
work (Nissim et al., 2007), which is inapplicable
(in general) in the local-model. It is hence unclear
whether these previous constructions have analogues
for the local-model.

2 Preliminaries

We require the following two folklore lemmas. The
first lemma quantifies the 1-means cost of a center ¢
in terms of its distance from the optimal center (for
a proof see, e.g., (Awasthi, 2013, Fact 2.3.1)).

Lemma 2.1. Let X € (R?)" and let ¢ denote the
average of X. For any ¢ € R? it holds that

Sl =l =n-fe—cl?+ 3 e el

reX zeX

The next lemma bounds the distance from the aver-
age of X to the average of a subset of X.

Lemma 2.2 (Ostrovsky et al. (2012)). Let X be a
set of points in R? and let S C X with S # (). Let ¢
and s denote the averages of X and S, resp. Then,

OPT1(X) |X\ 5|

s —cll* <
Ry 5]

2.1 Clustering Stable Instances

In recent years, many works have studied the notion
of clustering under various input-stability assump-
tions, showing how to rely on input-niceness in order
to obtain a good approximation and even a PTAS for
clustering problems.® The main focus of this work
is the stability notion of Ostrovsky et al. (2012) who

®Specifically, the bound of Huang and Liu (2018)
is guaranteed to hold whenever OPT,_1(X) 2

n%k%die_%¢>—4, whereas our bound holds also for
smaller values of OPT;_1(X).

60strovsky et al. (2012); Ackerman and Ben-David
(2009); Balcan et al. (2009); Bilu and Linial (2010);
Awasthi et al. (2010); Kumar and Kannan (2010);
Awasthi et al. (2012); Cohen-Addad and Schwiegelshohn
(2017)



defined a clustering instance to be well-separated for
k clusters if the optimal partitioning of the data into
k clusters has cost noticeably smaller than the cost
of any partitioning of the data into k — 1 clusters.

Definition 2.3 (Ostrovsky et al. (2012)). A clus-
tering instance X is ¢-well-separated (or simply
¢-separated) for k-means if OPT.(X) < ¢? -
OPTy_1(X).

The following theorem relates the task of approxi-
mating the k-means cost and the task of approxi-
mating the true k-means centers in Wasserstein dis-
tance.

Theorem 2.4 (Ostrovsky et al. (2012)). Let o and

¢ be such that ?fij < 11—6. Suppose that X C R?
is ¢-separated for k-means, and let C = (cq, ..., ck)
be a set of optimal centers for X. For i € [k] let
D; denote the distance from c; to its nmearest op-
timal center, that is D; = minjx, ||c; — ¢;||. Let
C = (¢1...,¢) be centers such that costx(C) <
a - OPTy_1(X). Then for each ¢; there is a dis-
tinct optimal center, call it ¢;, such that ||é& — ¢;|| <

2
2 ‘;‘jj; -D;.

While Ostrovsky et al. were the first to define for-
mally a certain input-stability notion, other works
quickly followed. Next, we show equivalence be-
tween several such input-stability notions.

Lemma 2.5. The following notions of stability are
all equivalent up to a constant factor.

1. ¢-well separability (Ostrovsky et al.,
2012): OPTy, < ¢? - OPTy_;.

2. (B-center deletion (Awasthi et al., 2010):
For every cluster i and j # i, delete center c¢;
and assign all of its points to center c;. The
result is a (k — 1)-clustering of cost >  OPTy.

3. v-center separation (Awasthi et al.,
2010): For every cluster i, denote its size by

|Xi| and let DY = minjz |lc; — ¢;||P.  Then
D! > 3 OPT;.

4. (6, 7)-approximation stability (Ostrovsky
et al., 2012): For any k-tuple ¢4, ..,¢, of cost
at most § OPTy, we have a matching ¢ such
that ||CZ - é¢(1)||p < i . Df7

As an immediate corollary, it follows that our algo-
rithms are applicable to any instance satisfying one

"We comment that we can replace the constant % with
any constant < %

of the above mentioned stability notions (with suit-
able stability parameters). The proof of Lemma 2.5
appears in the full version of this paper.

3 Stability Improves Accuracy for
Private Clustering Algorithms

In this section we show that applying a private clus-
tering algorithm with a worst-case guarantee of v-
approximation on a ¢-well separable instance results
in (effectively) a (1 + O(¢?))-approximation for the
k-means, provided that v is small in comparison to
¢~2. In other words, we show that when running
a private clustering algorithm A on stable instances,
then A actually performs much better than its worst
case bounds. We focus here on the k-means cost ob-
jective, and present an analogues result for k-median
in Section 4. Our construction appears in algorithm
Private-Stable-k-Means.

The privacy properties of algorithm
Private-Stable-k-Means are immediate from
composition properties of differential privacy
(see Dwork et al. (2010)). We proceed with
its utility analysis. Let X be ¢-separated for

k-means with optimal centers C* = {c},...,c}},
and let X7,..., X} € X be the clusters induced
by C*. For i € [k] we denote n; = |X}| and

rr o= \/n% Yvex: llz —cf||?. Consider the execu-
tion of Private-Stable-k-Means on X, and let
B = {by,...,bx} and C = {é,...,¢} denote the
centers obtained in Steps 1 and 4. We assume for
simplicity (and without loss of generality) that the
set of optimal centers C* = {cj,...,c}} is sorted
s.t. ¢j is the closest to b;. We note that such a
matching exists provided that the requirements of
Theorem 2.4 are met. The next lemma shows that,
provided that B has a low enough cost, then the
distance from each ¢; to its corresponding optimal
center is low.

11(?;5;. If costx(B) < w -

¢?-OPTy_1(X) and if ¢21(i”{;r21) is sufficiently small,

then ||c; — cf||> <7 - 125

Lemma 3.1. Let p =

Proof. For i € [k] define X{°" = {z € X} : |z —
il < \T/ﬁ} Standard Markovian argument shows
that | X7°| > (1—p)-n,;. We first show that for every
i € [k] we have X" C X; C X . To that end, fix i €
[k] and recall that costy (B) < w - ¢? - OPTj_1(X).

¢? (wt1)
1_¢2 I
By Theorem 2.4 we have that ||cf — b;|| < - D;.

Denote v = 2 and D; = minjy; ||c] — ¢



Algorithm Private-Stable-k-Means

Input: Database X containing n points in the d-dimensional ball B(0, A), failure probability S, privacy

parameters ¢, J.

Tool used: An (e, d)-differentially private algorithm A for approximating the k-means.

1. Run A on X to obtain k centers: B = {by,..
2. Fori e [k}] let Di = minj;éi ||b7, — bJ”

3. Forie[k]let X; = {z e X :|z—0bl <D;/3}.
4

. Letéz {El,...
Gaussian mechanism (see (Dwork et al.,

estimation ¢ of ¢;. Denote C = {é1,..., ¢k}

b}

,Cr+ denote the average of the points in Xi,... ,

Xy, respectively. For i € [k] use the

2006a)) with privacy parameters (e,d) to compute a noisy

5. Use the Gaussian mechanism with privacy parameters (e, §) to estimate cost x (C) and costx (B). Out-
put the set of centers (either C' or B) with the lower (estimated) cost.

Now, X, contains every point z € X whose within a
distance from b; of

1. 1 .
3D = g min|lb; — bj]
1 . *« * * *
> 5 min (llef = eIl = l1oi = ;I = llog — <5 1)
Zmin (| |l¢f = ¢f|| =~ - D; —~ - min||c; — ¢
=3 \lamal=y L=
1 * *
> gmin (lef = ¢fll =7 Di =7 lef = 1)

1
= mi |l —2v- D;
3 I}Q{J(HCZ |l =2y Dy)

1 1-2
Z*[Di—Q’Y'Di]ZT7

3 - D; (1)

In particular, X; contains every point z € X whose
within a distance from ¢ of

1—2y
3

1-5y 1_¢2-rﬁ-‘> rf

3 N

where the first inequality is from Theorem 2.4 and
the second inequality holds for sufficiently small ¢
and w. Therefore, X" C X;, because X5 con-
tains points within distance 77 /,/p from c;. Similar
arguments (appears in the full version of this paper)
show that X; C X7. So, X" C X; C X;. Recall
that ¢; denotes the average of the points in X;. By
Lemma 2.2 we have that

Dy —~-D; >

a2 OPTY(X) X7\ X5
Ci —cilI” < P
| X7 | X
_OPT(Xp) X7\ Xe
ST

O

< OPT,(X}) p
- n; 1—p

Let C be the centers obtained in Step 4 of the exe-
cution, and recall that each ¢ € C'is a noisy estima-
tion of ¢;, where ¢; is the average of the points in X;
(all the input points whose distance to b; is signifi-
cantly smaller than their distance to any other b;).
The next lemma shows that the k-means cost of C'
is low. This is done by relating the cost of C to that
of C', which we then relate to the cost of the optimal
centers using Lemma 3.1.

Lemma 3.2. If costx(B) < w - ¢? - OPTy_1(X

)
and if ¢1(w(2;1) is sufficiently small, then cost x (C) <

(016 0P8 +00). 5 -1 (1)

Proof. First let us assume that for every i € [k]
it holds that |X| > 16 log(%), which is true if

= |X}| > 5(1 p) log( k). Fix i € [k]. By the
properties of the Gausblan mechanism (see (Dwork
et al., 2006a)), with probability at least (1 — %) we

64AVd 8dk 64AVd
have that ||¢; — G| < o 1% -In ( ) < S

In <8dk) . Thus, by Lemma 2.1 we have that

33
C) < Z Z |z — &l
i xeX]
_ Z (OPT(X;) 4+ ni - [le; — ¢} | )
< Z (OPTy (X
< Z (OPT1

+ O(1) - min {nz -A?

< Z <0PT1

cost x (

)+ 3n; - Hclfc*||2+3nZ llé; — &l )

)+ 3OPTy(X]) - 1

(%))

1-p

A2d
S,

)+ 30PTy(X;



Vd dk
O Gy (m))

3p kA2\/d
<1 + 1p> OPT.(X) + O(1) -

e )1
Azf

()
()

where the inequality (*) follows from the fact that
. \fln( )

. d EL

min {nz, A=), - n? (ﬁ5)} < 2——5~ “=p)

small clusters of size n; < 5(1 p) log( ) can increase
the cost of costx(C) by at most A2 - 5(1 p) log( k)

additively, and hence, overall we have that costx (C)

is upper bounded by
A2
vd | -
: <ﬁ5)>

Lemma 3.2 shows that whenever the set of centers
B (computed in Step 1) is “good enough” then the
resulting set of centers C' has a low k-means cost (ob-
taining better guarantees than B). However, the set
of centers B is computed using a private approxima-
tion algorithm, which has both multiplicative and
additive errors. In the next theorem we argue that,
taking B’s additive error into account, either B itself
is already a good approximation for the k-means, or
its additive error is small enough so that it has only
a small effect on the error of C.

= (1+0(¢%) OPT,(X) + O(1) -

Now,

(1+cx¢%)0PTaxv+o<

Theorem 3.3. Let X be a database containing n
points in the d-dimensional ball B(0,A), and as-
sume that X 1is ¢-separated for k-means. Let al-
gorithm Private-Stable-k-Means be executed on
X with a subroutine A that returns, with proba-
bility at least (1 — 1), a set of centers B satisfy-
ing costx (B) < v-OPTy(X) +t. If ¢* < O(2),
then with probability at least (1 — 8 — 1), algorithm
Private-Stable-k-Means returns a set of centers
C’ of cost costx (C") of at most

» (%))
If furthermore OPTy_1(X) > #, then costx (C') <

2

(1+0(¢?)) - OPT(X) + O (M ‘In (%)) .

(1+0(¢*))-OPTx(X)+O (vt + kAi\f

Proof sketch. Recall that in Step 5, algorithm
Private-Stable-k-Means chooses between B and
C using the Gaussian mechanism. We analyze
two cases and show that at least one of these op-
tions has small error (the additional error intro-
duces by the Gaussian mechanism is also small). If

OPkal(X) S # then

costx(B) <v-OPTy(X)+¢
<wv-¢? OPTy_1(X) + 1t
<w-t+t<O(vt),
and hence, B is a good output. On the other hand,
if OPkal(X) > # then
costx(B) <v-OPTy(X)+t
<v-¢? OPTy_1(X) + ¢* - OPT_1(X)
= (v+1)¢* OPT,(X).
Therefore, for ¢? < O(%), we have that the condi-
tions of Lemma 3.2 are met, and so costx (C) <

kA2\/&1 dk
(%)

and C is a good output. O

(14 0(¢%) - OPT,(X) + O(1) -

Combining Theorem 3.3 with the private algorithm
of Kaplan and Stemmer (2018) achieving O(1)-
approximation for the k-means, we get the following
corollary.®

Corollary 3.4. There exists an (g,0)-differentially
private algorithm such that the following holds. Let
X be a database containing n points in the d-
dimensional ball B(0,A), and assume that X is ¢-
separated for k-means for ¢ = O(1) (sufficiently
small). When applied to X, the algorithm returns,
with probability at least (1— ), a set of k centers C'

where costx (C') is at most
k1'5A2
=)
€
Furthermore, if
OPkal(X) > O E1-01,40.51 2 n kl"r’-Az), then

el. 01¢2 €¢2
costx (C") is upper bounded by
(55))

Our algorithm from Corollary 3.4 also results in a
new construction for privately approximating the k-
means in terms of the Wasserstein distance to the
optimal centers. This follows from the fact that, for
well-separated instances, centers with near optimal
k-means cost must be close to the optimal centers in

terms of the Wasserstein distance. Specifically, we
get the following result.

J;1-01 4051 A2
(14 0(¢?)) OPT(X) + O ( S1.01

(14+0(¢?)) - OPTR(X) 4+ O ( Az\f

8For simplicity, throughout the paper we use the o}
notation to hide logarithmic factors in k,n,d, 1/3,1/0.



Theorem 3.5. There exists an (g,0)-differentially
private algorithm such that the following holds. Let
X be a database containing n points in the d-
dimensional ball B(0,A). Assume that X is ¢-
separated for k-means for ¢ = O(1) (sufficiently
small), and assume that OPTy_1(X) is at least

_ 1 kl.Ol . d0‘51 k1'5
of(w+5) (F—+)).

When applied to X, the algorithm returns, with prob-
ability at least (1— ), a set of k centers C' satisfying
dw(C*,C") < O(¢? - A), where C* are the optimal
centers.

The error bound in this theorem matches the state-
of-the-art result of Huang and Liu (2018), and of-
fers some improvements in terms of the require-
ment on OPTy_1(X). Specifically, the bound of
Huang and Liu (2018) is guaranteed to hold when-
ever OPT,_1(X) 2 n®kidic™3 4 whereas our
bound holds also for smaller values of OPT}_;(X).

4 Private k-Median Clustering with
Stability Assumptions

Our construction for the k-median is conceptually
similar to our construction for the k-means. The
main difference is that for k-median we cannot use
the average to approximate the center of a cluster,
as the average can be far from the optimal median
of the cluster. We instead use a tool of Bassily
et al. (2014) for privately solving convex optimiza-
tion problems. We obtain the following theorem (the
details are given in the full version of this paper).

Theorem 4.1. There exists an (g,0)-differentially
private algorithm such that the following holds. Let
X be a database containing n points in the d-
dimensional ball B(0,A), and assume that X is ¢-
separated for k-median for ¢ = O(1) (sufficiently
small). When applied to X, the algorithm returns,
with probability at least (1— ), a set of k centers C’
whose k-median cost is upper bounded by

k1'01d0'51A k1'5A
1.01 + € ) :

Here OPT}(X) is the lowest possible k-median cost.
We remark that for k-median we use the convention
that X is ¢-separable if OPT;(X) < ¢-OPT}_,(X)
(that is, the ratio between the optimal costs is at
most ¢ and not ¢? like for k-means). The approxi-
mation ratio (1 + O(¢)) in Theorem 4.1 is merely a
result of this difference in notation.

(1+0(6) - 0PTHC) + (

5 Clustering with Stability
Assumptions in the Local Model

In the local model of differential privacy (LDP),
there are n users and an untrusted server. Each user
i is holding a private input item x; (a point in R¢ in
our case), and the server’s goal is to compute some
function of the inputs (approximate the k-means in
our case). However, in this model, the users do not
send their data as is to the server. Instead, every
user randomizes her data locally, and sends a differ-
entially private report to the server, who aggregates
all the reports. Informally, the privacy requirement
is that the input of user 7 has almost no effect on the
distribution on the messages that user i broadcasts.

Our locally-private protocols for k-means and for
k-median are obtained from our constructions for
the centralized model by instantiating existing LDP
tools for computing averages (in the case of k-means)
and for solving convex optimization problems (in the
case of k-median). Here we present the result for k-
means. The full construction appears in algorithm
LDP-Stable-k-Means. A similar analysis to that of
Section 3 shows the following theorem.

Theorem 5.1. There exists an (e,6)-LDP proto-
col such that the following holds. Let X be a
database containing n points in the d-dimensional
ball B(0,A), and assume that X is ¢-separated for
k-means for ¢ = O(1) (sufficiently small). When
applied to X, the protocol returns, with probability
at least (1 — B), a set of k centers C' satisfying

k\/ano.E)lAZ

costx (C") < (14+0(¢?))-OPT1(X)+O ( E

As before, using the fact that (for well-separated in-
stances) centers with near optimal k-means cost are
close to the optimal centers in terms of the Wasser-
stein distance, we get the following theorem.

Theorem 5.2. There exists an (g,8)-LDP proto-
col such that the following holds. Let X be a
database containing n points in the d-dimensional
ball B(0,A). Assume that X is ¢-separated for k-
means for sufficiently small ¢, and assume that

N k\/& .p0-51 A2
> _— .
OPT;_1(X) > O ( i >

Then on X, the protocol returns with probability >
(1—7) a set of k centers C' satisfying dw(C*,C") <
O(¢? - N), with C* denoting the optimal centers.



Algorithm LDP-Stable-k-Means

Input: Failure probability 3, privacy parameters ¢, d.

Setting: Each player ¢ € [n] holds a point z; in the d-dimensional ball B(0, A). Define X = (z1,...,2,).

Tool used: An (e, §)-LDP protocol A for approximating the k-means.

For i € [k] let D; = minj; ||b; — bj|.

Ll A

Letéz {Eh"

Run A on X to obtain k centers: B = {b1,...,by}.

., Cr} denote the average of the points in Xq,..

For i € [k] let R; = {z € B(0,A) : || — b;|| < D;/3}, and denote X; = X N R;.

., Xy, respectively. Use an (¢,6)-LDP

averaging tool (see, e.g., (Nissim and Stemmer, 2018)) to obtain for every i € [k] a noisy estimation ¢;

of the average of X N R;, i.e., an estimation of ¢;.

5. Estimate costx (C') and costx (B) using an (¢, §)-LDP counting tool (see, e.g., (Kasiviswanathan et al.,
2011)). Output the set of centers (either C' or B) with the lower estimated cost.

6 Discussion and Open Problems

This work establishes a new baseline for privately
clustering stable instances. More importantly, our
work emphasizes the importance of “simplicity” in
the design of DP clustering algorithms. In particu-
lar, due to its simplicity, our algorithm has straight-
forward analogues for clustering “nice” k-median in-
stances and for the local-model of DP.

Naturally, several important open problems arise
from our work. First, we pose the problem of find-
ing a PTAS for k-means under stability assumptions.
Non-privately, there are several papers proposing
such clustering algorithms (Awasthi et al., 2010;
Cohen-Addad and Schwiegelshohn, 2017) and other
works that approximate the target clustering point-
wise (Balcan et al., 2009); whereas privately we are
only able to derive a (1 + O(¢?))-approximation for
the k-means cost of ¢-well separated instances. In
other words, in the non-private settings the quality
of the approximation is independent of the input’s
stability guarantee, whereas in the private setting
a high-quality approximation requires a very strong
separation guarantee on the input. What prevents
us from deriving private analogues of the above-
mentioned PTASs which get a (14 «)-approximation
for any arbitrarily small a? The reason lies in de-
signing a private analogue to one of the most classi-
cal approaches for k-means approximation — sam-
pling (Inaba et al., 1994). It is a well-known fact
that the centroid obtained by randomly sampling
O(1/a) datapoints from a cluster yields a (1 + «a)-
approximation to the cluster’s cost, and the above-
mentioned PTASs rely on this fact. On a high-level,
a PTAS for stable inputs works by partitioning the
clusters into two types: “cheap” clusters that cost

at most O(ag¢? - OPT) vs “expensive” (non-cheap)
clusters. Approximating the center of a cheap clus-
ter relies on the notion of a core and can be made
private using the 1-cluster algorithm, but the diffi-
culty lies in approximating the centers of the expen-
sive clusters. In the non-private setting expensive
clusters are simple to handle — since there are at
most O(1/a¢?) such clusters, one just brute-force
tries all possible centers for all expensive clusters.
Alas, we have no private analogue for this approach.
More specifically, should we wish to handle expen-
sive clusters similarly, then we first need to devise a
differentially-private analogue of the PTAS of Inaba
et al (1994) which runs in n@*)-time. Alternatively,
one could potentially derive additional properties of
expensive clusters which would allow us to approx-
imate their centers privately; or potentially try a
different approach, one that doesn’t rely on the sep-
aration into cheap vs. heavy clusters.

We also re-pose the question of a definition of clus-
tering which is generalizable. Despite the fact that
the k-means and k-median problems are part of the
“CS-canon”, it is possible these two problems are
the “wrong” problems to approximate with a differ-
entially private algorithm. The reason lies in the sen-
sitivity of the optimal k centers, even for stable in-
stances. However, if instead of outputting the “true”
k-means centers we shift our focus to outputting
some notion of “core centers” or centers that best
represent the fraction of the instance with clear pref-
erence among centers’, then such objectives might
be less sensitive to a change to a single datapoint
and could therefore be better suited for DP.

9Note how this proposed “definition” is recursive and
thus ill-defined.



Acknowledgements

We thank Zhiyi Huang and Jinyan Liu for helpful
discussions. M.S. and U.S. were supported in part by
the Israel Science Foundation (grant No. 1871/19).
M.S. was also supported by the Frankel Center for
Computer Science. O.S. was supported by grant
#201706701 of the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC). The bulk
of this work was done when O.S. was affiliated with
the University of Alberta, Canada.

References

Ackerman, M. and Ben-David, S. (2009). Cluster-
ability: A theoretical study. In Proceedings of the
Twelfth International Conference on Artificial In-
telligence and Statistics, AISTATS 2009, Clear-
water Beach, Florida, USA, April 16-18, 2009,
pages 1-8.

Ahmadian, S., Norouzi-Fard, A., Svensson, O.,
and Ward, J. (2017). Better guarantees for k-
means and euclidean k-median by primal-dual al-
gorithms. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages
61-72.

Awasthi, P. (2013). Approzimation Algorithms and
New Models for Clustering and Learning. PhD
thesis, Carnegie Mellon University. Supervisor-
Avrim Blum.

Awasthi, P., Blum, A., and Sheffet, O. (2010). Sta-
bility yields a PTAS for k-median and k-means
clustering. In 51th Annual IEEE Symposium on
Foundations of Computer Science, FOCS 2010,
October 23-26, 2010, Las Vegas, Nevada, USA,
pages 309-318.

Awasthi, P., Blum, A., and Sheffet, O. (2012).
Center-based clustering under perturbation sta-
bility. Inf. Process. Lett., 112(1-2):49-54.

Balcan, M., Blum, A., and Gupta, A. (2009). Ap-
proximate clustering without the approximation.
In Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA
2009, New York, NY, USA, January 4-6, 2009,
pages 1068-1077.

Balcan, M.-F., Dick, T., Liang, Y., Mou, W., and
Zhang, H. (2017). Differentially private cluster-
ing in high-dimensional Euclidean spaces. In Pro-
ceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of
Machine Learning Research, pages 322-331, In-

ternational Convention Centre, Sydney, Australia.
PMLR.

Bassily, R., Smith, A., and Thakurta, A. (2014). Pri-
vate empirical risk minimization: Efficient algo-
rithms and tight error bounds. In FOCS, pages
464-473. IEEE.

Bilu, Y. and Linial, N. (2010). Are stable instances
easy? In Innovations in Computer Science - ICS
2010, Tsinghua University, Beijing, China, Jan-
uary 5-7, 2010. Proceedings, pages 332-341.

Blum, A., Dwork, C., McSherry, F., and Nissim, K.
(2005). Practical privacy: The SuL.Q framework.
In Li, C., editor, PODS, pages 128-138. ACM.

Cohen-Addad, V. and Schwiegelshohn, C. (2017).
On the local structure of stable clustering in-
stances. In 58th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2017,
Berkeley, CA, USA, October 15-17, 2017, pages
49-60.

Dwork, C., Kenthapadi, K., McSherry, F., Mironov,
I., and Naor, M. (2006a). Our data, ourselves:
Privacy via distributed noise generation. In Vau-
denay, S., editor, FEUROCRYPT, volume 4004 of
Lecture Notes in Computer Science, pages 486—
503. Springer.

Dwork, C., McSherry, F., Nissim, K., and Smith, A.
(2006Db). Calibrating noise to sensitivity in private
data analysis. In TCC|, pages 265-284. Springer.

Dwork, C., McSherry, F., Nissim, K., and Smith,
A. (2006c). Calibrating noise to sensitivity in pri-
vate data analysis. In TCC, volume 3876 of Lec-
ture Notes in Computer Science, pages 265-284.
Springer.

Dwork, C., Rothblum, G. N., and Vadhan, S. P.
(2010). Boosting and differential privacy. In
FOCS, pages 51-60. IEEE Computer Society.

Feldman, D., Fiat, A., Kaplan, H., and Nissim, K.
(2009). Private coresets. In Proceedings of the 41st
Annual ACM Symposium on Theory of Comput-
ing, STOC 2009, Bethesda, MD, USA, May 31 -
June 2, 2009, pages 361-370.

Feldman, D., Xiang, C., Zhu, R., and Rus, D. (2017).
Coresets for differentially private k-means cluster-
ing and applications to privacy in mobile sensor
networks. In Proceedings of the 16th ACM/IEEE
International Conference on Information Process-
ing in Sensor Networks, IPSN 17, pages 3-15,
New York, NY, USA. ACM.

Gupta, A., Ligett, K., McSherry, F., Roth, A., and
Talwar, K. (2010). Differentially private com-
binatorial optimization. In Proceedings of the



Twenty-first Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 10, pages 1106-1125,
Philadelphia, PA, USA. Society for Industrial and
Applied Mathematics.

Huang, Z. and Liu, J. (2018). Optimal differen-
tially private algorithms for k-means clustering. In
Proceedings of the 37th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Sys-
tems, Houston, TX, USA, June 10-15, 2018,
pages 395-408.

Inaba, M., Katoh, N., and Imai, H. (1994). Applica-
tions of weighted voronoi diagrams and random-
ization to variance-based k-clustering: (extended
abstract). In Proc. 10th Symp. Comp. Geom.,
pages 332-339.

Kaplan, H. and Stemmer, U. (2018). Differentially
private k-means with constant multiplicative er-
ror. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Infor-
mation Processing Systems 2018, NeurIPS 2018,
3-8 December 2018, Montréal, Canada., pages
5436-5446.

Kasiviswanathan, S. P.; Lee, H. K., Nissim, K.,
Raskhodnikova, S., and Smith, A. (2011). What
can we learn privately? SIAM J. Comput.,
40(3):793-826.

Kumar, A. and Kannan, R. (2010). Clustering with
spectral norm and the k-means algorithm. In
FOCS.

McSherry, F. (2009). Privacy integrated queries:
an extensible platform for privacy-preserving data
analysis. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data,
SIGMOD 2009, Providence, Rhode Island, USA,
June 29 - July 2, 2009, pages 19-30.

Mohan, P., Thakurta, A., Shi, E., Song, D., and
Culler, D. (2012). Gupt: Privacy preserving
data analysis made easy. In Proceedings of the
2012 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’12, pages 349—
360, New York, NY, USA. ACM.

Nissim, K., Raskhodnikova, S., and Smith, A.
(2007). Smooth sensitivity and sampling in pri-
vate data analysis. In STOC, pages 75-84. ACM.

Nissim, K. and Stemmer, U. (2018). Clustering al-
gorithms for the centralized and local models. In
Janoos, F., Mohri, M., and Sridharan, K., edi-
tors, Proceedings of Algorithmic Learning Theory,

volume 83 of Proceedings of Machine Learning Re-
search, pages 619-653. PMLR.

Nissim, K., Stemmer, U., and Vadhan, S. P. (2016).
Locating a small cluster privately. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Sym-
posium on Principles of Database Systems, PODS
2016, San Francisco, CA, USA, June 26 - July 01,
2016, pages 413-427.

Nock, R., Canyasse, R., Boreli, R., and Nielsen,
F. (2016). k-variates++: more pluses in the k-
means++. In Proceedings of the 33nd Interna-
tional Conference on Machine Learning, ICML
2016, New York City, NY, USA, June 19-24,
2016, pages 145-154.

Ostrovsky, R., Rabani, Y., Schulman, L. J., and
Swamy, C. (2012). The effectiveness of lloyd-
type methods for the k-means problem. J. ACM,
59(6):28:1-28:22.

Stemmer, U. (2020). Locally private k-means clus-
tering. In SODA. STAM.

Su, D., Cao, J., Li, N., Bertino, E., and Jin, H.
(2016). Differentially private k-means clustering,.
In Proceedings of the Sixth ACM Conference on
Data and Application Security and Privacy, CO-
DASPY 16, pages 26-37, New York, NY, USA.
ACM.

Wang, Y., Wang, Y.-X., and Singh, A. (2015). Dif-
ferentially private subspace clustering. In Proceed-
ings of the 28th International Conference on Neu-
ral Information Processing Systems - Volume 1,
NIPS’15, pages 1000-1008, Cambridge, MA, USA.
MIT Press.

Wasserstein, L. N. (1969). Markov processes over
denumerable products of spaces describing large
systems of automata. Problems of Information
Transmission, 5(3):47-52.



