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Abstract

In this paper we settle the sampling com-
plexity of solving discounted two-player turn-
based zero-sum stochastic games up to poly-
logarithmic factors. Given a stochastic game
with discount factor v € (0,1) we provide
an algorithm that computes an e-optimal
strategy with high-probability given O((1 —
7)~3e¢72) samples from the transition function
for each state-action-pair. Our algorithm runs
in time nearly linear in the number of samples
and uses space nearly linear in the number of
state-action pairs. As stochastic games gener-
alize Markov decision processes (MDPs) our
runtime and sample complexities are optimal
due to |Azar et al| (2013). We achieve our
results by showing how to generalize a near-
optimal Q-learning based algorithms for MDP,
in particular [Sidford et al.| (2018a)), to two-
player strategy computation algorithms. This
overcomes limitations of standard Q-learning
and strategy iteration or alternating minimiza-
tion based approaches and we hope will pave
the way for future reinforcement learning re-
sults by facilitating the extension of MDP
results to multi-agent settings with little loss.

1 Introduction

In this paper we study the sample complexity of learn-
ing a near-optimal strategy in discounted two-player
turn-based zero-sum stochastic games [Shapley| (1953);
Hansen et al.| (2013]), which we refer to more concisely
as stochastic games. Stochastic games model dynamic
strategic settings in which two players take turns and
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the state of game evolves stochastically according to
some transition law. This model encapsulates a major
challenge in multi-agent learning: other agents may
be learning and adapting as well. Further, stochas-
tic games are a generalization of the Markov decision
process (MDP), a fundamental model for reinforce-
ment learning, to the two-player setting Littman| (1994)).
MDPs can be viewed as degenerate stochastic games in
which one of the players has no influence. Consequently,
understanding stochastic games is a natural step to-
wards resolving challenges in reinforcement learning of
extending single-agent learning to multi-agent settings.

There is a long line of research in both MDPs and
stochastic games (for a more thorough introduction,
see [Filar and Vrieze| (2012); Hansen et al.| (2013) and
references therein). Strikingly, [Hansen et al.| (2013)
showed that there exists a pure-strategy Nash equilib-
rium which can be computed in strongly polynomial
time for stochastic games, if the game matrix is fully
accessible and the discount factor is fixed. In reinforce-
ment learning settings, however, the transition function
of the game is unknown and a common goal is to ob-
tain an approximately optimal strategy (a function
that maps states to actions) that is able to obtain an
expected cumulative reward of at least (or at most) the
Nash equilibrium value no matter what the other player
does. Unfortunately, despite interest in generalizing
MDP results to stochastic games, currently the best
known running times/sample complexity for solving
stochastic games in a variety of settings are worse than
for solving MDPs. This may not be surprising since
in general stochastic games are harder to solve than
MDPs, e.g., whereas MDPS can be solved in (weakly)
polynomial time it remains open whether or not the
same can be done for stochastic games.

There are two natural approaches towards achieving
sample complexity bounds for solving stochastic games.
The first is to note that the popular stochastic value
iteration, dynamic programming, and Q-learning meth-
ods all apply to stochastic games |[Littman| (1994); Hu
and Wellman| (2003); |[Littman| (2001a)); Perolat et al.
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(2015). Consequently, recent advances in these meth-
ods [Kearns and Singh| (1999); Sidford et al.| (2018b)
developed for MDPs can be directly generalized to solv-
ing stochastic games (though the sample complexity
of these generalized methods has not been analyzed
previously). It is tempting to generalize the analy-
sis of sample optimal methods for estimating values
Azar et al|(2013) and estimating policies [Sidford et al.
(2018a)) of MDPs to stochastic games. However, this
is challenging as these methods rely on monotonicities
in MDPs induced by the linear program nature of the
problem [Azar et al.| (2013); [Sidford et al.| (2018a)).

The second approach would be to apply strategy it-
eration or alternating minimization / maximization
to reduce solving stochastic games to approximately
solving a sequence of MDPs. Unfortunately, the best
analysis of such a method [Hansen et al.|(2013) requires
solving Q(1/(1 —v)) MDPs. Consequently, even if this
approach could be carried out with approximate MDP
solvers, the resulting sample complexity for solving
stochastic games would be larger than that needed for
solving MDPs. More discussion of related literatures
is given in Section

Given the importance of solving stochastic games in
reinforcement learning (e.g. [Hu et al.| (1998); Bowling
and Veloso (2000, 2001); [Hu and Wellman| (2003); |Ar-
slan and Yiiksel| (2017))), this suggests the following
fundamental open problem:

Can we design stochastic game learning algorithms that
provably match the performance of MDP algorithms
and achieve near-optimal sample complexities?

In this paper, we answer this question in the affirmative
in the particular case of solving discounted stochas-
tic games with a generative model, i.e. an oracle for
sampling from the transition function for state-action
pairs. We provide an algorithm with the same near-
optimal sample complexity that is known for solving
discounted MDPs. Further, we achieve this result by
showing how to transform particular MDP algorithms
to solving stochastic games that satisfy particular two-
sided monotonicity constraints. Therefore, while there
is a major gap between MDPs and stochastic games
in terms of computation time for obtaining the exact
solutions, this gap disappears when considering the
sampling complexity between the two. We hope this
work opens the door to more generally extend results
for MDP to stochastic games and thereby enable the ap-
plication of the rich research on reinforcement learning
to a broader multi-player settings with little overhead.

1.1 The Model

Formally, throughout this
sider  discounted  turn-based

paper, we
two-player

con-
ZET0-

sum stochastic games described as the tuple
G = (SminsSmax, A, P,7,7). In these games there
are two players, a min or minimization player which
seeks to minimize the cumulative reward in the game
and a max or maximization player which seeks to
maximize the cumulative reward. Here, Snin and
Smax are disjoint finite sets of states controlled by
the min-player and the max-player respectively and
their union S := Sy U Smax i the set of all possible
states of the game. Further, A is a finite set of actions
available at each state, P : S x A x S — [0,1] is a
transition probability function, r : S x A — [0,1] is the
payoff or reward function and vy € (0, 1) is a discount
factor [T

Stochastic games G = (Smin,Smax, A, P,T,7) are
played dynamically in a sequence of turns, {¢t}$2,, start-
ing from some initial state s° € S at turn t = 0. In
each turn ¢ > 0, the game is in one of the states
st € S and the player who controls the state s’
chooses or plays an action a’ from the action space
A. This action yields reward r’ := r(s*,a’) for the
turn and causes the next state s'f! to be chosen
at random from S where the transition probability
Pr[st™t = §/|sq, ..., 8,01, ..., a;] = P(s' | st,at). The
goal of the min-player (resp. max-player) is to choose
actions to minimize (resp. maximize) the expected
infinite-horizon discounted-reward or value of the game
DoV

In this paper we focus on the case where the players play
pure (deterministic) stationary strategies (policies),
i.e. strategies which depend only on the current state.
That is we wish to compute a min-player strategy or
policy Tmin : Smin — A which defines the action the
min player chooses at a state in Sy and maz-player
strategy Tmax : Smax — A which defines the action the
max player chooses at a state in Spax. We call a pair of
min-player and max-player strategies o = (Tmin, Tmax)
simply a strategy. Further, we let o(s) := mmin(s) for
8 € Spmin and o(8) 1= Tmax(8) for s € Spax and define
the value function or expected discounted cumulative
reward by v where

v (5) = wlo](s) = E[gww,a(st» =

forallse S

and the expectation is over the random sequence of

states, s°, s',s?,... generated according to P under

the strategy o, i.e. Pr[siTt = &' | st st71 ... ;8% =

P(s' | st o(s?)) for all t > 0.

!Standard reductions allow this result to be applied for
rewards of a broader range Sidford et al.| (2018a). Further,
while we assume there are the same number of actions per-
state, our results easily extend to the case where this is
non-uniform; in this case our dependencies on |S||.A| can
be replaced with the number of state-action pairs.
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Our goal in solving a game is to compute an approxi-
mate Nash equilibrium restricted to stationary strate-
gies Nash| (1951)); Maskin and Tirole| (2001). We call
a strategy 0 = (Tmin, Tmax) an equilibrium strategy or
optimal if

max  p(m™minTmex) < 4% < o (Tmin Tmax)
Smax—+A - oo

min”

min
Thax' Smin—A

and we call it e-optimal if these same inequalities hold
up to an additive € entrywise. It is worth noting that
the best response strategy to a stationary policy is
also stationary [Fudenberg and Tirole| (1991) and there
always exists a pure stationary strategy attaining the
Nash equilibrium |Shapley| (1953). Consequently, it is

sufficient to focus on deterministic strategies.

Throughout this paper we focus on solving stochastic
games in the learning setting where the game is not
fully specified. We assume that a generative model is
available which given any state-action pair, i.e. s € S
and a € A, can sample a random s’ independently at
random from the transition probability function, i.e.
Pr[s’ =t] = P(t | s,a). Accessibility to a generative
model is a standard and natural assumption (Kakade
(2003); |Azar et al.| (2013); |Sidford et al.| (2018al); |Agar-
wal et al| (2019))) and corresponds to PAC learning.
The special case of solving a MDP given a generative
model has been studied extensively (Kakade| (2003);
Azar et al.| (2013); |Sidford et al.| (2018bja); |Agarwal
et al| (2019)) and is a natural proving ground towards
designing theoretically motivated reinforcement learn-
ing algorithms.

1.2 Our Results

In this paper we provide an algorithm that computes an
e-optimal strategy using a sample size that matches the
best known sample complexity for solving discounted
MDPs. Further, our algorithm runs in time propor-
tional to the number of samples and space proportional
to |S||.A|. Interestingly, we achieve this result by show-
ing how to run two-player variant of Q-learning such
that the value-strategy sequences induced enjoy certain
monotonicity properties. Essentially, we show that pro-
vided a value improving algorithm is sufficiently stable,
then it can be extended to the two-player setting with
limited loss. This allows us to leverage recent advances
in solving single player games to solve stochastic games
with limited overhead. Our main result is given below.

Theorem 1.1 (Main Theorem). There is an algorithm
which given a stochastic game, G = (Smin, Smax, P, T, 7)
with a generative model, outputs, with probability at
least 1 — 0, an e-optimal strategy o by querying Z =
O(|S||A|(1 — v)73e72) samples, where € € (0,1) and
6() hides polylogarithmic factors. The algorithm runs
in time O(Z) and uses space O(|S||A]).

Our sample and time complexities are optimal due to
a known lower bound in the single player case by |Azar
et al.| (2013). It was shown in |Azar et al.| (2013) that
solving any one-player MDP to e-optimality with high
probability needs at least Q(|S||A|(1 — ) 3¢~2) sam-
ples. Our sample complexity upper bound generalizes
the recent sharp sample complexity results for solving
the discounted MDP [Sidford et al.| (2018a); |Agarwal
et al.| (2019)), and tightly matches the information-
theoretic sample complexity up to polylogarithmic fac-
tors. This result provides the first and near-optimal
sample complexity for solving the two-person stochastic
game.

1.3 Notations and Preliminaries

Notation: We use 1 to denote the all-ones vector
whose dimension is adapted to the context. We use the
operators | - |, (-)%,v/+, <, > as entrywise operators on
vectors. We identify the transition probability function
P as a matrix in REE*A*S and each row P(- | s,a) €
RS as a vector. We denote v as a vector in RS and
Q as a vector in RS*A, Therefore Pv is a vector in
RS*A, We use o to denote strategy pairs and 7 for the
min-player or max-player strategy. For any strategy o,
we define Q, € RS as Q,(s) := Q(s,0(s)) for Vs € S.
We denote P? as a linear operator defined as

Vs€S: [Pv](s) = P(-|s,0(s)) v,
Vs,a € S x A: [P°Q](s,a) = P(- | 5,0)" Q,.

Min-value and max-value:
€gy Tmin, We define its value as

For a min-player strat-

,Uﬂ'min — max

/v(ﬂ'min 77Tmax)
b
¢ Smax—A

(1)
We let 0pmax(Tmin) denote a maximizing argument of
the above and call it an optimal counter strategy of
Tmin- Lhus a value of a min-player strategy gives his
expected reward in the worst case. We say a min-player
strategy mmin is €-optimal if

Tmax

pTmin L min /Uﬂ'x/nin +e€- ]_’
7! : Smin—A

min

entrywisely.

The value and e-optimality for the max player is defined
similarly. We denote by ¢* the optimal strategy and
by v* the value function of the optimal strategy.

@Q-function: For a strategy o, we denote its Q-
function (or action value) as Q7 € RS*A by Q7 :=r+
v Pv°. For a vector v € R® we denote Q(v) := r+yPv.
Given a Q € RS*4, we denote the greedy value of Q
as

VIQ(s) = min Q(s,a) if 5 Spin
and V[Q](s) := max Q(s,a) if s€ Smax-
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Bellman Operator: We denote the Bellman operator,
T, as follows: T[v] € RS, and

T[v](s) :== V[r + ~vPuv].

We also denote the greedy strategy, o(v) or o(Q), as
the maximization/minimization argument of the T
operator. Moreover, for a given strategy o, we denote
T-[v] = Q(v),. For a given min-player strategy mmin,
we define the half Bellman operator H

Tmin

Hoin [0)(5) = (5, Tanin () + 7P (- | 8, Tmin(s)) "

if s¢ Smin§
Hﬂ'min [’U](S) if s € Smax~
We define H,, . similarly. Note that v* is the unique

fixed point of the Bellman operator, i.e., T[v*] = v*
(known as the Bellman equation (1957)). Sim-
ilarly, v™min (resp. v™sx) is the unique fixed point for
Hapin (esp. Heq..). The (half) Bellman-operators

satisfy the following properties (see. e.g.
(2013)); [Puterman (2014)))

1. contraction: ||T[v1] — T[v2]|leo < 7[|v1 — v2llo0;
2. monotonicity: vy < vy = T[v1] < Tva).

High Probability: we say an algorithm has a prop-
erty “with high probability” if for any § by increasing
the time and sample complexity by O(log(1/0)) it has
the property with probability 1 — 4.

1.4 Previous Work

Here we provide a more detailed survey of previous
works related to stochastic games and MDPs. Two-
person stochastic games generalize MDPs
. When one of the players has only one action to
choose from, the problem reduces to a MDP. A related
game is the stochastic game where both players choose
their respective actions simultaneously at each state
and the process transitions to the next state under
the control of both players . The turn-
based stochastic game can be reduced to the game with
simultaneous moves [Pérolat et al.| (2015).

Computing an optimal strategy for a two-player turn-
based zero-sum stochastic game is known to be in NP

be solved in polynomial time (1996)). This is

in contrast to MDPs which can be solved in (weakly)
polynomial time as they are a special case of linear
programming.

The algorithms and complexity theory for solving two-
player stochastic games is closely related to that of
solving MDPs. Their is vast literature on solving
MDPs which dates back to Bellman who developed
value iteration in 1957 . The policy iter-
ation was introduced shortly after by Howard
7 and its complexity has been extensive stud-
ied in Mansour and Singh| (1999); (2011); [Scher
. Then |[d’Epenoux (1963) and [De Ghellinck
discovered that MDPs are special cases of a lin-
ear program, which leads to the insight that the simplex
method, when applied to solving DMDPs, is a simple
policy iteration method. Ye showed that
policy iteration (which is a variant of the general sim-
plex method for linear programming) and the simplex
method are strongly polynomial for DMDP and termi-
nate in O(|S|?|A|(1—v) ' log(|S|(1—~)~1)) iterations.
[Hansen et al.| (2013) and [Scherrer| (2013) improved the
iteration bound to O(|S||A|(1—~) ! log(|S|(1—7)~1))
for Howard’s policy iteration method. The best known
convergence result for policy and strategy iteration are
given by |Ye (2005)) and Hansen et al.| (2013). The best
known iteration complexities for both problems are
of the order (1 —v)~!, which becomes unbounded as
v — 1. It is worth mentioning that designed
a combinatorial interior-point algorithm (CIPA) that
solves the DMDP in strongly polynomial time.

Sample-based algorithms for learning value and policy
functions for MDP have been studied in
Singh| (1999)); [Kakade| (2003); [Singh and Yee| (1994);

Azar et al.|(2011b} 2013)); [Sidford et al.|(2018bja); Agar{

al et al[(2019) and many others. Among these papers,

Azar et al. (2013)) obtains the first tight sample bound

for finding an e-optimal value function and for finding
e-optimal policies in a restricted € regime and
(2018al) obtains the first tight sample bound for

finding an e-optimal policy for any e. Both sample
complexities are of the form O[|S||.A|(1 —~)~3]. Lower
bounds have been shown in [Azar et al.| (2011a)); Even-
[Dar et al.| (2006) and |Azar et al| (2013). |Azar et al.|
(2013) give the first tight lower bound Q[|S||AJ(1—v)~?].

N co-NP (1992). Later Hansen et al.| (2013)

showed that the strategy iteration, a generalization
of Howard’s policy iteration algorithm (1960),
solves the discounted problem in strongly polynomial
time when the discount factor is fixed. Their work uses
ideas from which proved that the policy iter-
ation algorithm solves the discounted MDP (DMDP)
in strongly polynomial time when the discount factor
is fixed. In general (e.g., if the discount factor is part
of the input size), it is open if stochastic games can

For undiscounted average-reward MDP, a primal-dual
based method was proposed in which
achieves sample complexity O(|S|| A2, 2/ in);
where t;x 18 the worst-case mixing time and ¢pax/Cmin
is the ergodicity ratio. Sampling-based method for two-
player stochastic game has been considered in
(2017) in an online learning setting. However, their
algorithm leads to a sub-optimal sample-complexity
when generalized to the generative model setting.
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As for general stochastic games, the minimax Q-
learning algorithm and the friend-and-foe Q-learning
algorithm were introduced in [Littman| (1994) and
Littman| (2001al), respectively. The Nash Q-learning
algorithm was proposed for zero-sum games in [Hu and
Wellman| (2003) and for general-sum games in [Littman
(2001b); [Hu and Wellman| (1999)).

2 Technique Overview

Since stochastic games are a generalization of MDPs,
many techniques for solving MDPs can be immedi-
ately generalized to stochastic games. However, as we
have discussed, some of the techniques used to achieve
optimal sample complexities for solving MDPs in a
generative model do not have a clear generalization
to stochastic games. Nevertheless, we show how to
design an algorithm that carefully extends particular
Q-learning based methods, i.e. methods that always
maintain an estimator for the optimal value function
(or @), to achieve our goals.

Q-Learning: To motivate our approach we first briefly
review previous Q-learning based methods and the core
technique that achieves near-optimal sample complex-
ity. To motivate Q-learning, we first recall the value
iteration algorithm solving an MDP. Given a full model
for the MDP value iteration updates the iterates as
follows

@ T[’U(i_l)] — V[Q(v(i—l))]

where v(® can be an arbitrary vector. Since the Bell-
man operator is contractive and v* is a fix point of
T, this method gives an e-optimal value in O[(1 —
v)"tlog(e71)] iterations. In the learning setting, T
cannot be exactly computed. The Q-learning approach
estimates T by its approximate version, i.e., to compute
P(- | 5,a)Tv(~Y we obtain samples from P(- | s,a),
and then compute the empirical average. Then we
compute the approximate Q-value at the i-th iteration
- Q) = O] = 4+ Poli-D
and ’?’(v(ifl)) = V[@('v(i*l))],

where R 1
P(-| s,a)Tv = — v(s;)
m
si~P(+|s,a), i€[m]

for some m > 0. Then the estimation error per step is

defined as , 4 .
e = QY] — Q" V).

Since the exact value iteration takes at least Q[(1 —
v)~1] iterations to converge, the Q-learning (or ap-
proximated value iteration) takes at least Q[(1 —~)71]
iterations. The total number of samples used over all
the iterations is the sample complexity of the algorithm.

Variance Control and Monotonicity Techniques:
To obtain the optimal sample complexity for one-player
MDP, one approach is to carefully bound each entry
of €. By Bernstein inequality (Azar et al. (2013);
Sidford et al.| (2018a)); |Agarwal et al.| (2019))), we have,
with high probability,

|€(Z)| 5 Var(’v(ifl))/m S Va,r('l)*)/m

+ lower-order terms.

where var(v) = Pv? — (Pv)? is the variance-of-value
vector and “<” means “approximately less than.” Let
7() be a policy maintained in the i-th iteration (e.g.
the greedy policy of the current Q-value). Due to the
estimation error €, the per step error bound reads,
Q* o Q(Z) S 'YPTr*Q* o ,YPTr(i_l)Q(ifl) + 6(1)

To derive the overall error accumulation, |Sidford et al.
(2018a)) use the crucial monotonicity property, i.e., since
(=1 (5) = argmax, Q'Y (s, a), we have

QU (s,m(5) < QW (s, wV(s)). (2)
We thus have
Q' -QYSAPTQ —PT QU + €.
By induction, we have

Q" — Q(i) <(I- fyP”*)_1 var(v*)/m

+ lower-order terms. (3)

The leading-order error accumulation term (I —
A P™ )1, /var(v*)/m satisfies the so-called total vari-
ance property, and can be upper bounded uniformly
by /(1 —~)=3m~1, resulting the correct dependence
on (1 —+). Therefore the monotonicity property allows
us to use 7 as a proxy policy, which carefully bounds
the error accumulation. For the additional subtlety of
how to obtain an optimal policy, please refer to Sidford
et al.| (2018al) for the variance reduction technique and
the monotone-policy technique.

Similar observations regarding MDPs was used in |Agar
wal et al.| (2019) as well. This powerful technique, how-
ever, does not generalize to the game case due to the
lack of monotonicity. Indeed, does not hold for
stochastic games due to the existence of both mini-
mization and maximization operations in the Bellman
operator. This is the critical issue which this paper
seeks to overcome.

Finding Monotone Value-Strategy Sequences
for Stochastic Games: Analogously to the MDP
case, one approach is to bound error accumulation for
stochastic games is to bound each entry of the error
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vector € carefully. In fact, our method for solving
stochastic games is very much like the MDP method
used in |Sidford et al. (2018a)). However, the analy-
sis is much different in order to resolve the difficulty
introduced by the lack of monotonicity.

Since a stochastic game has two players, we modify
the variance reduced Q-value iteration (vQVI) method
in |Sidford et al.| (2018a) to obtain a min-player strat-
egy and a max-player strategy respectively. Since the
two players are symmetric, let us focus on introducing
and analyzing the algorithm for the min-player. By a
slight modification of the vQVI method, we can guar-
antee to obtain a sequence of strategies and values,
{v® QW o DR that satisfy, with high proba-
bility,

1. 2@ >0 > ) > v

2. T.o [v(i)] < 'u(i),T['v(i)] < 'u(i),”Hﬂm [v(i)] < v,

3. Q(i) < Q[v(ifl)] +€;

4. 0D <vQW. (4)
where ¢(9) = (m(é?dx,wr(gn). The first property guar-
antees that the value sequences are monotonically de-
creasing, the second property guarantees v is always

an upper bound of the value v”fﬁ;)n7 and the third and
fourth inequality guarantees that v is well approx-
imated by V[Q(i)] and the estimation error satisfy
le®| < /var(v(®)/m, where m is the total number of
samples used per state-action pair. Note that, as long as

we can guarantee that o) —p* < €, we can guarantee
(R)

the min-strategy m,;, is also good: v* < VT < p(f),
Controlling Error Accumulation using Auxil-
iary Markovian Strategy: Due to the lack of mono-
tonicity , we cannot use the optimal strategy o* as
a proxy strategy to carefully account for the error ac-
cumulation. To resolve this issue, we construct a new
proxy strategy ¢°°. This strategy is a Markovian strat-
egy, which is time-dependent but not history dependent,
i.e., at time t, the strategy played is a deterministic
map o° : § — A. The proxy strategy satisfies the
following:

Underestimation. its value, v[o{°], (expected dis-
counted cumulative reward starting from any time) is
upper bounded by v*;

Contraction.

v!(s) —v[07](s) < AP (|s,07°(s)) " (v —w[o7,])
+e(s,07(s)),

Similarly, we can bound the error € (s, 59°(s)) by the
variance-of-value of the proxy strategy

e (s,07°(s)) <y/var(v[o°])(s,07°(s)) /m

+ lower-order terms.

Based on the first property, we can upper bound
v —v* <o —p[e™].

Based on the second property, and induction on %, we
can now write a new form of error accumulation,

R
o) —p* < Z'yR*iP”? . PR-1. . P
i=1

-\/var('v[affl})ggo /m + lower-order terms,

where var(v[o§°,])s (s) := var(v[o{°])(s, 0§°(s)) for

all s € S. We derive a new law of total variance
bound for the first term and ultimately prove an error
accumulation upper bound:

v® —p* < /(1 —7)"3m + lower-order terms,

giving the optimal sample bound.

3 Sample Complexity of Stochastic
Games

In this section, we provide and analyze our sampling-
based algorithm for solving stochastic games. Recall
that we have a generative model for the game such that
we can obtain samples from state-action pairs. Each
sample is obtained in time O(1). As such we care about
the total number of samples used or the total amount
of time consumed by the algorithm. We will provide
an efficient algorithm that takes input a generative
model and obtains a good strategy for the underlying
stochastic game.

We now describe the algorithm. Since the min-player
and max-player are symmetric, let us focus on the min-
player strategy. For the max player strategy, we can
either consider the game G’ = (Smin, Smax, P, 1 —7,7),
in which the roles of the max and min players switched,
or use the corresponding algorithm for the max-player
defined in Section an algorithm that is a direct
generalization from the min-player algorithm.

The Full Algorithm. For simplicity, let us denote
B = 1/(1 —~). Our full algorithm will use the
QVI-MDVSS algorithm (Algorithm [1}) as a subrou-
tine. As we will show shortly, this subroutine main-
tains a monotonic value strategy sequence with high
probability. Suppose the algorithm is specified by
an accuracy parameter € € (0,1]. We initialize a
value vector v(®) = 1, and an arbitrary strategy
o0 = (Wr(x?i)n,m(r?gx). Let v = 3. Then our initial
value and strategy satisfy the requirement of the input
specified by Algorithm

v* < v® < p* 4O 1,
and v© > T ['U(O)];

2O > T,
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Algorithm 1 QVI-MDVSS: algorithm for computing monotone decreasing value-strategy sequences.

1: Input: A generative model for stochastic game, M = (S, A, r, P,~);
2: Input: Precision parameter u € [0, (1 —v)™'], and error probability § € (0,1);

3: Input: Initial values v,

v <vTO < pul,

o1 that satisfies monotonicity:

ot O > Tl O],

and v > T o[0T (5)

: Output: {v+<i), QW U+(i>,£+(i>}§:0 which is an MDVSS with probability at least 1 — §;

4
5:
6: INITIALIZATION:

7: Let c1,c2,c3,c be some tunable absolute constants;
8: \\nitialize constants:

9: B+ (1—~)7" and R < [c1BIn[Bu~"]];

10: ma < c3f?log[2R|S||A|67;

11: \\ Obtain an initial batch of samples:

12: For each (s,a) € S x A: obtain independent samples s

mi + c28% - min(1,u"?) - log(8|S||.A|671);
a1 < L/mq where L = clog(|S||A[67 (1 —~) " tu™t);

2 m1
s,avs\(s,g,w'wsg,a ) from P(~\s,a);

13: Initialize: wt =@t =67 = QT = Q*™W «+ 8- 15,4 and i « 0;

14: for each (s,a) € S x A do

15: \\ Compute empirical estimates of PLLUH”) and var(vT(?) (s, a):

16: @7 (s,0) ¢ ;5 TP ot OR); G (s,0) « 5 T (0 O)2(sll) — (@7) (s, 0) ;
17: \\Shift the empirical estimate to have one-sided error and guarantee monotonicity:

18: wt(s,a) « W (s,a) + /16" (s,a) + a*B

19: \\ Compute coarse estimate of the Q-function and make sure its value is in [0, B]:

20: Q79 (s,a) « min[r(s,a) + yw* (s, a), ]

21: end for

22:

23: REPEAT: \\ successively improve

24: for i=1to R do

25: \\ Compute the one-step dynamic programming:

26: Let vt ® « o1t® T[Q+(z‘fl)}, ot L Ft0) U(Q+<i71));

27: \\ Compute strategy and value and maintain monotonicity:

28: For each s € S if v (s) > vV (s), then v+ (s) «— vV (s) and o+ (s) « 0TV (s);

29: \\ Obtaining a small batch of samples:

30: For each (s,a) € S x A: draw independent samples

H) A2 m

Ss,a588,ay - -

. 7857(12) from P(:|s,a);

31: \\ Compute the expected value, gt the estimate ofP[vi(i) - vi(m} with one-sided error:

32 Let g7 (s,a) « = 272 [0t (L) — vt O]

m2 1=

33: Let g7 (s,a) « g7 (s,a) + C(1 — 4)u, where C' > 0 is an absolute constant;

34: \\ Estimate the approzimation error:

35: e 2 /are o) + 2[03/4/3 +C(1—7)u]-1

36: \\Improve QT and make sure its value is in [0, 5]:

37. Qi+ « min [r +-[w + g7, /5};
38: end for
39: return {'v'*'(i), Q+(i),0+(i)7€+(i)}?:0

Let u¥U) <« B/27 and 6 <« 1/poly(log(B/e)).
We run Algorithm repeatedly:

(WUt gU+D)  QVI-MDVSS
H(U(j)’g(a‘),u(j)v(y), (6)

where o) = (wfgi)n,m‘g;x) and we take the terminal
value and strategy of the output sequence of Algo-
rithm [I] as the input for the next iteration. In total
we run (6) R = ©(log(B/¢)) iterations. In the end,
R) — (wfﬁn),wﬁnix)) as our

we output 71'1(5“) from o

min-player strategy.

The formal guarantee of the algorithm is presented in
the following theorem.

Theorem 3.1 (Restatement of Theorem[I.1). Given a
stochastic game G = (Smin, Smax, P, T,7y) with a gener-
ative model, there exists (constructively) an algorithm
that outputs, with probability at least 1 -3, an e-optimal
strategy o by querying Z = O(|S||A|(1—7)3€e~2) sam-
ples in time O(Z) using space O(|S||A|) where € € (0,1)
and O(-) hides poly log[|S||A|/(1 —~)/e/d] factors.

The formal proof of Theorem [3.1]is given in the next
section. Here we give a sketch of the proof.

Proof Sketch of Theorem [3.1k We first show the
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high-level idea. Considering one iteration of (6f), we
claim that if the input value and strategy o), v 4()
satisfies the input condition , then with probability
at least 1 — 4, the terminal value and strategy of the
output sequence, Ut v+ gatisfies,

v < It < p* 4 ) 1/2 = v* a1 (7)

and (oU+D U+ 4U+D) satisfies the the input con-
dition . Namely, with high probability, the error of
the output is decreased by at least half and the output
can be used as an input to the QVI-MDYVSS algorithm
again. Suppose we run the subroutine of Algorithm
for R’ times, and conditioning on the event that all
the instances of QVI-MDVSS succeed, the final error
of ) is then at most u(®) = 2= 8 = ¢, as desired.
By setting § = ¢’/R’ for some §' > 0, we have that
all QVI-MDVSS instances succeed with probability at
least 1 — §’. It remains to show that the algorithm
QVI-MDVSS works as claimed.

High-level Structure of Algorithm [1 To outline the
proof, we denote a monotone decreasing value-strategy
sequence (MDVSS) as {v(i),Q(i),a(i),e(i)}f;o, satis-
fying , where v € ¢ RS, Q(i) € RS*A and
o) = (WI(QD, mihx) € AS. A more formal treatment of
the sequence is presented in Section

We next introduce the high-level idea of Algorithm
The basic step of the algorithm is to do approximate
value-iteration while preserving all monotonic prop-
erties required by an MDVSS, i.e., we would like to
approximate

Q(i) — Q[v(i—l)] = 4+ Ppli-1
and T V] = V[Qw" V)]

We would like to approximate Pv(~1) using samples,
but we do not want to use the same amount of samples
per iteration (as it become costly if the number of iter-
ations is large). Instead, we compute only the first iter-
ation (i.e., estimate Pv(®)) up to high accuracy with a
large number of samples (m4 samples, defined in Line E[)
These computations are presented in Line To
maintain an upper bound of the of the estimation error,
we also compute the empirical variances of the updates
in Line We shift upwards our estimates by the
estimation error upper bounds to make our estimators
one-sided, which is crucial to maintain the MDVSS
properties. For the subsequent steps (Line [26]- , we
use my samples per iteration (me < mq) to estimate
P(v® — v©), The expectation is that (v(*) — v(©)
has a small /o, norm, and hence P(v(®) — v(®) can
be estimated up to high accuracy with only a small
number of samples. The estimator of P(v() — v(©)
plus the estimator of Pv(® in the initialization steps
gives a high-accuracy estimator (Line for the value

iteration. Since my < myq, the total number of samples
per state-action pair is dominated by mi. This idea is
formally known as wvariance-reduction, firstly proposed
for solving MDP in |Sidford et al.| (2018b)). Similarly, we
shift our estimators to be one-sided. We additionally
maintain carefully-designed strategies in Line to
preserve monotonicity. Hence the algorithm can be
viewed as a value-strategy iteration algorithm.

Correctness of Algorithm [ We now sketch the
proof of correctness for Algorithm Firstly
Proposition shows that the if an MDVSS,
e.g., {vt® QW o+ (R = atisfies ||oT() —
v*]|oo < € for some € > 0 then their terminal strategies
and values satisfy

+(R)
fuﬂ'min

<ot <p* fe1.

This indicates that as long as we can show € < u/2,
then the halving-error-property holds.

Proposition shows the halving-error-property can
be achieved by setting

et <\ /var(v+(©)/m + lower-order terms,
where var(vt(?)) is the variance-of-value vector of v+(%)
and m 2 4/B3u—2. This proof is based on construct-
ing an auxiliary Markovian strategy for analyzing the
error accumulation throughout the value-strategy iter-

ations. The Markovian strategy is a time-dependent
strategy used as a proxy for analyzing the entrywise

error recursion (Lemmas A.11).

Proposition shows, with high probability,
Algorithm produces value-strategy sequences
{v+® QW o+ ¢+NR ' which is indeed an MD-
VSS and ¢ satisfies Proposition The proof
involves analyzing the probability of “good events” on
which monotonicity is preserved at every iteration by
using confidence estimates computed during the it-
erations and concentration arguments. See Lemmas

for the full proof of Proposition [A-12]

Putting Everything Together. Finally by putting to-
gether the strategies, we conclude that the terminal
strategy of the iteration @ is always an approximately
optimal min-player strategy to the game, with high
probability. For implementation, since our algorithm
only computes the inner product based on samples, the
total computation time is proportional to the number
of samples. Moreover, since we can update as sam-
ples are drawn and output the monotone sequences as
they are generated, we do not need to store samples or
the value-strategy sequences, thus the overall space is

O(|SII-A- 0
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