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1 Graphical Models Background

1.1 Statistical Graphical Models

Chain graphs and their submodels were originally conceived as statistical models over random
variables, encoding conditional independence constraints in their factorization. For instance,
a DAG G(V) represents the set of joint distributions over V which factorize according to:

p(V) =
∏
V ∈V

p(V |paG(V )) (1)

Similarly, an MRF G(V) represents the set of distributions over V which factorize according
to the factorization:

p(V) = Z−1
∏

C∈C(GU )

φC(C),

where Z is a normalizing constant, C(G) denotes the set of cliques in G, and φC is an arbitrary
function over C known as a clique potential [1].
CGs merge these notions by allowing for both directed and undirected edges. Like DAGs
and MRFs, a CG G(V) represents the set of distributions over V that factorize according to
the two-level factorization:

p(V) =
∏

B∈B(G)

p(B|paG(B)) (2)

p(B|paG(B)) = Z(paG(B))−1
∏

C∈C?

φC(C), (3)

where C? = {C ∈ C((GB∪paG(B))a) : C 6⊆ paG(B)}, the set of cliques that intersect B in the
augmented graph [1] on B and paG(B). An augmented graph Ga is obtained from G by
making any edges in G undirected and adding undirected edges between each V ∈ paG(B)
for all B ∈ B(G).
Throughout the paper, we will assume that all probability distributions have full support.

1.2 Causal Graphical Models

In contrast to their statistical analogues, causal DAGs [3] and causal CGs [2] represent
distributions over counterfactual variables. For Y ∈ V and A ⊆ V \ V , the counterfactual
Y (a) denotes the value of Y under the hypothetical scenario in which A is set to a via a
node (or atomic) intervention [3].
In this paper, we will assume Pearl’s functional model. For a DAG G(V), counterfactuals
V (a) are determined by structural equations fV (a, εV ), which remain invariant under an
intervention a with εV denoting randomness in the causal process. These one step ahead



counterfactuals can be used to define all variables in the model via recursive substitution.
For A ⊆ V \ {V }:

V (a) ≡ V (apaG(V ), {W (a) : W ∈ paG(V ) \A}),

where a lies in the state space of A.
A parameter is said to be identifiable in a model when it can be expressed as a function of
observed data. In a DAG or CG G with all variables VD or VC , all counterfactuals arising
from node interventions are identified by the g-formula [5] and chain graph g-formula [2]
respectively:

p(VD(a)) =
∏

V ∈VD\A

p(V |paG(V ))|A=a (4)

p(VC(a)) =
∏

B∈B(G)

p(B \A|paG(B),B ∩A)|A=a (5)

2 Background: Identification in Causal Graphical Models

In this section, we discuss the state of latent-variable identification theory in causal graphical
models. These advancements culminate with sound and complete algorithms for identification
in the presence of latent variables in segregated graphs and identification of policy intervention
effects in latent variable DAGs. The current work bridges these literatures.

2.1 The Nested Markov Factorization: Re-expressing the ID Algorithm

[10] gave a general condition for determining identifiability of node interventions in latent-
variable DAGs. [7] re-expressed Tian’s condition as a concise algorithm, known as ‘ID’,
and proved that it is complete. Recently, [4] re-expressed the algorithm in [7] in terms of a
modified nested factorization, similar to the g-formula in a type of mixed graph.
While the substance of the identification approach in [4] is identical to that in [7] and [10],
the fixing operator they present enables a compact representation of existing identification
theory and makes clear the connection between the ID algorithm and Robins’ g-formula
(Eq. 4), which is itself a modified factorization on DAGs. For these reasons, we make use of
this framework for the SG policy identification extension that we present in this work. This
re-formulation relies on several important concepts which we describe below.

2.1.1 Latent Projections

Rather than considering latent-variable DAGs explicitly, [4] considers a class of models known
as acyclic directed mixed graphs (ADMGs). An ADMG contains directed and bi-directed
edges and represents and equivalence class of latent-variable DAGs. Given a latent-variable
DAG G(V∪H), where V is observed and H is latent, we can obtain the corresponding ADMG
G′(V) via a latent projection operation: edges A→ B in G are maintained in G′; additionally,
G′ has an edge A → B for any directed path A → · · · → B where the intermediate nodes
are all in H, and G′ has an edge A ↔ B if there exists a path A ← · · · → B in G with all
intermediate nodes in H and no consecutive edges → H ← for H ∈ H. We can also define
conditional ADMGs (CADMGs) which partition nodes into sets of random variables V and
fixed variables W. In a CADMG G(V,W), the variables W have no incoming edges. An
ADMG G(V) is also trivially a CADMG with W = ∅.
As described above, we use segregated graphs as the chain graph analogue of ADMGs. In
the formulation we use, SGs represent an equivalence class of latent variable chain graphs,
defined in a way that maintains their causal interpretation. A latent variable chain graph
G(V ∪H) is block-safe [6] if no V ∈ V has an incident edge from a latent variable (i.e.,
H → V for H ∈ H is forbidden) and no latent variable H ∈ H has an incident undirected
edge. A block-safe latent variable chain graph can be represented with a segregated graph
via the same latent projection operation described above.
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2.1.2 Kernels and Fixing

Whereas DAGs and CGs factorize as a product of conditional probability distributions,
ADMGs and SGs factorize as a product of kernels [1]. Again, following the notation
in [6], a kernel qV(V|W) is a function that maps values of W to densities on V with∑

v∈V qV(v|w) = 1 for each possible realization w. As with probability distributions, for
some A ⊆ V, conditioning and marginalization in kernels are defined as follows:

q(A|W) ≡
∑
V\A

q(V|W)

q(V \A|A,W) ≡ q(V|W)
q(A|W) .

The notion of fixing variables is closely tied to kernels. In a CADMG G(V), a variable V is
fixable if there does not exist both a bi-directed path and a directed path to some V ′ ∈ V, or
concisely, deG(V ) ∩ disG(V ) = ∅. In a DAG G with a corresponding probability distribution
p(V), fixing V corresponds to applying the g-formula to obtain a new distribution p(V \ V )
and a new graph G′. For a CADMG G(V,W) with a corresponding kernel q(V|W), [4]
defines a similar operation for fixing V in G, denoted φV (G). This operator yields a new
kernel and a new CADMG G′(V \ {V },W∪{V }). In this graph, all bi-directed and directed
edges into V are removed. The operator also yields a new kernel:

q′(V \ {V }|W ∪ {V }) ≡ q(V|W)
q(V|ndG(V ),W) .

Since the fixing operation generalizes the g-formula, it’s probabilistic interpretation varies –
acting as marginalization, conditioning, and sometimes neither – depending on the charac-
teristics of the variable being fixed relative to the kernel it is being fixed in.

2.1.3 Reachability, the Nested Factorization, and ID

We can extend the notion of fixability to sets of variables S ⊆ V in a CADMG G. If it is
possible to find a sequence S1, S2, . . . of the variables in S such that S1 is fixable in G, S2 is
fixable in φS(G) and so on, then S is fixable and V \ S is said to be reachable in G.
It was shown in [4] and [6] that all valid fixing sequences for S in a CADMG G(V,W) yield
the same resulting CADMG G(V\S,W∪S) and analogously for the kernel obtained by fixing
S in q(V|W). The fixing operator can therefore be defined for sets as it was for singleton
variables: φS. A CADMG G(V,W) is said to satisfy the nested Markov factorization if for
every fixable S

φS(q(V|W);G) =
∏

D∈D(φS(G))

φV\D(q(V|W);G)

[4] showed that p(V ∪H) satisfies the above factorization for a DAG G(V ∪H) then p(V)
satisfies the factorization for the corresponding ADMG G(V). An analogous result for SGs
was shown in [6], which we will discuss below.
This notation permits a reformulation of the ID algorithm as a one line formula, proven in
[4] to be identical to the algorithm in [7]: Let Y,A be disjoint subsets of V in an ADMG
G(V). Let Y? = anGV\A(Y). The intervention p(Y|do(a)) is identified in G if and only if
every set (district) D ∈ D(GY?) is reachable and, if identification holds, then

p(Y|do(a)) =
∑

Y?\Y

∏
D∈D(GY? )

φV\D(p(V);G)|A=a. (6)

2.2 Identification in Segregated Graphs

2.2.1 The Segregated Factorization

Building off the nested factorization for ADMGs and the chain graph factorization, we can
define the segregated factorization of an SG [6]. Recall that the variables in an SG G can be
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grouped into those that lie in a non-trivial block which we denote B? = ∪B∈Bnt(G)B, and
those that don’t, which we denote D? = ∪D∈D(G)D.
We can factorize an SG as the product of two kernels. The first kernel corresponds to a
conditional chain graph (CCG) G(V,W) where, as in CADMGs, V are random nodes and
W are fixed. A kernel q(V|W) is said to be Markov relative to a CCG G if it satisfies Eq. 1
with the following modification to the outer factorization

q(V|W) = Z(W)−1
∏

B∈B(G)

q(B|paG(B)),

and a similar replacement of p(B|paG(B)) with q in the inner factorization. We will denote
the CCG obtained from a SG by Gb with V corresponding to B? and W to pasG(B?). Gb
contains edges between each node in B? that exists in G as well as those between pasG(B?)
in G.
The second kernel corresponds to a CADMG which we will denote Gd with random nodes
D? and fixed nodes pasG(D?). Gd contains all edges between D? that are present in G as well
as the edges between pasG(D?) and D? in G.
If each of these kernels adheres to the factorization of the respective conditional graph,
then p(V) is obeys the segregated factorization. Specifically, p(V ) satisfies the segregated
factorization if q(D?|pasG(D?) satisfies the nested factorization and q(B?|pasG(B?)) satisfies
the CCG factorization.

2.2.2 The Segregated Graph ID Algorithm

Using the above extension of the nested factorization, we can now describe the extension
to the ID algorithm, expressed using the fixing operator φ [6]: for a block safe segregated
graph G(V), fix disjoint Y,A ⊆ V. Similar to above, let Y? = antGV\A(Y). Define G̃d and
G̃b to be the CADMG and CCG respectively obtained from GY? and

q(D?) = p(V)∏
B∈Bnt(G) p(B|paG(B)) .

We then have p(Y|do(a)) is identified in G if and only if D(G̃d) is reachable in Gd and, if it
is identified, then it is equal to∑

Y?\Y

[ ∏
D∈D(G̃d)

φD?\D(q(D?|paG(D?));Gd)
]

×
[ ∏

B∈B(G̃b)

p(B \A|paGY? (B),B ∩A)
]∣∣∣∣

A=a
.

(7)

2.3 Policy Interventions in ADMGs

Extending node interventions, [9] proposed a framework for setting an intervention node in
a DAG to a policy, a function of variables preceding it in the graph. Formally, for a DAG
G(V) with a topological ordering ≺ on V and an intervention set A ⊆ V, let fA be the
set of policies fA corresponding to each node A in A. Each fA is a function of some set
WA ⊆ V≺A such that it maps the state space of WA to the state space of A. Graphically,
intervening with fA corresponds to removing all edges into A in G and adding in edges from
WA to A, yielding a new graph GfA .
For an intervention of this type, we can define a counterfactual Y (fA) for Y ∈ V analogously
to node interventions via recursive substitution:

Y ({fA(WA(fA))|A ∈ paG(Y ) ∩A}, {paG(Y ) \A}(fA))

This implies a policy-analogue [9] to the g-formula for p({V \A}(fA)):∏
V ∈V\A

p(V |{fA(WA) : A ∈ A ∩ paG(V )},paG(V ) \A)
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An extension of these ideas to latent-variable DAGs was given in [8]. Following the Richardson
re-expression of the ID algorithm, for an ADMG G, the post-intervention graph GfA is obtained
in the same way as the fully observed case: by removing edges into A and adding edges from
WA to A. Similarly, [8] defines Y? ≡ anGfA

(Y) \A. This leads to a policy-analogue of Eq.
6: p(Y(fA)) is identified in G if and only if p(Y?(a)) is identified in G; if it is identified then

p(Y(fA)) =
∑

(Y?∪A)\Y

∏
D∈D(GY? )

φV\D(p(V);G)|ãpas
G (D)∩A

where ãpas
G(D)∩A = {A = fA(WA)|A ∈ paG(D)∩A} if paG(D)∩A 6= ∅ and ã = ∅ otherwise.

3 Proofs

Lemma 1 Given a segregated graph G(V) and a segregation-preserving policy intervention
fA(ZA), the post-intervention graph GfA obtained via Procedure 2 is a segregated graph.
Proof: In order for GfA to be a segregated graph, it must not have a node with both an
incident bi-directed and undirected edge (the ‘segregation’ property) and it must not have
any partially directed cycles (the ‘chain’ property).
We first show that GfA satisfies the segregation property. First we consider edges that appear
in both G and GfA (potentially with a modified functional form). Since we do not add any
↔ edges when constructing GfA , and since we assumed G is a segregated graph, these edges
are all incident to nodes that do not also have incident directed edges.
We can therefore restrict attention to undirected edges that were newly created when
constructing GfA . These edges correspond to connecting two previously unconnected nodes.
This requires intervening on both end points, which entails removing all incident ↔ edges,
as described in Procedure 2. This accounts for all possible undirected edges. In particular,
we cannot convert a directed edge X → Y to an undirected edge X − Y : this would
require intervening on X with fX(ZX) where Y ∈ ZX which violates our construction that
Z ⊆ V \ extG(X).
Since no undirected edge is incident to a node that also has an incident bi-directed edge, GfA
satisfies the segregation property.
We now show that GfA satisfies the chain property. We argue by contradiction: suppose
GfA does have a newly induced (relative to G) partially directed cycle. Then, without
loss of generality, one of the following sub-structures appears in GfA but not in G: (1)
W → X → Y →W , (2) W → X − Y →W , or (3) W → X − Y −W .
Sub-structure (1) contradicts our assumption that fA is segregation-preserving. Specifically,
we have that W4X directly and X4W through Y , however W 6∈ ZY .
In sub-structure (2), consider scenarios where two edges were present in G and we seek
to add the third edge. When adding either the W → X or Y → W edge, we have that
W4X and X4W (analogously for W,Y ) but X 6∈ ZW (W 6∈ ZY ) which is a contradiction.
Meanwhile, adding the X − Y edge requires that Y ∈ ZX , however Y ∈ extG(X) which
yields a contradiction. A similar argument involving 4 applies when only one of the three
edges was present in G and we seek to add the other two.
In sub-structure (3) a similar argument applies. Suppose we seek to add the W → X edge
with the two undirected edges present. X4W in the post-intervention graph but it is not the
case thatW4X, yielding a contradiction. Adding the Y −X edge yields a contradiction since
X ∈ extG(Y ). Similarly, adding the Y −W edge yields a contradiction since Y ∈ extG(W ).
Again, we can make a similar argument for adding two of the three edges.
The above argument generalizes trivially to larger sub-structures in the graph (e.g., 4-cycles)
and so GfA will not have any partially directed cycles. Since GfA satisfies both the chain
property and the segregation property, it is a segregated graph. �

Theorem 1 Let G(V ∪H) be a causal LV-CG with H block-safe, and a topological order
≺. Fix disjoint Y,A ⊆ V. Let fA(ZA) be a segregation preserving policy set. Let Y? ≡
antGfA

(Y) \A. Let Gd, G̃d be the induced CADMGs on GfA and GY? , and G̃b the induced
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CCG on GY? . Let q(D?|pasGfA
(D?)) =

∏
D∈GfA

q(D|pasGfA
(D)), where q(D|pasGfA

(D)) =∏
D∈D p(D|V≺D) if D∩A = ∅ and q = fA(ZA) if D∩A 6= ∅. p(Y(fA(ZA))) is identified in
G if and only if p(Y?(a)) is identified in G for the unrestricted class of policies. If identified,
p(Y(fA(ZA))) = ∑

{Y?∪A}\Y

[ ∏
B∈B(G̃b)

p?(B|paGfA
(B))

]

×
[ ∏

D∈D(G̃d)

φD?\D(q(D?|pasGfA
(D?));Gd)

]∣∣∣∣
A=ã

(8)

where (a) ã = {A = fA(ZA) : A ∈ paGfA
(D)∩A} if paGfA

(D)∩A 6= ∅ and ãD = ∅ otherwise,
and (b) p? is obtained by running Procedure 1 over functions gBi

(B−i,paGfA
(Bi), εBi

) where
gBi
∈ fA if Bi ∈ A and gBi

is given by the observed distribution if Bi 6∈ A1.
Proof: We prove two subclaims.
Claim 1: The segregated graph policy ID formula, equation 8, is sound
We first note that each variable in V ∪H is defined by a structural equation model. Since
fA is assumed to be segregation preserving, lemma 1 implies that all variables in H have an
unchanged structural equation in fA. Among V there exist two types of variables: those
that have a symmetric functional dependence with another variable (i.e., for Vi, Vj ∈ V
the structural equations fVi

, fVj
are functions of each other), and those without symmetric

dependence.
We impose an ordering on the variables in GfA in order of their dependence on other variables
in the graph: we first evaluate variables V ∈ (V ∪H) with structural equations that don’t
depend on other variables (V ∼ fV (εV )) and then variables that are functions of those
variables and so on. Following [2], groups of variables that have symmetrically dependent
structural equations are chain components corresponding to Bnt(GfA). Variables that do not
exhibit symmetric dependence are trivial chain components. Our ordering therefore implies
a DAG on chain components (it is acyclic aside from in-component cycles by lemma 1).
It’s clear that for trivial chain components the functions fV immediately reach an equilibrium.
We can normalize these functions, and write the margin over their corresponding variables
as: ∏

V ∈D:D∈D(GfA (V∪H))

p(V |paGfA (V∪H)(V ))|A=fA

Now, for each non-trivial chain component B, the structural equations for each constituent
variable treats inputs that are not in the component as known (this can be done since those
variables are evaluated earlier in the ordering on the DAG of components) and evaluates
each variable in the component via a Gibbs sampling process. The values obtained upon
convergence can then be passed to components later in the ordering. This follows by
application of proposition 6 in [2], and so we can express the DAG factorization over chain
components as:

p(V ∪H(fA)) =
∏

D∈D(GfA (V∪H))

p(D|paGfA (V∪H)(D))|A=fA

×
∏

B∈Bnt(GfA (V∪H))

p?(B|paGfA (V∪H)(B))

GfA is a proper latent-variable chain graph.
We derive the remainder of the proof via the argument in the proof of theorem 2 in [6]. We
assume without loss of generality that Y has no children in G(V).

1This distribution is identified from univariate terms but it cannot be obtained in closed-form.
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Consider the chain graph factorization of GfA derived above. Because H is block-safe in G,
the non-trivial blocks term can be re-written as follows:∏

B∈Bnt(GfA (V∪H))

p?(B|paGfA (V∪H)(B)) =
∏

B∈Bnt(GfA (V))

p(B|paGfA (V)(B))

=
∏

B∈Bnt(G̃b)

p?(B|paGfA (V)(B))|A=ãB

We are now left with the following factorization for the overall graph:

p({V ∪H}(fA)) =
∏

B∈Bnt(G̃b)

p?(B|paGfA (V)(B))

×
∏

D∈(V∪H)\
(⋃

B∈Bnt(GfA
)

B
) ∏
V ∈D\A

p(V |paGfA (V∪H)(V ))
∏

V ∈D∩A

fV (ZV )|A=fA

The factors in the second term are singleton nodes by construction and so they are defined
by either observed p(V |paGfA (V∪H)(V )) if V 6∈ A and fV ∈ fA(ZV ) if V ∈ A.

If we marginalize H from this second set of terms, using standard procedures [10],
then the resulting expression is the kernel described in the statement of the theo-
rem: q(D?|pasG(V)(D?)) =

∏
D∈D(GfA ) q(D|pasGfA (V)(D)), where q(D|pasGfA (V)(D)) =∏

D∈D p(D|V≺D) if D ∩A = ∅ and q(D|pasGfA (V)(D)) = fA(ZA) if D ∩A 6= ∅.

Since ZA are all observed by assumption, we can manipulate this kernel as in the proof of
soundness for theorem 2 in [6]. Whereas in [6] the authors fixed A to constants, here we can
express setting A to stochastic values according to fA. The claim is then immediate.
Claim 2: The segregated graph policy ID formula is complete
We adapt the proof techniques in [8, 6]. At a high level, we will use the fact that p(Y?(a))
is not identified to demonstrate that there is a hedge in G. We will then extend the hedge
down the graph to reach Y via extGY? (hedge) and antGY? (Y) to show non-identification.
We do this by arguing along the partially directed paths from the hedge to Y, which
requires considering subgraphs of GY? . We show non-identifiability in each of an increasingly
restricted submodel of GY? and then show that non-identification in the submodels yields
non-identification in GY? . More concretely, there are two complications that must be dealt
with for showing completeness of policy interventions: the hedge might intersect Y and we
must extend the hedge down to Y via partially directed paths. We construct a subgraph
for demonstrating the latter case and then a subgraph of that for the former case. We now
proceed with the proof.
Suppose p(Y?(a)) is not identified in G. Then there is a district D ∈ D(GY?) that is not
reachable in G. Let R = {D ∈ D| chG(D) ∩D = ∅}. Let A? = A ∩ paG(D). Then there
exists D′ ⊃ D, such that D and D′ form a hedge for p(R|do(a?)) and thus p(R|do(a?)) is
not identified by [7].

Let Y′ be the minimal subset of Y such that R ⊆ antGfA
(Y′). Consider a subgraph G† of

GfA , with vertices V′ ⊆ V, consisting of all edges in G in the hedge on D,D′ described above,
and edges that lie in partially directed paths in GfA from R to Y′. We restrict attention,
without loss of generality, to at most one child per node in each partially directed path
such that our paths form a forest from R to Y′. By Lemma 1, G† does not contain any
directed, nor partially directed cycles. Let A† = {A? ∪A|A ∈ A in G†}. For each A† ∈ A†,
we restrict attention to policies that map from Z†

A† to A†, where Z†
A† = ZA† ∩V′.

Now, following the proof of theorem 2 in the supplement of [6], we define an ADMG G̃† which
has the same vertices and edges as the D,D′ hedge in G†, and has a copy of each vertex in
each partially directed path from R to Y′ in G† but replaces all the undirected edges on
those partially directed paths with directed edges oriented away from R towards Y′. We
denote the variable copies in G̃† corresponding to Y′ in G† by Ỹ′. This orientation is possible
because each undirected edge either corresponds to a (known) policy in the intervention set,
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or to an observed structural equation. In either case, the observed distribution continues
to argree between the two counterexamples witnessing non-identifiability. For A† in G̃†, we
further restrict attention to policies inducing directed edges from R to Ỹ′ (i.e. ignoring
policies going the opposite direction that induce undirected edges). We denote these nodes
by Ã†.
We now show that p(Ỹ′({Ã† = fÃ† |Ã† ∈ Ã†})) is not identified in G̃† following the argument
in the proof of theorem 6 in the supplement of [8]. Observe that for R ⊆ Ỹ′, the subclaim
is immediate by the recursive argument in the proof of theorem 4 in [8]. Otherwise, pick a
node Ỹ ′ in G̃† such that paG̃†(Ỹ ′) ⊆ R and paG̃†(Ỹ ′) \ Ỹ′ 6= ∅ (as in [8], such a vertex must
exist since G̃† is acyclic and R \ Ỹ′ 6= ∅). If this Ỹ ′ ∈ Ã† \A?, the subclaim is immediate
since Ỹ ′ does not intersect our hedge and we can extend down the graph using the argument
in theorem 4 of [8].

If Ỹ ′ ∈ A? then we can create a graph Ḡ by copying the variables on the path Ỹ ′ → V1 →
· · · → Ȳ ∈ Ỹ′ in G̃†. We then apply the argument in theorem 4 of [8] to show that p(Ȳ (a?)) is
not identified along this path when we set a? according to the policies specified by fA? . This
follows since, by assumption, fA? ⊆ fA lies in an unrestricted policy class. Now, as p(Ȳ (a?))
is not identified in Ḡ, we can use the two counterexamples witnessing non-identifiability in Ḡ
to obtain non-identifiability for p(Ỹ′(fÃ†)). To do so, we define new variables in G̃† that are
the Cartesian product of variable copies created in Ḡ and their corresponding variables in
G̃†. Non-identifiability follows via the standard argument in lemma 1 of [8].

Now that we have shown that p(Ỹ′({Ã† = fÃ† |Ã† ∈ Ã†})), we have two counterexamples
witnessing non-identifiability in G̃† which agree on the observed data distribution but
disagree on the counterfactual distribution. We use these counterexamples to demonstrate
non-identifiability of p(Y′({A = fA|A ∈ A?})) in G†. To do so, we define variables along
the partially directed paths from R to Y′ in G†. These variables are created by taking the
Cartesian product of variable copies in G̃† and the corresponding variables in G†. As before,
the counterexamples continue to agree on the observed data distribution and disagree on
the counterfactual distribution. Thus p(Y′({A = fA|A ∈ A?})) is not identified in G†. Since
Y′ ⊆ Y?, the result is immediate, subject to the remaining argument on the chain graph
properties of G† and G̃† below.
Following [6], fix a block B in G†. For any B ∈ B, there exists a set of variables B1, . . . , Bk
in G̃† such that B is defined as the Cartesian product of B1, . . . , Bk. Any variable A ∈
nbG† ∪paG†(B) is similarly a Cartesian product of A variables. Then it follows that B ⊥
⊥ ((paG†(B) ∪B) \ (nbG†(B) ∪ paG†(B)))|(nbG†(B) ∪ paG†(B)) by d-separation rules in the
ADMG G̃† and that there are no colliders in G̃†. These both follow from our vertex copy
argument which separates out B from the rest of the block and eliminates the possibility of
colliders by making every path from R to Y′ a partially directed chain. This demonstrates
that G† and G̃† (and trivially Ḡ) satisfy the independence constraints implied by the CG
Markov property, thus proving the claim. �

4 Derivation of the Figure 2 Functional

From Fig. 2(a), we obtain GfA in Fig. 2(b) by applying the intervention detailed in Table
2. In turn, from this post-intervention graph we observe that Y? = antGfA

(Y) \ A =
{C2, C3,M3, Y2, Y3} and obtain the induced subgraph GY? in Fig. 2(c).
GY? factorizes into kernels relating to district nodes and block nodes:
qD(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3) and qB(M2,M3, A2, A3, C2, C3|∅). The block
nodes factorize as a product of blocks, as in the first term of Eq. 8:

qB(B?|paGfA
(B?)) =

∏
B∈B(G̃b)

p?(B|paGfA
(B))

= p?(M2,M3|A2, A3, C2)p?(A2, A3|C2, C3)p?(C2, C3)
Note that p?(C2, C3) = p(C2, C3) since the C2 − C3 block is unchanged relative to the
observed data.
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Separately, we must fix sets for each GY? district {{M3}, {Y2, Y3}} in qD(G). The derivations
of these pieces is as follows:
φD?\{M3}(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3);Gd) = φD?(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3);Gd)
This follows since M3 is already fixed in this kernel and subgraph. Since we must fix all
variables in the kernel and all variables in the kernel are fixable, this term simplifies to
p(∅) = 1.

For the second kernel, we have: φD?\{Y2,Y3}(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3);Gd)
= φC1,A1,M1,Y1(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3);Gd)

= φA1,M1,Y1(q(C1, A1,M1, Y1, Y2, Y3|C2,M2,M3)
p(C1) ;φC(Gd))

= φA1,M1,Y1(q(A1,M1, Y1, Y2, Y3|C2,M2,M3, C1);φC1(Gd))

= φM1,Y1(q(A1,M1, Y1, Y2, Y3|C2,M2,M3, C1)
p(A1|C1) ;φC1,A1(Gd))

= φM1,Y1(q(M1, Y1, Y2, Y3|C2,M2,M3, C1, A1);φC1,A1(Gd))

= φY1(q(M1, Y1, Y2, Y3|C2,M2,M3, C1, A1)
p(M1|A1) ;φC1,A1,M1(Gd))

= φY1(q(Y1, Y2, Y3|C2,M2,M3, C1, A1,M1);φC1,A1,M1(Gd))

= q(Y1, Y2, Y3|C2,M2,M3, C1, A1,M1)
p(Y1|A1,M1) ;φC1,A1,M1,Y1(Gd))

= p(Y2, Y3|C1, C2,M1,M2,M3, A1, Y1)

This yields the functional for p({Y2, Y3}(fA)):∑
{A1,A2,A3,M2,M3,C2,C3}

(
p?(M2,M3|A2, A3, C2)p?(A2, A3|C2, C3)p?(C2, C3)

× p(Y2, Y3|C1, C2,M1,M2,M3, A1, Y1)
)

5 Experimental Details and Extended Results

Each Ci, Ai, Yi are generated according to the following densities (note that Ci is a 3-
dimensional vector):

Ci,j ∼ Beta(αj , βj)

p(Ai = 1|Ci, C−i) = expit(
3∑
j=1

γjCi,j + τAC
|Ni|

∑
k∈Ni

3∑
j=1

Ck,j)

p(Yi = 1|Ai, A−i, Ci, C−i, Y−i) = expit
(
ηAi +

3∑
j=1

δjCi,j

+ 1
|Ni|

∑
k∈Ni

(
τY AAk + τY Y Yk +

3∑
j=1

τY CCk,j

))
where Ni denote unit i’s neighbors in GfA .
The parameters for the Beta distribution for C for both types of experiments (policy and
bias) are given by:
The parameters for Ai and Yi differ between the bias and policy experiments. For A we
have:
And for Y we have:
Finally, for the policy experiment we have results similar to those in the main draft, which
demonstrate the efficacy of policy interventions in selection actions that yield a more optimal
outcome.
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α β
1.5 3
6 2
.8 .8

Table 1: Parameters for generating Ci

Parameter Bias Policy
γ1 1 .5
γ2 0 .2
γ3 0 .25
τAC 0 .15

Table 2: Parameters for generating Ai

Parameter Bias Policy
η -3 .6
δ1 1 -.3
δ2 0 .4
δ3 0 .1
τY A 3 .2
τY Y .1 .3
τY C 0 -.2

Table 3: Parameters for generating Yi
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Figure 1: Difference in expected outcomes between adopting an optimal strategy and using
the status quo strategy in the Barabási-Albert model 1a and the Watts-Strogatz small world
model 1b. We perform these analyses at several network densities to demonstrate the general
efficacy of this approach.
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