Jiaxin Shi, Michalis K. Titsias, Andriy Mnih

A Tighter Sparse Variational Bounds for GP Regression

As mentioned in section another way to improve the variational distribution ¢(u)p, (f,) in SVGP is to make
u and f; dependent. The best possible approximation of this type is obtained by the setting g(u) to the optimal
exact posterior conditional ¢*(u) = p(ulf,,y). The corresponding collapsed bound for GP regression can be
derived by analytically marginalising out u from the joint model in Eq. @,

p(ylfL) = / p(yIfL + KruKolw)p(u) du

= N(ylfL, Qg +0°1), (12)
and then forcing the approximation p, (f}):
By, (¢,)log N (y[fL, Qg + o°T). (13)
This bound has a closed-form as
1 _
log N (y10, Qe +0°1) — 211 [(Qer + D) (Kar — Q)] (14)

Applying the matrix inversion lemma to (Qg +02I)~!, we have an equivalent form that can be directly compared

with Eq. :

1 1
log NV (y]0, Qg + ¢*T) — @tr(Kff - Qg) +ﬁtr [Keu(Kuu + 0 KueKeu) ' Kue(Kg — Qg)] (15)

=Eq.

where the first two terms recover Eq. (3)), suggesting this is a tighter bound than the |Titsias| (2009) bound.
This bound is not amenable to large-scale datasets because of O(N?) storage and O(M N?) computation time
(dominated by the matrix multiplication K,sKg) requirements. However, it is still of theoretical interest and
can be applied to medium-sized regression datasets, just like the SGPR algorithm using the Titsias (2009) bound.

B Details of Orthogonal Decomposition

In section we described the following orthogonal decomposition for f € H, where H is the RKHS induced by
kernel k:

f=hH+fL, fieVand fi LV. (16)
Here V is the subspace spanned by the inducing basis: V = {Z;Vil ajk(z;,"), a=[ai,...,ay]" € RM}. Since
fI €V, welet fj = Z;vil 043]<:(zj7 -). According to the properties of orthogonal projection, we have

(f,9n="{fl,9n, Vg€V, (17)
where () is the RKHS inner product that satisfies the reproducing property: (f,k(x,-))x = f(x). Similarly let

9=, Bik(zj,-). Then (f,g)a = S0, Bif(z5), (fi.9)n = Soity S, oB;k(zi, ;). Plugging into Eq.
and rearranging the terms, we have

B (f(Z)-k(Z,Z)a’) =0, VBeRM, (18)

where f(Z) = [f(z1),..., f(zm)]", k(Z,Z) is a matrix with the ij-th term as k(z;,z;), and &’ = [a, ..., o))"
Therefore,

o = k(za Z)ilf(z)a (19)
and it follows that fy(x) = k(x,Z)k(Z,Z)~" f(Z), where k(x,Z) = [k(21,x%),...,k(zm,x)]. The above analysis
arrives at the decomposition:

fi =k Z)KZ,2)7 f(2Z), fL=[—f) (20)

Although the derivation from Eq. to relies on the fact f € H, such that the inner product is well-defined,

the decomposition in Eq. is valid for any function f on X. This motivates us to study it for f ~ GP(0, k).
Substituting u for f(Z) and Ky for k(Z,Z), we have for f ~ GP(0, k):

fi = k(- Z)Kgou ~ py = GP(0, k(x, Z)Kgok(Z, X)), (21)

L~ pL =GP0, k(x,X) — k(x, Z)Kuh(Z, X)), (22)

Sparse Orthogonal Variational Inference for Gaussian Processes

C The Collapsed SOLVE-GP Lower Bound

We derive the collapsed SOLVE-GP lower bound in Eq. @D by seeking the optimal g(u) that is independent of
f,. First we rearrange the terms in the uncollapsed SOLVE-GP bound (Eq.) as

Eqw) {Eq. (51 [log N (yIfL + KraKguu, 0°T)]} — KL [g(w)|[p(u)] = KL [g(vL)[lpL(vL)]. (23)

where ¢, (f1) = M(mg,, S,), and mg, = C¢,Cyimy, S¢, = Cg + CyCyi(Sy — Cyy)CutCy. In the first
term we can simplify the expectation over f, as:

Eq, (£,)log NV (ylfL + KeuKogu, o°1)

N N 1 _ _
=Eq, £1) {—2 log 27 — 5 logo? — Tc?(y —f - Kquuﬁu)T(y —f - Kqumllu)]

N N 1
— [2 log 27 — 5 logo? — ﬁ(y —mg — Kqu;&u)T(y —my, — Kquu&u)]
o

1
— By e {%g(ﬁ —me,)" (fL —myg,)
_ 1
= log N (y|K¢uKpu + my, , 0%T) — ﬁtr(su). (24)
Plugging into Eq. and rearranging the terms, we have

IEq(u) [IOgN(y|Kqu|:Lllu + mfl70-21)] — KL [Q(u)”p(u)] _%tr(sfl> — KL [q(vl_)”pJ-(VJ-)] . (25)

<log [N(y|KeuKgaut+ms, ,02I)p(u) du

Clearly the leading two terms form a variational lower bound of the joint distribution N (y|KeKgiu +
mg¢ ,02I)p(u). The optimal ¢(u) will turn it into the log marginal likelihood:

log | N5 KruKpbu + me, . 0*Dp(u) du = log N (ylme. . Qg + 7). (26)
Plugging this back, we have the collapsed SOLVE-GP bound in Eq. @:

log N'(y|CrvCotmy, Qg + 02T) — %tr(sﬁ) — KL [N (my, Sy) A0, Cuv)], (27)

Moreover, we could find the optimal ¢*(v) = N (m%, S}) by setting the derivatives w.r.t. my and Sy to be zeros:

mf,- = va[va + Cvailcfv]ilcvailba (28)
Sy = va[cvv + O'_2CVfoV]_1CVV, (29)

v

where A = Qg + 0%I. Then the collapsed bound with the optimal q(v) is

1
log N (y|CevCyymy, A) — 552 1Ce —B(B + o®1)7'B] - KL [V(mj, S)|NV(0,Cuv)] (30)

where B = C¢, Cyy Cyt.

D Computational Details

D.1 Training

To compute the lower bound in Eq. (8], we write it as

N
Y Eqrxno l0g p(yal f(x0))] = KL [g(w)[lp(w)] — KL{g(v)[pr(ve)], (31)

n=1

Jiaxin Shi, Michalis K. Titsias, Andriy Mnih

Algorithm 1 The SOLVE-GP lower bound via Cholesky decomposition. We parameterize the variational
covariance matrices with their Cholesky factors S, = LuLI ,Sy = LVL\T A= L?l \ Kyv denotes the solution of
L?IA = Kuv. ® denotes elementwise multiplication. The differences from SVGP are shown in blue.

Input: X (training inputs), y (targets), Z, O (inducing points), my,, Ly, my, Ly (variational parameters)

1: Kyu =k(Z,Z2), Kyyv = k(0,0)

2: LY = Cholesky(Kuy), Kuv = k(Z,0), A :=L%2\ K, Cyy = Ky, — ATA, LY = Cholesky(C,.)
3: Kyr = k(Z,X), Ky = (0, X)

4: B:=L%\ Ky, Cor =Ky —A'B, D:=LY\ Cy¢

5 E=LY\B,F:=LE,G:=L{\D H:=L)G

6: w(X)=E 'my + G 'm,

7. 0?(X) = diag(Kg) + FOF)"1-(BoB)"1+ HoH)'1 - (DoD)'1

8: Compute LLD = 25:1 Enr(pu(x,),02 () 108 P(Yn| f (Xn)) in closed form or using quadrature/Monte Carlo.
9: function CompUTE_KL(m, L, L°)
10: P=L°\L,a=L’\m
11: return log(diag(L%)) "1 — log(diag(L)) "1 + 1/2(P®P) "1 +a'a — M)
12: end function
13: KL, = CoMPUTE_KL(my, Ly, L), KL, = CompUTE_KL(m,, L, L)
14: return LLD — KL, — KL,

where © := {my, Sy, my, Sy, Z, 0} and ¢(f(x,); ©) defines the marginal distribution of f = f; + K¢, K .u for
the n-th data point given u ~ ¢(u) and £; ~ ¢, (f;). We can write ¢(f(x,);©) as

q(f(%n); ©) = N (pu(xn), 0° (%)), (32)
where
1(xn) = k(%p, Z)Kgamy + ¢(x,,0)Cyimy,, (33)
o%(xn) = k(%n, Z)K quSuKquk(Z, X5) + ¢(Xn, Xn) + ¢(x0, 0)Ciy (Sy — Cuv)Cye(0, xy). (34)
Here c(x,x’) := k(x,x') — k(x, Z)K_ k(Z,x) denotes the covariance function of p . The univariate expec-

tation of log p(yn|f(x,)) under ¢(f(x,);©) can be computed in closed form (e.g., for Gaussian likelihoods)
or using quadrature (Hensman et al. 2015b). It can also be estimated by Monte Carlo with the reparame-
terization trick (Kingma and Welling, [2013} Titsias and Léazaro-Gredilla, 2014; [Rezende et al.l [2014) to prop-
agate gradients. For large datasets, an unbiased estimate of the sum can be used for mini-batch training:
\%I 2 xw)en Eq(rx);0) [log p(y| f(x))], where B denotes a small batch of data points.

Besides the log-likelihood term, we need to compute the two KL divergence terms:

KL [g(u)||p(u)] = [log det Kyy — logdet S, — M + tr(K;&Su) + mIKl_ullmu} , (35)

KL[g(vi)llpL(vi)] =

N = N =

[log det Cyy — logdet Sy — M + tr(CyySy) + my Cyymy] . (36)

We note that if the blue parts in Egs. to are removed, then we recover the SVGP lower bound in Eq. .
An implementation of the above computations using the Cholesky decomposition is shown in algorithm

D.2 Prediction

We can predict the function value at a test point x* with the approximate posterior by substituting x* for x,,
in Eq. (32). For multiple test points X", we denote the joint predictive density by N (f*|u*, 3*), where the
predicted mean and covariance are

p=K,oKilm, + C..Colm,, (37)

Sparse Orthogonal Variational Inference for Gaussian Processes

Table 4: Cubic-cost operations in SOLVE-GP and SVGP, following the implementation in algorithm

SVGP SOLVE-GP
O(NMQ) x 1
. e 2 O(NM3) x
Matrix multiplication O(NM*) x 1 (NMMQ)
O(MM3) x
M
Cholesky O(M?*) x 1 E ;
O(M?) x 1
Solving triangular O(M?*) x 1 O(é\]]\]ég) 1
matrix equations O(NM?) x 2 (22) X
O(NM5) x 2
O(M>M?) x 1
B Matmul Cholesky Trisolve B Matmul Cholesky Trisolve
30 10
o4 24 8 8 8
18 6
12 4
8 8 3
6 4 . 2 2
3 I 2 11 1
11
o —an [o0 0 0
SVGP (M) SVGP (2M) SOLVE-GP (M+M) SVGP (M) SVGP (2M) SOLVE-GP (M+M)
(a) N~ M (b) M >N

Figure 4: Comparison of computational cost for SVGP and SOLVE-GP. For each method and each type of
cubic-cost operation, we plot the factor of increase in cost compared to a single operation on M x M matrices.

D.3 Computational Complexity

As mentioned in section the time complexity of SOLVE-GP is O(NM? + M?3) per gradient update, where
M = max(M, M) and N is the batch size. Here we provide a more fine-grained analysis by counting cubic-
cost operations and compare to the standard SVGP method. We underlined all the cubic-cost operations in
algorithm [1} including matrix multiplication, Cholesky decomposition, and solving triangular matrix equations.

We count them for SVGP and SOLVE-GP. The results are summarized in Table [

For comparison purposes, we study two cases of mini-batch training: (i) N ~ M and (ii) M > N. We consider
SOLVE-GP with My = M, which has 2M inducing points in total, and then compare to SVGP with M and 2M
inducing points. For each method and each type of operation, we plot the factor of increase in cost compared
to a single operation on M x M matrices. For instance, when N =~ M (Fig. , SVGP with M inducing points
requires solving three triangular matrix equations for M x M matrices. Doubling the number of inducing points
in SVGP increases the cost by a factor of 8, plotted as 24 for SVGP (2M). In contrast, in SOLVE-GP with
M orthogonal inducing points we only need to solve 7 triangular matrix equations for M x M matrices. The
comparison under the case of M > N is shown in Fig. In this case SOLVE-GP additionally introduces one
O(M?) matrix multiplication operation, but overall the algorithm is still much faster than SVGP (2M) given
the speed-up in Cholesky decomposition and solving matrix equations.

Jiaxin Shi, Michalis K. Titsias, Andriy Mnih

E Details of Eq. (L1))

The variational distribution in Eq. is defined as:

L L—-1
ata£8) = [T oo (e 1w £t gt atuyiulavt] TT att. (39)
=1 =1

F Whitening

Similar to the practice in SVGP methods, we can apply the “whitening” trick (Murray and Adams| [2010;
Hensman et al., 2015b) to SOLVE-GP. The goal is to improve the optimization of variational approximations
by reducing correlation in the posterior distributions. Specifically, we could “whiten” u by using u’ = K;&/ 2
where K;&/ 2 denotes the Cholesky factor of the prior covariance Kyuy. Then posterior inference for u turns
into inference for u’, which has an isotropic Gaussian prior A (0,I). Then we parameterize the variational
distribution w.r.t. u’: ¢(u’) = N (my, Sy). Whitening g(v_) is similar to whitening ¢(u), i.e., we parameterize
the variational distribution w.r.t. v/, = C;l/?v, and set ¢(v/,) = N'(my,Sy). The algorithm can be derived by
replacing my, m, with Lgmu, Lgmv, and Sy, S, with LgSuLgT, L?,SVL(\),T in algorithm (1| and removing the
canceled terms.

u,

G Experiment Detalils

For all experiments, we use kernels with a shared lengthscale across dimensions. All model hyperparameters,
including kernel parameters, patch weights in convolutional GP models, and observation variances in regres-
sion experiments, are optimized jointly with variational parameters using ADAM. The variational distributions
g(u) and ¢(vy) are by default initialized to the prior distributions. Unless stated otherwise, no “whitening”
trick (Murray and Adams, [2010; Hensman et al., [2015b) is used for SVGP or SOLVE-GP.

G.1 1D Regression

We randomly sample 100 training data points from Snelson’s dataset (Snelson and Ghahramani, 2006) as the
training data. All models use Gaussian RBF kernels and are trained for 10K iterations with learning rate 0.01
and mini-batch size 20. The GP kernel is initialized with lengthscale 1 and variance 1. The Gaussian likelihood
is initialized with variance 0.1.

G.2 Convolutional GP Models

All models are trained for 300K iteration with learning rate 0.003 and batch size 64. The learning rate is annealed
by 0.25 every 50K iterations to ensure convergence. We use a zero mean function and the robust multi-class
classification likelihood (Hernandez-Lobato et al.,2011). The Gaussian RBF kernels for the patch response GPs
in all layers are initialized with lengthscale 5 and variance 5. We used the TICK kernel (Dutordoir et al., [2019)
for the output layer GP, for which we use a Matérn32 kernel between patch locations with lengthscale initialized
to 3. We initialize the inducing patch locations to random values in [0, H] x [0, W], where [H, W] is the shape of
the output feature map in patch extraction.

Convolutional GPs We set patch size to 5 x 5 and stride to 1. We use the whitening trick in all single-layer
experiments for u (and v) since we find it consistently improves the performance. Inducing points are initialized
by cluster centers which are generated from running K-means on M x 100 (for SVGP) or (M + M3) x 100 (for
SOLVE-GP) image patches. The image patches are randomly sampled from 1K images randomly selected from
the dataset.

Deep Convolutional GPs The detailed model configurations are summarized in Table [5| No whitening trick
is used for multi-layer experiments because we find it hurts performance. Inducing points in the input layer
are initialized in the same way as in the single-layer model. In Blomqvist et al.| (2018); |Dutordoir et al.| (2019)),
three-layer models were initialized with the trained values of a two-layer model to avoid getting stuck in bad

Sparse Orthogonal Variational Inference for Gaussian Processes

local minima. Here we design an initialization scheme that allows training deeper models without the need of
pretraining. We initialize the inducing points in deeper layers by running K-means on M x 100 (for SVGP)
or (M + M) x 100 (for SOLVE-GP) image patches which are randomly sampled from the projections of 1K
images to these layers. The projections are done by using a convolution operation with random filters generated
using Glorot uniform (Glorot and Bengio, [2010). We also note that when implementing the forward sampling
for approximating the log-likelihood term, we follow the previous practice (Dutordoir et al., 2019) to ignore the
correlations between outputs of different patches to get faster sampling, which works well in practice. While it
is also possible to take into account the correlation when sampling as this only increases the computation cost
by a constant factor, doing this might require multi-GPU training due to the additional memory requirements.

Table 5: Model configurations of deep convolutional GPs.

2-layer 3-layer
Layer 0 patch size 5 x 5, stride 1, out channel 10, patch size 5 x 5, stride 1, out channel 10
Layer 1 patch size 4 x 4, stride 2 patch size 4 X 4, stride 2, out channel 10
Layer 2 - patch size 5 x 5, stride 1

G.3 Regression Benchmarks

The experiment settings are followed from [Wang et al. (2019)), where we used GPs with Matérn32 kernels and
80% / 20% training / test splits. A 20% subset of the training set is used for validation. We repeat each
experiment 5 times with random splits and report the mean and standard error of the performance metrics. For
all datasets we train for 100 epochs with learning rate 0.01 and mini-batch size 1024.

H Additional Results

H.1 Regression Benchmarks

Due to space limitations in the main text, we include the Root Mean Squared Error (RMSE) on test data in
Table[6l The results on Elevators and Bike are shown in Table [1

Table 6: Test RMSE values of regression datasets. The numbers in parentheses are standard errors. Best mean
values are highlighted, and asterisks indicate statistical significance.

Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric
N 25,600 29,267 31,248 40,708 278,319 329,820 373,280 1,311,539
d 8 9 20 27 3 90 s 9
SVGP 1024 0.193(0.001) 0.630(0.004) 0.098(0.003) 0.123(0.001) 0.482(0.001) 0.797(0.001) 0.263(0.001) 0.063(0.000)
1536 0.182(0.001) 0.621(0.004) 0.098(0.002) 0.123(0.001) 0.470(0.001) 0.797(0.001) 0.263(0.001) 0.063(0.000)
ODVGP 1024 + 1024 0.183(0.001) 0.625(0.004) 0.176(0.012) 0.156(0.004) 0.467(0.001) 0.797(0.001) 0.263(0.001) 0.062(0.000)
1024 + 8096 0.180(0.001) 0.618(0.004) 0.157(0.009) 0.157(0.004) 0.462(0.002) 0.797(0.001) 0.263(0.001) 0.062(0.000)
SOLVE-GP 1024 + 1024 *0.172(0.001) 0.618(0.004) 0.095(0.002) 0.123(0.001) 0.464 0.261(0.001) *0.061(0.000)

(0.001) 0.796(0.001
(0.001)

)
SVGP 2048 0.177(0.001) 0.615(0.004) 0.100(0.003) 0.124(0.001) 0.467(0.001) 0.796(0.001) 0.263(0.000) 0.063(0.000)

H.2 Convolutional GP Models

We include here the full tables for CIFAR-10 classification, where we also report the accuracies and predictive
log-likelihoods on the training data. Table [§] contains the results by convolutional GPs. Table [9] and Table
include the results of 2/3-layer deep convolutional GPs.

Jiaxin Shi, Michalis K. Titsias, Andriy Mnih

Table 7: Regression results on Elevators and Bike. Best mean values are highlighted.

Elevators
N =10,623, d =18

Bike
N =11,122, d = 17

Test LL RMSE Test LL RMSE
VP 1024 —0.516(0.006) 0.398(0.004) —0.218(0.006) 0.283(0.003)
1536 0.511(0.007) 0.396(0.004) -0.203(0.006) 0.279(0.003)
ODVCP 1024 +1024 -0.518(0.006) 0.397(0.004) -0.191(0.006) 0.272(0.003)
1024+ 8096 -0.523(0.006) 0.399(0.004) -0.186(0.006) 0.270(0.003)
SOLVE-GP 1024 + 1024 -0.509(0.007) 0.395(0.004) -0.189(0.006) 0.272(0.003)
SVGP 2048 -0.507(0.007) 0.395(0.004) -0.193(0.006) 0.276(0.003)
Table 8: Convolutional GPs for CIFAR-10 classification.
Train Acc Train LL Test Acc Test LL Time
SVGP 1000 77.81% -1.36 66.07% -1.59 0.241 s/iter
1600 78.44% -1.26 67.18% -1.54 0.380 s/iter
SOLVE-GP 1000 + 1000 79.32% -1.20 68.19% -1.51 0.370 s/iter
SVGP 2000 79.46% -1.22 68.06% -1.48 0.474 s/iter

Table 9: 2-layer deep convolutional GPs for CIFAR-10 classification.

Inducing Points Train Acc Train L. Test Acc Test LL Time

SVGP 384, 1K 84.86% -0.82 76.35% -1.04 0.392 s/iter

SOLVE-GP 384+ 384,1K + 1K 87.59% -0.72 77.80% -0.98 0.657 s/iter

SVGP 768, 2K 87.25% -0.74 77.46% -0.98 1.104 s/iter

Table 10: 3-layer deep convolutional GPs for CIFAR-10 classification.

Inducing Points Train Acc Train LL. Test Acc Test LL Time
SVGP 384,384, 1K 87.70% -0.67 78.76% -0.88 0.418 s/iter
SOLVE-GP (384 +384) x 2,1K + 1K 89.88% -0.57 80.30% -0.79 0.752 s/iter
SVGP 768,768, 2K 90.01% -0.58 80.33% -0.82 1.246 s/iter

