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A Error Correction Codes for Communication over the Z-channel

More details about the representative coding techniques for the Z-channel are provided in this section.

A.1 Repetition code

Repetition code seems simple but is surprisingly powerful in the Z-channel. Chen et al. (2013) has proved that it is the
optimal code for Q = 1. The encoding and decoding processes are described as follows.

• Encoding. Repeat bit 0 or bit 1 in message m for A times to generate codeword X.

• Decoding. For channel output Y , if there exists i such that Y [i] 6= 0, then the decoder outputs 0. Otherwise, we
have Y [i] = 0 for all i, and the decoder outputs 1.

With a crossover probability no larger than 1− µmin, the bit error probability is:

P (Yi 6= Xi) < (1− µmin)A.

For a message length of Q bits, the error probability is:

Pe = P (∃i, Yi 6= Xi)

= 1− P (Yi = Xi)
Q

≤ 1− (1− (1− µmin)A)Q

≤ Qe−µminA.

With the choice of A = d log(QT )
µmin

e, we have Pe <
1
T

. Thus, the total code length for a Q-bit message is:

Nrep = Q

⌈
log(QT )

µmin

⌉
.

With Nrep = Θ(log(T )), the regret remains order-optimal.

A.2 Flip code

The flip code is designed by Chen et al. (2013) to better utilize the Z-channel property. The encoding and decoding
processes are illustrated with the case of 4 codewords as follows.

• Encoding. Assuming we encode every two bits into a 2A-bit codeword, the encoding function is:

(0, 0)→ (1, ..., 1︸ ︷︷ ︸
A

, 1, ..., 1︸ ︷︷ ︸
A

); (0, 1)→ (1, ..., 1︸ ︷︷ ︸
A

, 0, ..., 0︸ ︷︷ ︸
A

);

(1, 0)→ (0, ..., 0︸ ︷︷ ︸
A

, 1, ..., 1︸ ︷︷ ︸
A

); (1, 1)→ (0, ..., 0︸ ︷︷ ︸
A

, 0, ..., 0︸ ︷︷ ︸
A

).

• Decoding. It is similar to the repetition code. A codeword m of length 2A will be divided into m1 of length A and
m2 of length A
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– if all bits in m1 and m2 are 1s, decoder outputs (0, 0);

– if all bits in m1 are 1s and m2 contains 0, decoder outputs (0, 1);

– if m1 contains 0 and all bits in m2 are 1s, decoder outputs (1, 0);

– for all other cases, decoder outputs (1, 1).

With a crossover probability no larger than 1− µmin, the bit error probability is (Chen et al., 2013):

P (Yi 6= Xi) ≤ (1− µmin)A − 1

4
(1− µmin)2A

The inequality holds because the function qA− 1
4
q2A monotonically increases for q ∈ [0, 1]. For a message length of Q bits

(we assume Q is even here, otherwise an additional bit 0 can always be padded to make it even), the error probability is:

Pe = P (∃i, Yi 6= Xi)

= 1− P (Yi = Xi)
Q
2

≤ 1− (1− (1− µmin)A +
1

4
(1− µmin)2A)

Q
2

= 1− (1− 1

2
(1− µmin)A)Q

≤ Q

2
(1− µmin)A

≤ Q

2
e−µminA.

With the choice of A = d log(QT/2)
µmin

e, we have Pe <
1
T

. Thus, the total codeword length for a message of length Q is:

Nflip = Qd log(QT/2)

µmin
e.

With Nflip = Θ(log(T )), the regret remains order-optimal.

A.3 Modified Hamming code

As the number of codewords increases to 16 (4 bits), a modified (7,4) Hamming Code can be designed. It is a concatenated
code, with the standard (7,4) Hamming code as the inner code and a repetition code as the outer code.

• Encoding. The standard (7,4) Hamming encoding matrix G is first used to encode a 4-bit message to a 7-bit
codeword. Then we repeat each bit of the 7-bit codeword A times, leading to a 7A-bit codeword;

• Decoding. First by using the repetition code’s decoding rule, 7A-bit coded message is decoded into 7 bits. This
7 bits is then decoded with the standard (7,4) Hamming decoding matrix H. The final output is a decoded 4-bit
message.

G =



1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1


, H =

1 0 1 0 1 0 1
0 1 1 0 0 1 1
0 0 0 1 1 1 1



The repetition code reduces the crossover probability from q to qA. With this relatively small crossover probability and
the error correction capability of the Hamming Code, a reliable performance can be achieved. As stated by Barbero et al.
(2006), with qA as the crossover probability, we have the following error rate for the Hamming Code over a Z-channel.

P (Yi 6= Xi) =
7

2
(qA)2 + o((qA)3).
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We neglect o((qA)3) in the following analysis. The error probability of transmitting Q-bit messages (assuming Q can be
divided by 4) using the (7,4) modified Hamming code is:

Pe = P (∃i, Yi 6= Xi)

= 1− P (Yi = Xi)
Q
4

= 1− (1− 7

2
q2A)

Q
4

≤ 1− (1− 7

2
(1− µmin)2A)

Q
4

≤ 7Q

8
(1− µmin)2A

≤ 7Q

8
e−2µminA.

(6)

By choosing A = 1
2
d log(7QT/8)

µmin
e, we have Pe <

1
T

. Thus, the total codeword length for a message of length Q is:

Nham =
7Q

8

⌈
log(7QT/8)

µmin

⌉
,

which is still Θ(log(T )), but the bound in (6) indicates an improvement over the repetition code and flip code.

B Proofs for the Regret Analysis

B.1 Initialization phase

The initialization phase starts with a “Muscial Chair” phase, which assigns a unique external rank in 1, ...,K for each
of the player. Then the following sequential hopping protocol converts the external rank into a unique internal rank in
1, ...,M for each player and estimates the number of players M . The proof for Lemma 1 is the same as Lemma 11 in
Boursier and Perchet (2019). We re-state the algorithm and the proof for the sake of completeness.

Algorithm 4 Musical Chair

Input: [K], T0

Output: Fixed (external rank)
1: Initialize Fixed ← −1
2: for T0 time steps do
3: if Fixed = −1 then
4: Sample k uniformly at random in [K], play it in round t and receive reward r(t)
5: if r(t) > 0 then Fixed ← k
6: end if
7: end if
8: end for
9: return Fixed

Proof. As there is at least one arm that is not played by all the other players, the probability to encounter a positive
reward for player j during the Musical Chair process at time t is lower bounded by µmin

K
. Thus with the choice of

T0 = Kd log(T )
µmin

e, the probability for a single player to encounter only zero rewards until time T0 is:

P (∀t ≤ T0, r
j(t) = 0) ≤ (1− µmin

K
)T0 ≤ exp(−T0µmin

K
) ≤ 1

T
.

Applying a union bound over all players, the Musical Chair process is successful with a probability at least 1−O(M
T

).

Now we analyze the Estimate M NoSensing protocol. Similar to using repetition code for communication, the probability
that a player detects a “collision” while there is none is:

Pe ≤ (1− µmin)Tc ≤ e−µminTc ≤ 1

T
.

The union bound over the M players and the 2K blocks yields that it will be successful with a probability at least
1−O(MK

T
). Furthermore, the initialization phase lasts 3KTc time steps. Hence the regret satisfies:

Rinit ≤ 3MKTc = 3MKd log(T )

µmin
e.
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Algorithm 5 Estimate M NoSensing

Input: k (external rank), Tc
Output: M , j (internal rank)
1: Initialize M ← 1 and π ← k
2: for n = 1, 2, ..., 2K do
3: r ← 0
4: if n ≤ 2k then
5: for Tc time steps do
6: Pull π and get reward rπ(t)
7: Update r ← r + rπ(t)
8: end for
9: if r=0 then M ←M + 1, j ← j + 1

10: end if
11: else π ← π + 1(mod K)
12: for Tc time steps do
13: Pull π and get reward rπ(t)
14: Update r ← r + rπ(t)
15: end for
16: if r=0 then M ←M + 1
17: end if
18: end if
19: end for
20: return M , j

B.2 Exploration phase

This section aims at proving Lemma 2, which bounds the exploration regret. We start with the required lemmas and
then go back to proving Lemma 2.

B.2.1 Proof for Lemma 3

This lemma ensures that event A2 happens with a high probability. As mentioned before, there are at most log2(T )
communication phases, which leads to at most (MK + 2M) log2(T ) instances of transmissions to send arm statistics to
the leader and send the acc/rej arm sets to the followers. Since there are at most K arms to be accepted or rejected, no
more than MK instances of transmissions are required for sending the acc/rej arm sets.

Proof. Denote P (ξp) as the probability that the decoding of a Q-bit message produces a wrong result at round p. With

the choice of N ′ = max{ Q
CZ(1−µmin)

, log(T )
E(R)

}, and Xp, Yp denoting the message before encoding and after decoding at

round p, we have

P (ξp) = P (Xp 6= Yp) ≤
1

T
.

A simple union bound leads to

Pr = 1− P (∪p, ξp) ≥ 1−
∑
p

P (ξp) ≥ 1− (MK + 2M) log(T ) +MK

T
= 1−O

(
MK log(T )

T

)
.

B.2.2 Proof for Lemma 4

Lemma 4 ensures the acceptance and rejection of arms are successful with a high probability, which requires a good
estimation of the statistics of arms. The estimation error consists of two parts: the quantization error and the sampling
error. We analyze them separately.

Proof. With the choice of Q ≥ log2( 1
∆
4
−ε ), the quantization error in phase p can be bounded as:

∀i ∈ [M ], |µ̄pi [k]− µ̂pi [k]| ≤ ∆

4
− ε,

|µ̄p[k]− µ̂p[k]| =

∣∣∣∑M
i=1(µ̄pi [k]− µ̂pi [k])T ip

∣∣∣
Tp

≤ ∆

4
− ε.
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For any active arm k ∈ [Kp], the gap between the sample mean µ̂p[k] (using all players’ samples) and the true mean can
be bounded with Hoeffding’s inequality:

P

(
|µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp

)
≤ 2

T
.

Then, the overall gap between the quantized mean and the true mean for any active arm k ∈ [Kp] can be bounded as:

P
(
|µ̄p[k]− µ[k]| > BTp

)
=P

(
|µ̄p[k]− µ̂p[k] + µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp
+

∆

4
− ε

)

≤P

(
|µ̄p[k]− µ̂p[k]|+ |µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp
+

∆

4
− ε

)

≤P

(
|µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp
) ∪ P (|µ̄p[k]− µ̂p[k]| ≥ ∆

4
− ε

)

=P

(
|µ̂p[k]− µ[k]| ≥

√
2 log(T )

Tp

)

≤ 2

T
.

There are at most log2(T ) iterations of exploration and communication. By using a union bound of all these iterations
and K arms, Eqn. (4) is obtained.

B.2.3 Proof for Lemma 5

Lemma 5 bounds the number of time steps an arm is pulled before being accepted or rejected, and is essential to control
the rounds of exploration and communication. The proof is similar to the proof to Proposition 1 in Boursier and Perchet
(2019).

Proof. The proof is conditioned on the typical event. We first consider an optimal arm k. Let ∆k = µ[k]−µ(M+1) be the
gap between the arm k and the first sub-optimal arm. Let sk be the first integer such that 4Bsk ≤ ∆k. It satisfies:

sk ≥
32 log(T )

(∆k −∆ + 4ε)2 =
32 log(T )(

µ[k]− µ(M) + 4ε
)2 .

Recall that the number of time steps an active arm is pulled before the p-th exploration is Tp =
∑p
l=1 Ml2

ldlog(T )e. With
a non-increasing Mp, it holds that

Tp+1 ≤ 3Tp. (7)

For some p such that Tp−1 ≤ sk < Tp, the following inequalities are in order: ∆k ≥ 4BTp ; |µ̄p[k] − µ[k]| ≤ BTp ; and
|µ̄p[i]− µ[i]| ≤ BTp for all sub-optimal arm i. We then have

µ̄p[k]−BTp ≥ µ̄
p[i] +BTp + µ[k]− µ[i]− 4BTp ≥ µ̄

p[i] +BTp .

This suggests arm k will be accepted at time Tp. Eqn. (7) also leads to Tp = O(sk) = O
(

log(T )

(µ[k]−µ(M)+4ε)2

)
. Thus, arm k

will be accepted after at most O
(

log(T )

(µ[k]−µ(M)+4ε)2

)
pulls. The part of rejecting sub-optimal arms can be similarly proved

with ∆k = µ(M) − µ[k].

B.2.4 Lemma 7 and its proof

Lemma 7. In the typical event, the following results hold.

1) for any sub-optimal arm k, (µ(M) − µ[k])T explk (T ) = O

(
∆

4ε
min

{
log(T )

µ(M+1) − µ[k] + 4ε
,
√
T log(T )

})
;

2)
∑
k≤M

(µ(k) − µ(M))(T
expl − T expl(k) ) = O

(∑
k>M

min

{
log(T )

µ(M+1) − µ(k) + 4ε
,
√
T log(T )

})
.



Chengshuai Shi, Wei Xiong, Cong Shen, Jing Yang

The proof of the first part in Lemma 7 is as follows.

Proof. For a sub-optimal arm k, Lemma 5 leads to T explk (T ) ≤ O
(

min
{

log(T )

(µ(M+1)−µ[k]+4ε)2
, T
})

, and thus

(µ(M) − µ[k])T explk (T ) =
µ(M) − µ[k]

µ(M+1) − µ[k] + 4ε
O

(
min

{
log(T )

(µ(M+1) − µ[k] + 4ε)
, (µ(M+1) − µ[k] + 4ε)T

})
(i)

≤ O

(
∆

4ε
min

{
log(T )

δ
, δT

})
(ii)

≤ O

(
∆

4ε
min

{
log(T )

(µ(M+1) − µ[k] + 4ε)
,
√
T log(T )

})
,

in which inequality (i) comes from

µ(M) − µ[k]

µ(M+1) − µ[k] + 4ε
=

µ(M) − µ[k]

µ(M) − µ[k] + 4ε−∆
≤ ∆

4ε
,

and δ = µ(M+1) − µ[k] + 4ε. Inequality (ii) can be obtained with the observation that the term ∆
4ε
O(min{ log(T )

δ
, δT}) is

maximized by δ =
√

log(T )
T

.

The second part of Lemma 7 is based on Lemmas 8 and 9.

Lemma 8. Define t̂k as the number of exploratory pulls before accepting/rejecting the arm k and H is the total number
of exploration phases. Conditioned on the typical event, we have:∑

k≤M

(
µ(k) − µ(M)

) (
T expl − T expl(k)

)
≤
∑
j>M

∑
k≤M

H∑
p=1

2pdlog(T )e
(
µ(k) − µ(M)

)
1min{t̂(j),t̂(k)}≥Tp−1

.

Proof. For an optimal arm k, during phase p, if k has already been accepted, it will be pulled Kp2
pdlog(T )e times.

If it is still active (i.e., t̂k > Tp−1), it will be pulled Mp2
pdlog(T )e times, meaning that this arm is not pulled for

(Kp − Mp)2
pdlog(T )e times. Thus, it holds that T explk ≥ T expl −

∑H
p=1 2p(Kp − Mp)dlog(T )e1t̂k>Tp−1

. Notice that

Kp −Mp =
∑
j>M 1t̂(j)>Tp−1

. We have T explk ≥ T expl −
∑H
p=1

∑
j>M 2pdlog(T )e1min{t̂(j),t̂(k)}>Tp−1

, which proves the

lemma.

Lemma 9. Conditioned on the typical event, we have:∑
k≤M

H∑
p=1

2pdlog(T )e
(
µ(k) − µ(M)

)
1min{t̂(j),t̂(k)}≥Tp−1

≤ O
(

min

{
log(T )

µ(M) − µ(j) + 4ε
,
√
T log(T )

})
.

Proof. Define Aj =
∑
k≤M

∑H
p=1 2pdlog(T )e(µ(k) − µ(M))1min{t̂(j),t̂(k)}≥Tp−1

. Notice that

t̂(k) ≤ min

{
c log(T )

(µ(k) − µ(M) + 4ε)2
, T

}
,

and denote ∆(p) =
√

c log(T )
Tp−1

. The inequity t̂(k) > Tp−1 implies µ(k) − µ(M) < ∆(p) − 4ε. We also denote N j as the

smallest integer satisfying t̂(j) ≤ TNj . Then we have the following:

Aj ≤
∑
k≤M

Nj∑
p=1

2pdlog(T )e(∆(p)− 4ε)1t̂(k)≥Tp−1

≤
Nj∑
p=1

∆(p)2pdlog(T )e
∑
k≤M

1t̂(k)≥Tp−1

=

Nj∑
p=1

∆(p)2pdlog(T )eMp

≤
Nj∑
p=1

∆(p)(Tp − Tp−1)

= c log(T )

Nj∑
p=1

∆(p)

(
1

∆(p+ 1)
+

1

∆(p)

)(
1

∆(p+ 1)
− 1

∆(p)

)
.
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Since Tp+1 ≤ 3Tp, ∆(p)
(

1
∆(p+1)

+ 1
∆(p)

)
= 1 +

√
Tp
Tp−1

≤ 1 +
√

3. Thus,

Aj ≤ c log(T )

Nj∑
p=1

(
1

∆(p+ 1)
− 1

∆(p)

)
≤ (1 +

√
3)c log(T )

1

∆(N j + 1)
.

With the definition of N j , we have t̂(j) ≥ TNj−1. With inequality TNj+1 ≤ 3TNj we have ∆(N j) ≥
√

c log(T )

3t̂(j)
. Aj ≤

(3 +
√

3)
√
ct̂(j) log(T ) then holds. With t̂(j) ≤ O

(
min{ c log(T )

(µ(M+1)−µ(j)+4ε)2
, T}

)
, we have

Aj ≤ (3 +
√

3) min

{
c log(T )

µ(M+1) − µ(j) + 4ε
,
√
cT log(T )

}
.

B.3 Communication phase

This section presents the proof related to the bound of the communication regret.

B.3.1 Proof for Lemma 6

Proof. Conditioned on the typical event, we denote H as the number of exploration phases. The communication length
for sending arm statistics and acc/rej arm sets for p ∈ [H] is at most N ′(KM + 2M). Lemma 5 states that H satisfies

TH =
∑H
l=1 Ml2

ldlog(T )e = O(maxk∈[K]{sk}) = O
(

min{ log(T )
4ε

, T}
)

. Thus,

H = O

(
log(min{ 1

4ε
, T})

)
,

which leads to a regret of O(N ′(KM2 + 2M2) log(min{ 1
4ε
, T}). Next, transmitting acc/rej arm sets at most incurs a

regret of M2KN ′. Putting them together, the total communication regret is:

O

(
N ′(KM2 + 2M2) log

(
min

{
1

4ε
, T

})
+N ′M2K

)
.

C Supplementary Materials for Experiments

C.1 Minor changes to SIC-MMAB2

Some minor changes can be made to SIC-MMAB2 (Boursier and Perchet, 2019) to improve its convergence and make it

more practical. First, the original length of exploration in phase p is Kp2
pT0, where T0 = d 2400 log(T )

µmin
e. The factor 2400 is

too large and makes it almost impossible to converge (or even finish one round of exploration) in the time horizon of our

experiments. We thus change it to T0 = d 24 log(T )
µmin

e, and we have verified that it converges successfully for the instances in

the experiments. Another minor change is to add a random selection in the declaration phases. In SIC-MMAB2 (Boursier
and Perchet, 2019), players sequentially declare the arms in their own rejected sets. However, with similar exploration
time steps across players, the declaration sets are almost identical for all players. With a sequential selection (rather than
a random selection in our implementation), all players will declare the same arm with high probability, which is in fact
noticed to happen very frequently in the experiment.

C.2 Supplementary experiment results

The impact of the leader-follower protocol and the enhancement in Section 5 are evaluated in a larger game (M = 10,
K = 29). With ∆ = 0.06, EC-SIC without the leader-follower protocol (labeled as “EC-SIC-Mesh”), EC-SIC using none
of the enhancement in Section 5 (labeled as “EC-SIC-NE”) are compared with EC-SIC and SIC-MMAB2. Compared to
the stable performance of EC-SIC and SIC-MMAB2, Fig. 8 shows that in practice, due to the unnecessary communication
between every pair of players, EC-SIC-Mesh cannot even finish the first communication phase. Although it converges
eventually, EC-SIC-NE has a larger regret. These results highlight the benefit of the tree-structured communication and
the selection of better communication arms.

In the case of utilizing repetition code in EC-SIC, we carry on experiments to evaluate the dependency on the knowledge
of µmin. For µ(k) = 0.3, we evaluate EC-SIC and SIC-MMAB2 with µmin from 0.05 to 0.3, hence creating a mismatched
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Figure 8: Large game
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“estimation” of µmin. The results shown in Figure 9 state that decreasing µmin leads to an increasing regret of both
SIC-MMAB2 and EC-SIC, which corroborates the theoretical analysis. Furthermore, EC-SIC has better performance
than SIC-MMAB2 across different “estimates” of µmin.

The knowledge of ∆ is assumed in the algorithms and their theoretical analysis. In practice, a precise value of ∆
may not always be available. In the last experiment, we demonstrate the robustness of the algorithms by feeding it
with inaccurate information ∆e instead of the true ∆. As shown in Figure 10, with a pessimistic estimation of ∆, the
inaccurate information only leads to some additional but acceptable communication loss. The overall regret is still better
than SIC-MMAB2. For the optimistic estimations, Figure 11 shows that the algorithm is effective even with ∆e = 2∆.
When the estimation error further grows (∆e = 3∆ or 6∆), communication errors start to occur, which lead to a few
arms that are identified incorrectly. It nevertheless still outperforms SIC-MMAB2 in terms of regret. Thus, practically
speaking, EC-SIC has good robustness, and we further comment that it is preferable to have a pessimistic estimation.
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Figure 10: Pessimistic estimation
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Figure 11: Optimistic estimation


