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1 p-Norm Support Vector Machines
A canonical application of m-kernels is the p-norm support vector machine (SVM)
(`p-SVM [3], max-margin Lp moment classifier [1]). Let D = {(xi, yi) ∈ X× Y} be a
training set andϕ : X→ Rd a feature map implied by a 2q-kernelK, where q ∈ N\{0}.
Following [3] the aim is to find a sparse (in w ∈ Rd) trained machine:

g (x) = wTϕ (x) + b (1)

to fit the data. The paramters w ∈ Rd, b ∈ R are found by solving the p-norm training
problem, where p ∈ R, 1 < p ≤ 2 is dual to 2q ∈ 2Z+ (i.e. 1

p +
1
2q = 1):

min
w,b

Rp (w, b, ξ) = r( 1p‖w‖pp) + C
N

∑
iE(yi, g(xi)) (2)

where r is strictly monotonically increasing, E is an arbitrary empirical risk function,
and the use of p-norm regularization with 1 < p ≤ 2 encourages sparsity in w.
Following [3, 2] it may be shown that:

w =
∑
i1,i2,...,i2q−1

αi1αi2 . . . αi2q−1ϕ(xi1)�ϕ(xi2)� . . .�ϕ(xi2q−1) (3)

(representor theorem) and hence:

g(x) =
∑
i1,i2,...,i2q−1

αi1αi2 . . . αi2q−1
K(x,xi1 ,xi2 , . . . ,xi2q−1

) + b (4)

Moreover we may completely suppress w (the m-kernel trick) and construct a dual
training problem entirely in terms of α [2, 3] - e.g. if R = Y, E(y, g) = 1

2 (y − g)2
(ridge regression), the dual training problem is:

min
α

1
2q

∑
i0,i1,...,i2q−1

αi0αi1 . . . αi2q−1
Ki0,i1,...,i2q−1

+ N
2Cα

Tα− yTα

such that:
∑
i αi = 0

(5)

where Ki0,i1,...,i2q−1
= K(xi0 ,xi1 , . . . ,xi2q−1

). Similar results, analogous to the
“standard” SVMs (e.g. binary classification) may be likewise constructed [2, 3, 1].
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2 Counterexamples
The following functions are the counter-examples referred to in section 7, and represent
special cases where our method will fail. See section 7 of the body for a full discussion.

2.1 Levi N.13 Function
The Levi N.13 test function varies significantly on a very short lengthscale, so in this
case the relatively small auxilliary dataset A cannot properly characterise the covariance
structure, resulting in slowed convergence.
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2.2 Easom Function
The Easom function is mostly flat (featureless), so the (random) sampling in the auxil-
liary dataset is consistent with a constant function, resulting in a trivial tuned covariance
KA

2(x,x
′) = 0. As noted in section 7 of the body this is trivial to detect, and moreover

none of the methods tested make any headway on this objective.
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