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Abstract

We introduce a new interpretation of sparse
variational approximations for Gaussian pro-
cesses using inducing points, which can lead
to more scalable algorithms than previous
methods. It is based on decomposing a
Gaussian process as a sum of two indepen-
dent processes: one spanned by a finite ba-
sis of inducing points and the other captur-
ing the remaining variation. We show that
this formulation recovers existing approxima-
tions and at the same time allows to obtain
tighter lower bounds on the marginal likeli-
hood and new stochastic variational inference
algorithms. We demonstrate the e�ciency of
these algorithms in several Gaussian process
models ranging from standard regression to
multi-class classification using (deep) convo-
lutional Gaussian processes and report state-
of-the-art results on CIFAR-10 among purely
GP-based models.

1 INTRODUCTION

Gaussian processes (GP) (Rasmussen and Williams,
2006) are nonparametric models for representing dis-
tributions over functions, which can be seen as a gener-
alization of multivariate Gaussian distributions to infi-
nite dimensions. The simplicity and elegance of these
models has led to their wide adoption in uncertainty
estimation for machine learning, including supervised
learning (Williams and Rasmussen, 1996; Williams
and Barber, 1998), sequential decision making (Srini-
vas et al., 2010), model-based planning (Deisenroth
and Rasmussen, 2011), and unsupervised data analy-
sis (Lawrence, 2005; Damianou et al., 2016).

Despite the successful application of these models,
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Figure 1: The graphical model of SOLVE-GP. The
prior f ⇠ GP(0, k) is decomposed into two indepen-
dent GPs (denoted by thick horizontal lines): fk ⇠ pk
and f? ⇠ p?. The variables connected by thick lines
form a multivariate Gaussian. X,y denote the training
data. X⇤ are the test inputs. fk = fk(X), f? = f?(X).
u = fk(Z) denote the inducing variables in standard
SVGP methods. SOLVE-GP introduces another set of
inducing variables v? = f?(O) to summarize p?.

they su↵er from O(N3) computation and O(N2) stor-
age requirements given N training data points, which
has motivated a large body of research on sparse GP
methods (Csato and Opper, 2002; Lawrence et al.,
2002; Seeger et al., 2003; Quiñonero-Candela and Ras-
mussen, 2005a; Titsias, 2009; Hensman et al., 2013;
Bui et al., 2017). GPs have also been unfavourably
compared to deep learning models for lacking repre-
sentation learning capabilities.

Sparse variational GP (SVGP) methods (Titsias, 2009;
Hensman et al., 2013, 2015a) based on variational
learning of inducing points have shown promise in ad-
dressing these limitations. Such methods leave the
prior distribution of the GP model unchanged and
instead enforce sparse structures in the posterior ap-
proximation though variational inference. This gives
O(M2N +M3) computation and O(MN +M2) stor-
age with M inducing points. Moreover, they allow us
to perform mini-batch training by sub-sampling data
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points. Successful application of SVGP allowed scal-
able GP models trained on billions of data points (Sal-
imbeni and Deisenroth, 2017). These advances in
inference methods have also led to more flexibility
in model design. A recent convolutional GP model
(van der Wilk et al., 2017) encodes translation invari-
ance by summing over GPs that take image patches as
inputs. The inducing points, which can be interpreted
as image patches in this model, play a role similar to
that of convolutional filters in neural networks. Their
work showed that it is possible to implement repre-
sentation learning in GP models. Further extensions
of such models into deep hierarchies (Blomqvist et al.,
2018; Dutordoir et al., 2019) significantly boosted the
performance of GPs for natural images.

As these works suggest, currently the biggest challenge
in this area still lies in scalable inference. The compu-
tational cost of the widely used SVGP methods scales
cubically with the number of inducing points, mak-
ing it di�cult to improve the flexibility of posterior
approximations (Shi et al., 2019). For example, state-
of-the-art models like deep convolutional GPs use only
384 inducing points for inference in each layer to get a
manageable running time (Dutordoir et al., 2019).

We introduce a new framework, called SOLVE-GP,
which allows increasing the number of inducing points
given a fixed computational budget. It is based on
decomposing the GP prior as the sum of a low-rank
approximation using inducing points, and a full-rank
residual process. We observe that the standard SVGP
methods can be reinterpreted under such decompo-
sition. By introducing another set of inducing vari-
ables for the orthogonal complement, we can increase
the number of inducing points at a much lower ad-
ditional computational cost. With our method dou-
bling the number of inducing points leads to a 2-fold
increase in the cost of Cholesky decomposition, com-
pared to the 8-fold increase for the original SVGP
method. We show that SOLVE-GP is equivalent to
a structured covariance approximation for SVGP de-
fined over the union of the two sets of inducing points.
Interestingly, under such interpretation our work can
be seen as a generalization of the recently proposed
decoupled-inducing-points method (Salimbeni et al.,
2018). As the decoupled method often comes with
a complex dual formation, our framework provides a
simpler derivation and more intuitive understanding
for it.

We conducted experiments on convolutional GPs and
their deep variants. To the best of our knowledge, we
are the first to train a purely GP-based model with-
out any neural network components to achieve over
80% test accuracy on CIFAR-10. No data augmen-
tation was used to obtain these results. Besides clas-

sification, we also evaluated our method on a range
of regression datasets that range in size from tens of
thousands to millions of data points. Our results show
that SOLVE-GP is often competitive with the more
expensive SVGP counterpart that uses the same num-
ber of inducing points, and outperforms SVGP when
given the same computational budget.

2 BACKGROUND

Here, we briefly review Gaussian processes and sparse
variational GP methods. A GP is an uncountable col-
lection of random variables indexed by a real-valued
vector x taking values in X ⇢ Rd, of which any finite
subset has a multivariate Gaussian distribution. A GP
is defined by a mean function m(x) = E[f(x)] and a
covariance function k(x,x0) = Cov[f(x), f(x0)]:

f ⇠ GP(m(x), k(x,x0)).

LetX = [x1,x2, . . . ,xN ]> 2 RN⇥d be (the matrix con-
taining) the training data points and f = f(X) 2 RN

denote the corresponding function values. Similarly
we denote the test data points by X⇤ and their func-
tion values by f⇤. Assuming a zero mean function, the
joint distribution over f , f⇤ is given by:

p(f , f⇤) := N
✓

f
f⇤

���� 0,


K↵ Kf⇤

K⇤f K⇤⇤

�◆
,

where K↵ is an N ⇥N kernel matrix with its (i, j)th
entry as k(xi,xj), and similarly [Kf⇤]ij = k(xi,x⇤

j ),
[K⇤⇤]ij = k(x⇤

i ,x
⇤

j ). In practice we often observe the
training function values through some noisy measure-
ments y, generated by the likelihood function p(y|f).
For regression, the likelihood usually models indepen-
dent Gaussian observation noise: yn = fn + ✏n, ✏n ⇠
N (0,�2). In this situation the exact posterior distri-
bution p(f⇤|y) can be computed in closed form:

f⇤|y ⇠ N (K⇤f (K↵ + �2I)�1y,

K⇤⇤ �K⇤f (K↵ + �2I)�1Kf⇤). (1)

As seen from Eq. (1), exact prediction involves the in-
verse of matrix K↵ +�2I, which requires O(N3) com-
putation. For large datasets, we need to avoid the
cubic complexity by resorting to approximations.

Inducing points have played a central role in previ-
ous works on scalable GP inference. The general idea
is to summarize f with a small number of variables
u = f(Z), where Z = [z1, . . . , zM ]> 2 RM⇥d is a
set of parameters, called inducing points, in the input
space. The augmented joint distribution over u, f , f⇤

is p(f , f⇤|u)p(u), where p(u) = N (0,Kuu) and Kuu

denotes the kernel matrix of inducing points with the
(i, j)th entry corresponding to k(zi, zj). There is a
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long history of developing sparse approximations for
GPs by making di↵erent independence assumptions
for the conditional distribution p(f , f⇤|u) to reduce
the computational cost (Quiñonero-Candela and Ras-
mussen, 2005b). However, these methods made mod-
ifications to the GP prior and tended to su↵er from
degeneracy and overfitting problems.

Sparse variational GP methods (SVGP), first pro-
posed in Titsias (2009) and later extended for mini-
batch training and non-conjugate likelihoods (Hens-
man et al., 2013, 2015a), provide an elegant solution
to these problems. By reformulating the posterior in-
ference problem as variational inference and restrict-
ing the variational distribution to be q(f , f⇤,u) :=
q(u)p(f , f⇤|u), the variational lower bound for mini-
mizing KL [q(f , f⇤,u)kp(f , f⇤,u|y)] simplifies to:

NX

n=1

Eq(u)p(fn|u) [log p(yn|fn)]�KL [q(u)kp(u)] . (2)

For GP regression the bound has a collapsed form ob-
tained by solving for the optimal q(u) and plugging it
into (2) (Titsias, 2009):

logN (y|0,Q↵ + �2I)� 1

2�2
tr (K↵ �Q↵ ) , (3)

where Q↵ = KfuK
�1
uuKuf . Computing this objec-

tive requires O(M2N + M3) operations, in contrast
to the O(N3) complexity of exact inference. The in-
ducing points Z can be learned as variational param-
eters by maximizing the lower bound. More generally,
if we do not collapse q(u) and let q(u) = N (mu,Su),
where mu,Su are trainable parameters, we can use the
uncollapsed bound for mini-batch training and non-
Gaussian likelihoods (Hensman et al., 2013, 2015a).

3 SOLVE-GP

Despite the success of SVGP methods, their O(M3)
complexity makes it di�cult for the flexibility of
posterior approximation to grow with the dataset
size. We present a new framework called Sparse

OrthogonaL Variational infErence for Gaussian Pro-

cesses (SOLVE-GP), which allows the use of an addi-
tional set of inducing points at a lower computational
cost than the standard SVGP methods.

3.1 Reinterpreting SVGP

We start by reinterpreting SVGP methods using a sim-
ple reparameterization, which will then lead us to pos-
sible ways of improving the approximation. First we
notice that the covariance of the conditional distribu-
tion p(f |u) = N (KfuK

�1
uuu,K↵ � Q↵ ) does not de-

pend on u.1 Therefore, samples from p(f |u) can be
reparameterized as

f? ⇠ p?(f?) := N (0,K↵ �Q↵ ),

f = f? +KfuK
�1
uuu. (4)

The reason for denoting the zero-mean component as
f? shall become clear later. Now we can reparameter-
ize the augmented prior distribution p(f ,u) as

u ⇠ p(u), f? ⇠ p?(f?), f = KfuK
�1
uuu+ f?, (5)

and the joint distribution of the GP model becomes

p(y,u, f?) = p(y|f? + KfuK
�1
uuu)p(u)p?(f?). (6)

Posterior inference for f in the original model then
turns into inference for u and f?. If we approximate
the above GP model by considering a factorised ap-
proximation q(u)p?(f?), where q(u) is a variational
distribution and p?(f?) is the prior distribution of f?
that appears also in Eq. (6), we arrive at the stan-
dard SVGP method. To see this, note that minimizing
KL [q(u)p?(f?)kp(u, f?|y)] is equivalent to maximiz-
ing the variational lower bound

Eq(u)p?(f?) log p(y|f? +KfuK
�1
uuu)�KL [q(u)kp(u)] ,

which is the SVGP objective (Eq. (2)) using the repa-
rameterization in Eq. (4).

Under this interpretation of the standard SVGP
method, it becomes clear that we can modify the form
of the variational distribution q(u)p?(f?) to improve
the accuracy of the posterior approximation. There
are two natural options: (i) keep p?(f?) as part of the
approximation and alter q(u) so that it will have some
dependence on f?, and (ii) keep q(u) independent from
f?, and replace p?(f?) with a more structured varia-
tional distribution q(f?). While both options lead to
new bounds and more accurate approximations than
the standard method, we will defer the discussion of (i)
to appendix A and focus on (ii) because it is amenable
to large-scale training, as we will show next.

3.2 Orthogonal Decomposition

As suggested in section 3.1, we consider improving the
variational distribution for f?. However, the complex-
ity of inferring f? is the same as for f and thus cubic.
Resolving the problem requires a better understanding
of the reparameterization we used in section 3.1.

The key observation here is that the reparameteri-
zation in Eq. (5) corresponds to an orthogonal de-
composition in the function space. For simplicity,

1Note that kernel matrices like Kuu depend on Z in-
stead of u; the subscript only indicates that this is the
covariance matrix of u.
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we first derive such decomposition in the Reproduc-
ing Kernel Hilbert Space (RKHS) induced by k, and
then generalize the result to the GP sample space.
The RKHS with kernel k is the closure of the space
{
P`

i=1 cik(x
0

i, ·), ci 2 R, ` 2 N+,x0

i 2 X}, with the
inner product defined as hf, k(x, ·)iH = f(x), 8f 2
H. Let V denote the linear span of the kernel ba-
sis functions indexed by the inducing points: V :=
{
PM

j=1 ↵jk(zj , ·), ↵ = [↵1, . . . ,↵M ]> 2 RM}. For any
function f 2 H, we can decompose it (Cheng and
Boots, 2016) as

f = fk + f?, fk 2 V and f? ? V,

Assuming fk =
PM

j=1 ↵
0

jk(zj , ·), then we can solve
for the coe�cients (details in appendix B): ↵0 =
k(Z,Z)�1f(Z), where k(Z,Z) denotes the kernel ma-
trix of Z. Therefore,

fk(x) = k(x,Z)k(Z,Z)�1f(Z), f? = f � fk. (7)

Here k(x,Z) := [k(z1,x), . . . , k(zM ,x)]. Although
Eq. (7) is derived by assuming f 2 H, it motivates
us to study the same decomposition for f ⇠ GP(0, k).
Then fk becomes k(·,Z)K�1

uuu. Interestingly, we can
verify that this is a sample from a GP with a zero mean
function and covariance function Cov[fk(x), fk(x

0)] =

k(x,Z)K�1
uuk(Z,x

0). Similarly we can show that f? is
a sample from another GP and we denote these two
independent GPs as pk and p? (Hensman et al., 2017):

fk ⇠ pk ⌘ GP(0, k(x,Z)K�1
uuk(Z,x

0)),

f? ⇠ p? ⌘ GP(0, k(x,x0)� k(x,Z)K�1
uuk(Z,x

0)).

Marginalizing out the GPs at the training points X, it
is easy to show that

fk = fk(X) = KfuK
�1
uuu ⇠ N (0,KfuK

�1
uuKuf ),

f? = f?(X) ⇠ N (0,K↵ �KfuK
�1
uuKuf ).

This is exactly the decomposition we used in sec-
tion 3.1, and the meaning of f? becomes clear.

3.3 SOLVE-GP Lower Bound

The decomposition described in the previous section
gives new insights for improving the variational distri-
bution for f?. Specifically, we can introduce a second
set of inducing variables v? := f?(O) to approximate
p?, as illustrated in Fig. 1. We call this second set
O = [o1, . . . ,oM2 ]

> 2 RM2⇥d the orthogonal inducing
points. The joint model distribution is then

p(y|f? +KfuK
�1
uuu)p(u)p?(f?|v?)p?(v?).

First notice that the standard SVGP methods
correspond to using the variational distribution

q(u)p?(v?)p?(f?|v?). To obtain better approxima-
tions we can replace the prior factor p?(v?) with a
tunable variational factor q(v?) := N (mv,Sv):

q(u, f?,v?) = q(u)q(v?)p?(f?|v?).

This gives the SOLVE-GP variational lower bound:

Eq(u)q?(f?)

⇥
log p(y|f? +KfuK

�1
uuu)

⇤

�KL [q(u)kp(u)]�KL [q(v?)kp?(v?)] , (8)

where q?(·) :=
R
p?(·|v?)q(v?)dv? is the varia-

tional predictive distribution for p?. Simple com-
putations show that q?(f?) = N (CfvC

�1
vvmv,Sf?),

where Sf? = C↵ +CfvC
�1
vv (Sv �Cvv)C

�1
vvCvf . Here

C↵ := K↵ � Q↵ is the covariance matrix of p?
on the training inputs and similarly for the other
matrices. Because the likelihood factorizes given
f (i.e., f? + KfuK

�1
uuu), the first term of Eq. (8)

simplifies to
PN

n=1 Eq(u)q(f?(xn))[log p(yn|f?(xn) +

k(xn,Z)K
�1
uuu)]. Therefore, we only need to compute

marginals of q?(f?) at individual data points. In the
general setting, the SOLVE-GP lower bound can be
maximized in O(NM̄2 + M̄3) time per gradient up-
date, where M̄ = max(M,M2). In mini-batch training
N is replaced by the batch size. The predictive density
at test data points can be found in appendix D.

To intuitively understand the improvement over the
standard SVGP methods, we derive a collapsed bound
for GP regression using (8) and compare it to the Tit-
sias (2009) bound. Plugging in the optimal q(u), and
simplifying (see appendix C), gives the bound

logN (y|CfvC
�1
vvmv,Q↵ + �2I)� 1

2�2
tr(Sf?)

�KL [N (mv,Sv)kN (0,Cvv)] . (9)

With an appropriate choice of q(v?) this bound can be
tighter than the Titsias (2009) bound. For example,
notice that when q(v?) is equal to the prior p?(v?),
i.e., mv = 0 and Sv = Cvv, the bound in (9) reduces
to the one in (3). Another interesting special case
arises when the variational distribution has the same
covariance matrix as the prior (i.e., Sv = Cvv), while
the mean mv is learnable. Then the bound becomes

logN (y|CfvC
�1
vvmv,Q↵ + �2I)

� 1

2�2
tr (K↵ �Q↵ )�

1

2
m>

vC
�1
vvmv. (10)

Here we see that the second set of inducing variables
v? mostly determines the mean prediction over y,
which is zero in the Titsias (2009) bound (Eq. (3)).

Our method introduces another set of inducing points
to improve the variational approximation. One natu-
ral question to ask is, how does this compare to the
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standard SVGP algorithm with the inducing points
chosen to be union of the two sets? We answer it as
follows: 1) Given the same number of inducing points,
SOLVE-GP is more computationally e�cient than the
standard SVGP method; 2) SOLVE-GP can be inter-
preted as using a structured covariance in the varia-
tional approximation for SVGP.

Computational Benefits. For a quick comparison,
we analyze the cost of the Cholesky decomposition
in both methods. We assume the time complexity
of decomposing an M ⇥ M matrix is cM3, where c
is constant w.r.t. M . For SOLVE-GP, to compute
the inverse and the determinant of Kuu and Cvv,
we need the Cholesky factors of them, which cost
c(M3 +M3

2 ). For SVGP with M inducing points, we
need the Cholesky factor of Kuu, which costs cM3.
Adding another M inducing points in SVGP leads to
an 8-fold increase (i.e., from cM3 to 8cM3) in the cost
of the Cholesky decomposition, compared to the 2-fold
increase if we switch to SOLVE-GP with M2 = M or-
thogonal inducing points. A more rigorous analysis is
given in appendix D, where we enumerate all the cubic-
cost operations needed when we compute the bound.

Structured Covariance. We can express our vari-
ational approximation w.r.t. the original GP. Let v =
f(O) denote the function outputs at the orthogonal in-
ducing points. We then have the following relationship
between u,v and u,v?:


u
v

�
=


I 0

KvuK
�1
uu I

� 
u
v?

�
.

Therefore, the joint variational distribution over u
and v that corresponds to the factorized q(u)q(v?)
is also Gaussian. By change-of-variable we can ex-
press it as q(u,v) = N (mu,v,Su,v), where mu,v =
⇥
mu,mv +KvuK

�1
uumu

⇤>
and

Su,v =


Su SuK

�1
uuKuv

KvuK
�1
uuSu Sv +KvuK

�1
uuSuK

�1
uuKuv

�
.

From Su,v we can see that our approach is di↵er-
ent from making the mean-field assumption q(u,v) =
q(u)q(v), instead it captures the covariance between
u,v through a structured parameterization.

4 EXTENSIONS

One direct extension of SOLVE-GP involves using
more than two sets of inducing points by repeatedly
applying the decomposition. However, this adds more
complexity to the implementation. Below we show
that the SOLVE-GP framework can be easily extended
to di↵erent GP models where the standard SVGP
method applies.

Inter-domain and Convolutional GPs. Simi-
lar to SVGP methods, SOLVE-GP can deal with
inter-domain inducing points (Lázaro-Gredilla and
Figueiras-Vidal, 2009) which lie in a di↵erent do-
main from the input space. The inducing variables
u, which we used to represent outputs of the GP at
the inducing points, are now defined as u = g(Z) :=
[g(z1), . . . , g(zM )]>, where g is a di↵erent function
from f that takes inputs in the domain of inducing
points. In convolutional GPs (van der Wilk et al.,
2017), the input domain is the space of images, while
the inducing points are in the space of image patches.
The convolutional GP function is defined as f(x) =P

p wpg
�
x[p]

�
, where g ⇠ GP(0, kg), x[p] is the pth

patch in x, and w = [w1, . . . , wP ]> are the assigned
weights for di↵erent patches. In SOLVE-GP, we can
choose either Z, O, or both to be inter-domain as long
as we can compute the covariance between u,v and
f . For convolutional GPs, we let Z and O both be
collections of image patches. Examples of the covari-
ance matrices we need for this model include Kvf and
Kvu (used for Cvv). They can be computed as

[Kvf ]ij = Cov[g(oi), f(xj)] =
X

p

wpkg(oi,x
[p]
j ),

[Kvu]ij = Cov[g(oi), g(zj)] = kg(oi, zj).

Deep GPs. We show that we can integrate SOLVE-
GP with popular doubly stochastic variational infer-
ence algorithms for deep GPs (Salimbeni and Deisen-
roth, 2017). The joint distribution of a deep GP model
with inducing variables in all layers is

p(y, f1:L,u1:L) = p(y|fL)
LY

`=1

⇥
p(f `|u`, f `�1)p(u`)

⇤
,

where we define f0 = X and f ` is the output of the
`th-layer GP. The doubly stochastic algorithm applies
SVGP methods to each layer conditioned on sam-
ples from the variational distribution in the previous
layer. The variational distribution over u1:L, f1:L is
q(f1:L,u1:L) =

QL
`=1

⇥
p(f `|u`, f `�1)q(u`)

⇤
. This gives

a similar objective as in the single layer case (Eq. (2)):

Eq(fL)

⇥
log p(y|fL)

⇤
�
PL

`=1 KL
⇥
q(u`)kp(u`)

⇤
, where

q(fL) =
R QL

`=1

⇥
p(f `|u`, f `�1)q(u`)du`

⇤
df1:L�1. Ex-

tending this using SOLVE-GP is straightforward: we
simply introduce orthogonal inducing variables v1:L

?

for all layers, which yields the lower bound:

Eq(uL,fL?)[log p(y|fL? +KL
fu(K

L
uu)

�1uL)]�
LX

`=1

�
KL[q(u`)kp(u`)] + KL[q(v`

?
)kp?(v`

?
)]
 
. (11)

The expression for q(uL, fL
?
) is given in appendix E.
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5 RELATED WORK

Many approximate algorithms have been proposed to
overcome the computational limitations of GPs. The
simplest of these are based on subsampling, such as
the subset-of-data training (Rasmussen and Williams,
2006) and the Nyström approximation (Williams and
Seeger, 2001). Better approximations can be con-
structed by learning a set of inducing points to sum-
marize the dataset. As mentioned in section 2, these
works can be divided into approximations to the
GP prior (SoR, DTC, FITC, etc.; Quiñonero-Candela
and Rasmussen, 2005b), and sparse variational meth-
ods (Titsias, 2009; Hensman et al., 2013, 2015a).

Recently there have been many attempts to reduce
the computational cost of using a large set of inducing
points. A notable line of work (Wilson and Nickisch,
2015; Evans and Nair, 2018; Gardner et al., 2018) in-
volves imposing grid structures on the locations of Z to
perform fast structure-exploiting computations. How-
ever, to get such benefits Z need to be fixed due to the
structure constraints, which often su↵ers from curse of
dimensionality in the input space.

Another direction for allowing the use of more induc-
ing points is the decoupled method (Cheng and Boots,
2017), where two di↵erent sets of inducing points are
used for modeling the mean and the covariance func-
tion. This gives linear complexity in the number of
mean inducing points which allows using many more
of them. Despite the increasing interest in decoupled
inducing points (Havasi et al., 2018; Salimbeni et al.,
2018), the method has not been well understood due
to its complexity. We found that SOLVE-GP is closely
related to a recent development of decoupled methods:
the orthogonally decoupled variational GP (ODVGP,
Salimbeni et al., 2018), as explained next.

Connection with Decoupled Inducing Points.
If we set the � and � inducing points in ODVGP (Sal-
imbeni et al., 2018) to be Z and O, their approach
becomes equivalent to using the variational distribu-
tion q0(u,v) = N (m0

u,v,S
0

u,v), where

m0

u,v =


mu

mv +KvuK
�1
uumu

�
, S0

u,v =


Su SuK

�1
uuKuv

KvuK
�1
uuSu Kvv+KvuK

�1
uu(Su�Kuu)K

�1
uuKuv

�
.

By comparing Su,v to S0

u,v, we can see that we gener-
alize their method by introducing Sv, which replaces
the original residual Kvv �KvuK

�1
uuKuv (or Cvv), so

that we allow more flexible covariance modeling while
still keeping the block structure. Thus ODVGP is a
special case of SOLVE-GP where q(v?) is restricted
to have the same covariance Cvv as the prior.

6 EXPERIMENTS

Since ODVGP is a special case of SOLVE-GP, we use
M,M2 to refer to |�| and |�| in their algorithm, re-
spectively.

6.1 1D Regression

We begin by illustrating our method on Snelson’s 1D
regression problem (Snelson and Ghahramani, 2006)
with 100 training points and mini-batch size 20. We
compare the following methods: SVGP with 5 and 10
inducing points, ODVGP (M = 5,M2 = 100), and
SOLVE-GP (M = 5,M2 = 5).

The results are plotted in Fig. 2. First we can see
that 5 inducing points are insu�cient to summarize
the training set: SVGP (M = 5) cannot fit data well
and underestimates the variance in regions beyond the
training data. Increasing M to 10 fixes the issues, but
requires 8x more computation for the Cholesky decom-
position than using 5 inducing points2. The decoupled
formulation provides a cheaper alternative and we have
tried ODVGP (M = 5,M2 = 100), which has 100 ad-
ditional inducing points for modeling the mean func-
tion. Comparing Fig. 2a and Fig. 2b, we can see that
this results in a much better fit for the mean function.
However, the model still overestimates the predictive
variance. As ODVGP is a special case of the SOLVE-
GP framework, we can improve on it in terms of co-
variance modeling. As seen in Fig. 2c, adding 5 or-
thogonal inducing points can closely approximate the
results of SVGP (M = 10), with only a 2-fold increase
in the cost of the Cholesky decomposition relative to
SVGP (M = 5).

6.2 Convolutional GP Models

One class of applications that benefit from the SOLVE-
GP framework is the training of large, hierarchical GP
models where the true posterior distribution is di�-
cult to approximate with a small number of inducing
points. Convolutional GPs (van der Wilk et al., 2017)
and their deep variants (Blomqvist et al., 2018; Du-
tordoir et al., 2019) are such models. There induc-
ing points are feature detectors just like CNN filters,
which play a critical role in predictive performance.
As explained in section 4, it is straightforward to ap-
ply SOLVE-GP to these models.

Convolutional GPs. We train convolutional GPs
on the CIFAR-10 dataset, using GPs with TICK ker-
nels (Dutordoir et al., 2019) to define the patch re-
sponse functions. Table 1 shows the results for SVGP

2In practice the cost is negligible in this toy problem
but we are analyzing the theoretical complexity.
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(a) SVGP, 5 (b) ODVGP, 5 + 100 (c) SOLVE-GP, 5 + 5 (d) SVGP, 10

Figure 2: Posterior processes on the Snelson dataset, where shaded bands correspond to intervals of ±3 standard
deviations. The learned inducing locations are shown at the bottom of each figure, where + correspond to Z;
blue and dark triangles correspond to O in ODVGP and SOLVE-GP, respectively.

(a) w/o whitening (b) w/ whitening (except ODVGP)

Figure 3: Test RMSE and predictive log-likelihoods during training on HouseElectric.

with 1K and 2K inducing points, SOLVE-GP (M =
1K,M2 = 1K), and SVGP (M = 1.6K) that has a
similar running time on GPU as SOLVE-GP. Clearly
SOLVE-GP outperforms SVGP (M = 1K). It also
outperforms SVGP (M = 1.6K), which has the same
running time, and performs on par with the more ex-
pensive SVGP (M = 2K), which is very encourag-
ing. This suggests that the structured covariance ap-
proximation is fairly accurate even for this large, non-
conjugate model.

Deep Convolutional GPs. We further extend
SOLVE-GP to deep convolutional GPs using the tech-
niques described in section 4. We experiment with 2-
layer and 3-layer models that have 1K inducing points
in the output layer and 384 inducing points in other
layers. The results are summarized in Table 3. These
models are already quite slow to train on a single GPU,
as indicated by the time per iteration. SOLVE-GP al-
lows to double the number of inducing points in each
layer with only a 2-fold increase in computation. This
gives superior performance on both accuracy and test
predictive likelihoods. The double-size SVGP takes a
week to run and is only for comparison purpose.

As shown above, on both single layer and deep convo-
lutional GPs, we improve the state-of-the-art results of
CIFAR-10 classification by 3-4 percentage points. This
leads to more than 80% accuracy on CIFAR-10 with a
purely GP-based model, without any neural network
components, closing the gap between GP/kernel re-
gression and CNN baselines presented in Novak et al.

Table 1: Convolutional GPs for CIFAR-10 classifica-
tion. Previous SOTA is 64.6% by SVGP with 1K in-
ducing points (van der Wilk et al., 2017).

M(+M2) Test Acc Test LL Time

SVGP
1K 66.07% -1.59 0.241 s/iter

1.6K 67.18% -1.54 0.380 s/iter
SOLVE-GP 1K + 1K 68.19% -1.51 0.370 s/iter

SVGP 2K 68.06% -1.48 0.474 s/iter

(2019); Arora et al. (2019). Note that all the results
are obtained without data augmentation.

6.3 Regression Benchmarks

Besides classification experiments, we evaluate our
method on 10 regression datasets, with size rang-
ing from tens of thousands to millions. The set-
tings are followed from Wang et al. (2019) and de-
scribed in detail in appendix G. We implemented
SVGP withM = 1024&2048 inducing points, ODVGP
and SOLVE-GP (M = 1024,M2 = 1024), as well as
SVGP with M = 1536 inducing points, which has
roughly the same training time per iteration on GPU
as the SOLVE-GP objective. An attractive property of
ODVGP is that by restricting the covariance of q(v?)
to be the same as the prior covariance Cvv, it can use
far largerM2, because the complexity is linear withM2

by sub-sampling the columns of Kvv for each gradient
update. Thus for a fair comparison, we also include
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Table 2: Test log-likelihood values for the regression datasets. The numbers in parentheses are standard errors.
Best mean values are highlighted, and asterisks indicate statistical significance.

Kin40k Protein KeggDirected KEGGU 3dRoad Song Buzz HouseElectric

N 25,600 29,267 31,248 40,708 278,319 329,820 373,280 1,311,539
d 8 9 20 27 3 90 77 9

SVGP
1024 0.094(0.003) -0.963(0.006) 0.967(0.005) 0.678(0.004) -0.698(0.002) -1.193(0.001) -0.079(0.002) 1.304(0.002)
1536 0.129(0.003) -0.949(0.005) 0.944(0.006) 0.673(0.004) -0.674(0.003) -1.193(0.001) -0.079(0.002) 1.304(0.003)

ODVGP
1024 + 1024 0.137(0.003) -0.956(0.005) -0.199(0.067) 0.105(0.033) -0.664(0.003) -1.193(0.001) -0.078(0.001) 1.317(0.002)
1024 + 8096 0.144(0.002) -0.946(0.005) -0.136(0.063) 0.109(0.033) -0.657(0.003) -1.193(0.001) -0.079(0.001) 1.319(0.004)

SOLVE-GP 1024 + 1024 *0.187(0.002) -0.943(0.005) 0.973(0.003) 0.680(0.003) -0.659(0.002) -1.192(0.001) *-0.071(0.001) *1.333(0.003)

SVGP 2048 0.137(0.003) -0.940(0.005) 0.907(0.003) 0.665(0.004) -0.669(0.002) -1.192(0.001) -0.079(0.002) 1.304(0.003)

Table 3: Deep convolutional GPs for CIFAR-10 classi-
fication. Previous SOTA is 76.17% by a 3-layer model
with 384 inducing points in all layers (Dutordoir et al.,
2019).

(a) 2-layer model

SVGP SOLVE-GP SVGP
M(+M2) 384, 1K 384 + 384, 1K + 1K 768, 2K

Test Acc 76.35% 77.80% 77.46%
Test LL -1.04 -0.98 -0.98

Time 0.392 s/iter 0.657 s/iter 1.104 s/iter

(b) 3-layer model

SVGP SOLVE-GP SVGP

M(+M2) 384, 384, 1K
384 + 384, 384 + 384,

1K + 1K
768, 768, 2K

Test Acc 78.76% 80.30% 80.33%
Test LL -0.88 -0.79 -0.82

Time 0.418 s/iter 0.752 s/iter 1.246 s/iter

ODVGP (M2 = 8096), where in each iteration 1024
columns of Kvv are sampled to estimate the gradient.
Other experimental details are given in appendix G.

We report the predictive log-likelihoods on test data
in Table 2. For space reasons, we provide the re-
sults on two small datasets (Elevators, Bike) in ap-
pendix H. We can see that performance of SOLVE-GP
is competitive with SVGP (M = 2048) that involves
4x more expensive Cholesky decomposition. Perhaps
surprisingly, despite using a less flexible covariance in
the variational distribution, SOLVE-GP often outper-
forms SVGP (M = 2048). We believe this is due to the
optimization di�culties introduced by the 2048⇥2048
covariance matrix and will test hypothesis on the
HouseElectric dataset below. On most datasets, using
a large number of additional inducing points for mod-
eling the mean function did improve the performance,
as shown by the comparison between ODVGP (M2 =
1024) and ODVGP (M2 = 8096). However, more flex-

ible covariance modeling seems to be more important,
as SOLVE-GP outperforms ODVGP (M2 = 8096) on
all datasets except for 3dRoad.

In Fig. 3a we plot the evolution of test RMSE and
test log-likelihoods during training on HouseElectric.
Interestingly, ODVGP (M2 = 8096) performs on par
with SOLVE-GP early in training before falling be-
hind it substantially. The beginning stage is likely
where the additional inducing points give good pre-
dictions but are not in the best configuration for max-
imizing the training lower bounds. This phenomenon
is also observed on Protein, Elevators, and Kin40k.
We believe such mismatch between the training lower
bound and predictive performance is caused by fix-
ing the covariance matrix of q(v?) to the prior co-
variance. SVGP (M = 2048) does not improve over
SVGP (M = 1024) and is outperformed by SOLVE-
GP. Suggested above, this might be due to the di�-
culty of optimising large covariance matrices. To ver-
ify this, we tried the “whitening” trick (Murray and
Adams, 2010; Hensman et al., 2015b), described in
appendix F, which is often used to make optimiza-
tion easier by reducing the correlation in the posterior
distributions. As shown in Fig. 3b, the performance of
SVGP (M = 2048) and SOLVE-GP becomes similar
with whitening. We did not use whitening in ODVGP
because it has a slightly di↵erent parameterization to
allow sub-sampling Kvv.

7 CONCLUSION

We proposed SOLVE-GP, a new variational inference
framework for GPs using inducing points, that unifies
and generalizes previous sparse variational methods.
This increases the number of inducing points we can
use for a fixed computational budget, which allows to
improve performance of large, hierarchical GP mod-
els at a manageable computational cost. Future work
includes experiments on challenging datasets like Im-
ageNet and investigating other ways to improve the
variational distribution, as mentioned in section 3.1.
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and Pierre Dupont. Robust multi-class Gaussian
process classification. In Advances in Neural Infor-

mation Processing Systems, pages 280–288, 2011.

Diederik P Kingma and Max Welling. Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114,
2013.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast
sparse Gaussian process methods: the informative
vector machine. In Advances in Neural Information

Processing Systems. MIT Press, 2002.

Neil Lawrence. Probabilistic non-linear principal com-
ponent analysis with Gaussian process latent vari-
able models. Journal of Machine Learning Research,
6(Nov):1783–1816, 2005.

Miguel Lázaro-Gredilla and Anibal Figueiras-Vidal.
Inter-domain Gaussian processes for sparse infer-
ence using inducing features. In Advances in Neural

Information Processing Systems, pages 1087–1095,
2009.

Iain Murray and Ryan P Adams. Slice sampling co-
variance hyperparameters of latent Gaussian mod-
els. In Advances in Neural Information Processing

Systems, pages 1732–1740, 2010.

Roman Novak, Lechao Xiao, Yasaman Bahri, Jae-
hoon Lee, Greg Yang, Daniel A. Abolafia, Je↵rey
Pennington, and Jascha Sohl-dickstein. Bayesian
deep convolutional networks with many channels are
Gaussian processes. In International Conference on

Learning Representations, 2019.
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