
Supplementary material:
Learning spectrograms with convolutional spectral kernels

Zheyang Shen Markus Heinonen Samuel Kaski

Helsinki Institute for Information Technology, HIIT,
Department of Computer Science, Aalto University

In the supplementary material, we include additional derivations, figures and experiments regarding the
technical details of our paper, including a detailed derivation of the CSK formulation, the derivation of
spectrogram as well as a plot denoting the equivalence between two DGP formulations, and more experimental
details.

1 Convolutional spectral kernels: a derivation
In this section, we derive the convolutional spectral kernel (CSK) in detail, which solves the following integral:

Kxi
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Note that a transpose instead of Hermitian is used in the feature representation, making the functionKxi(xi−u)

an improper density. We denote the Fourier transform as an operator on functions: F [f ] (ω) =
∫
f(x)eıω

>x dx.
The Fourier transform of Kxi

(u) takes a simple form, which can be used to formulate the Fourier transform
of the kernel:
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The pseudo-Gaussian density gives a convenient closed-form Fourier transform, which we use to obtain the
solution to the Hermitian inner product.
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2 The spectrogram derivations
Many kernels share the form of a mixture of generalized Gaussian characteristic functions (CFs). In this
section, we address certain qualities of the Gaussian characteristic functions that justify our approximation of
the kernel. Consider the CF of a Gaussian distribution (spectral mixture kernel [1]) the following generalized
Gaussian CF:

kSM (xi,xj) = σ exp

(
−1

2
(xi − xj)

>Σ−1(xi − xj) + ı〈µ,xi − xj〉
)
, (12)

k(xi,xj) = σij exp

(
−1

2
Dij + ıUij

)
. (13)

The Wigner transform is tractable for the SM kernel (12), because Dij and Uij terms are linearized with
respect to τ = xi−xj = (x+τ/2)− (x−τ/2). We can similarly linearize the two terms for an approximation
of kernel values, and get an approximate Wigner transform. Given by the property of a Gaussian CF, we
give the following assumptions based on the convexity of Dij and the zero diagonal of Uii for kSM .

Dx,x = 0, (14)
JtDx+t/2,x−t/2 = 0, (15)
HtDx+t/2,x−t/2 � 0, (16)

Ux,x = 0. (17)

We approximate a Taylor expansion based on those assumptions:

Dx+τ/2,x−τ/2 ≈ Dx,x + 〈JtDx+t/2,x−t/2
∣∣
t=0

, τ 〉+ τ> HtDx+t/2,x−t/2
∣∣
t=0

τ (18)

= τ> HtDx+t/2,x−t/2
∣∣
t=0

τ (19)

= τ>Λxτ , (20)

Ux+τ/2,x−τ/2 ≈ Ux,x + 〈JtUx+t/2,x−t/2
∣∣
t=0

, τ 〉 (21)

= 〈JtUx+t/2,x−t/2
∣∣
t=0

, τ 〉 (22)

= 〈ξx, τ 〉. (23)

The linearization gives an approximate of kernel values where x and τ are separate:
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)
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∫
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≈
∫
k̂(x + τ/2,x− τ/2)e−2ıπ〈ω,τ〉 dτ (27)
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(
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2π
,
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2π2

)
(28)

= Ŵ (x,ω), (29)

which gives the spectrogram as the approximate Wigner distribution function. The rest of this subsection
derives the corresponding ξx and Λx for some GP models.
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2.1 The non-stationary quadratic (NSQ) kernel
The NSQ kernel [2] is a special case of CSK:

kNS(xi,xj) =
|Σi|1/4|Σj |1/4

|(Σi + Σj)/2|1/2
e−

Dij
2 , (30)

Dij = (xi − xj)
> (Σi + Σj)

−1
(xi − xj),Σi � 0, (31)

Uij ≡ 0. (32)

It is straightforward that ξx = 0. Now we derive Λx:

HtDx+t/2,x−t/2 = Htt
> (Σx+t/2 + Σx−t/2

)−1
t (33)

= (Σx+t/2 + Σx−t/2)
−1. (34)

Other terms involving the Hessian operator are 0 because of our assumptions. When t = 0, we get Λx = 1
2Σ−1x .

2.2 The generalized spectral mixture (GSM) kernel
The GSM kernel [3] augments the NSQ kernel with a cosine term:

kGSM (xi,xj) = kNS(xi,xj) exp (ıUij) , (35)
Uij = 〈µi,xi〉 − 〈µj ,xj〉. (36)

The lengthscale function conforms to the NSQ kernel: Λx = 1
2Σ−1x . The frequencies are derived as:

JtUx+t/2,x−t/2
∣∣
t=0

= Jt
[
µ>x+t/2(x + t/2)− µ>x−t/2(x− t/2)

]
(37)

= Jt

[(
µx+t/2 − µx−t/2

)>
x +

(
µx+t/2 + µx−t/2

2

)>
t

]∣∣∣∣∣
t=0

(38)

= µx + (Jxµx)x. (39)

2.3 The Deep Gaussian process (DGP)
The kernel of DGP is a SE kernel with input warping fi = f(xi). Formally,

k(xi,xj) = exp

(
−1

2
(fi − fj)

>Λ(fi − fj)

)
, (40)

Dij = (fi − fj)
>Λ(fi − fj). (41)

The lengthscale function differ from a constant Λ because fi is a function of xi.

Λx = (Jxf)
>

Λ (Jxf) . (42)

2.4 Equivalence between two DGPs
We provide an additional plot shown in Figure 1, which demonstrates the claim that a DGP is equivalent (up
to second-order effects) to a GP with NSQ kernel with lengthscales defined via the derivatives of the input
warping.

3 Inference with covariance function DGPs
In this section, we summarize notable earlier works for scalable inference of sparse covariance function DGPs.
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Figure 1: Equivalence between a GP with input warping function g (shown in (a)), and a NSQ kernel with
corresponding lengthscale (shown in (d)). The kernel matrices ((b) and (e)) and sample paths ((c) and (f)
are notably similar.

3.1 Small-scale datasets: maximum a-posteriori and Hamiltonian Monte Carlo
Previous work [2, 3, 4] have studied inference for the functional hyperparameters of nonparametric kernels. A
maximum a-posteriori framework gets MAP estimates for values of the hyperparameters on the input points:

p(θ|X) ∝ p(X,θ) = p(y|f)p(f |θ)p(θ), (43)

Maximizing the posterior likelihood (43), we obtain point estimates for θ(X).
One point estimate with maximum likelihood does not effectively represent the posterior distribution, the

Hamiltonian Monte Carlo (HMC) [4, 5] produces samples from p(θ|X) using Hamiltonian dynamics. MAP
and HMC are solid choices for small-scale data, but is infeasible in large-scale setting due to the necessity of
inferring O(N) parameters.

3.2 Our extension of the variationally sparse GPs
While sparse GP approximations [6, 7, 8, 9] typically use parametric variational distributions in terms
of variational inference. The work of Hensman et al. [10] observes that the optimal form of variational
distribution, while intractable, is proportional to an unnormalized likelihood. In the case of covariance
function DGPs, it is

q∗(uf ,uθ) ∝ eEp(f|uf ,θ)p(θ|uθ) log p(y|f)p(uf |θ)p(uθ).

HMC methods is suitable for extracting samples from a distribution with an intractable normalizing constant,
as ∇ log p(u) = ∇ log p′(u) whenever p ∝ p′. Therefore, we have

U(uf ,uθ) = log q∗(uf ,uθ) + logC = Ep(f |uf ,θ)p(θ|uθ) log p(y|f)p(uf |θ) + log p(uθ). (44)
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While it is still intractable to directly compute the expectation term, Hensman et al. [10] proposed to sum the
expectation terms over data points, and obtain one dimensional integrals tractable in the case of Gaussian
or Poisson likelihoods, or approximated via quadrature methods. In the work of deep GPs, Salimbeni and
Deisenroth [9] and Havasi et al. [11] observed that the sum can be further approximated with a random
subsample of the data and Monte Carlo sums θ̃ ∼ p(θ|uθ), and thus can be approximated with stochastic
gradient HMC [12, 13].

3.3 Moving window MCEM
For hyperparameter learning along with SGHMC, we use the moving window Monte Carlo expectation
maximization (MCEM) [11], an extension of the expectation maximization algorithm to learn maximum
likelihood estimate of hyperparameters. The moving window MCEM keeps track of a fixed-length window
of recent samples from HMC sampler, and each optimization action of hyperparameters is done given
the parameters randomly drawn from the window. This algorithm has shown better optimization of
hyperparameter for deep GP models [11].

In practice, we use the auto-tuning approach given by [13], which has shown to work well for Bayesian
neural networks, as well as compositional DGPs [11]. While we cannot directly compute the conditional
likelihood p(y,uf ,uθ|ξ), where λ denotes all hyperparameters, we can optimize the lower bound of its
logarithm

log p(y,uf ,uθ|λ) = logEp(θ|uθ)p(y,θ,uf ,uθ|λ) ≥ Ep(θ|uθ) log p(y,θ,uf ,uθ|λ). (45)

The right hand side of (45) can be approximated by same Monte Carlo samples used for approximating the
HMC objective (44).

4 Experiment details
The baseline results reported in our paper are implemented based on the works of variational sparse Gaussian
process regression [7], stochastic variational Gaussian processes [8], spectral mixture kernel [1], harmonizable
mixture kernel [14] and stochastic gradient HMC inference for compositional deep GPs [10, 11].

4.1 Solar irradiance
With the solar irradiance dataset [15]1, we follow the same partition of training and test set as Gal and
Turner [16] and Hensman et al. [17]. This 1-dimensional dataset has 281 training points and 110 test points.
We standardize both X and Y before the regression.

We use 3 components to fit the SM kernel as well as CSK. The HMK kernel has 6 centroids, each with three
frequency terms. We initialize all parameters (including kernel hyperparameters for parametric kernels, kernel
hyperparameters for latent GPs of NSQ and CSK, variational parameters, inducing points, and parameters
sampled from HMC) at random. And we do 5000 iterations for each models, with a learning rate of 10−3.

4.2 Air temperature anomaly: additional experiments
The DGP-NSQ model is a good frame of reference to compare against the CSK result, and we visualize
the predictive mean and correlation with the coordinates of London, shows in Figure 2. While NSQ is
notably more flexible with better predictive performance compared to the SE kernel, the correlation is notably
monotonic, and thus cannot capture the intricate correlation pattern of CSK.

1https://github.com/jameshensman/VFF/blob/master/experiments/solar/solar_data.txt
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Figure 2: Air temperature anomaly dataset. (a) demonstrates the temperature anomaly readings from May
1991. (b), (c) and (d) display the posterior predictive mean of May 1991 on a grid of global locations, with
the numbers in parentheses denoting mean squared error (MSE) and mean log-likelihood, respectively. (e),
(f) and (g) depict the correlation between London and other geographical locations: it is worth noting that
the SE kernel (e) only captures positive correlation on a small elliptical region, and NSQ kernel (f) captures
an irregularly shaped pattern monotonic with respect to the distance from London.

4.3 New York Yellow Taxi dataset
Due to limited time and CSK’s sensitivity to higher dimensions, we use 6 subsets of the New York Taxi
dataset2, randomly subsampling 25% of all taxi trips over the span of two months. The dataset has 5
dimensions (longitudes and latitudes of the pickup and dropoff locations, and the date and time of the
beginning of the taxi trip). We combine the date and time to a “date value”. The training set includes 100671
data points, and the test set includes 45260 data points. We also normalize both input and output into zero
mean and unit standard deviation before regression.

We use minibatch of 10000 given the medium-large scale of data, with baselines stochastic variational GP
[8] for GPs with parametric kernels (SE kernel and SM kernel), and SG-HMC [11] for compositional DGP, and
the proposed SG-HMC for GP with NSQ kernel and CSK. For CSK and SM, we use 4 frequency components.
The parameters are initialized at random, and the inducing point locations are randomly initialized with a
K-Means algorithm.

2https://www.kaggle.com/c/nyc-taxi-trip-duration/overview
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