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Appendix A: Derivation of the Optimal Policy

In this section, we provide a derivation of the optimal policy
for the MDP in Fig. 1. For this derivation, we use the
definition of the Q-function described in Eq. 2, where s′

is the state resulting from applying action a in state s. In
keeping with the investigation in this paper, we assume
deterministic transitions between states (i.e., p = 1 from
Eq. 1). As such, we can ignore P (s′|s, a) and simply apply
Eq. 3.

P (s′|s, a) =


0, if s′ ∈ 1, 4

p, if (s′ = s+ 1, a = a1) ∨ (s′ = s− 1, a = a2)
1−p
|S|−1 , otherwise

(1)

Q(s, a) := R(s, a) + γmax
a′

∑
s′

P (s′|s, a)Q(s′, a′) (2)

Q(s, a) := R(s, a) + γmax
a′

Q(s′, a′) (3)

Theorem 1 The optimal policy for the MDP in Fig. 1 is
to apply action a1 in state s2 and action a2 in state s3
assuming deterministic transitions between states (i.e., p =
1 from Eq. 1).

We begin by asserting in Eq. 4 that the Q-values for Q(s, a)
are r− given s ∈ {1, 4} and for any action a ∈ {a1, a2}.
This result is due to the definition that states s1 and s4 are
terminal states and the reward for those states is r− regard-
less of the action applied. We note that, in our example,

r− = 0, but we leave it here for the sake of generality.

Q(s1, a1) = Q(s1, a2) = Q(s4, a1) = Q(s4, a2) = r−

(4)

Next, we must compute the Q-values for the remaining
state-action pairs, as shown in Eq. 5-8.

Q(s2, a1) = R(s2, a1) + γmax{Q(s3, a1), Q(s3, a2)}
(5)

Q(s2, a2) = R(s2, a1) + γmax{Q(s1, a1), Q(s1, a2)}
(6)

Q(s3, a1) = R(s3, a1) + γmax{Q(s4, a1), Q(s4, a2)}
(7)

Q(s3, a2) = R(s3, a2) + γmax{Q(s2, a1), Q(s2, a2)}
(8)

By the definition of the MDP in Fig. 1, we substitute in for
R(s2, a1) = R(s2, a2) = R(s3, a1) = R(s3, a2) = r+ as
shown in Eq. 9-12.

Q(s2, a1) = r+ + γmax{Q(s3, a1), Q(s3, a2)} (9)

Q(s2, a2) = r+ + γr− (10)

Q(s3, a1) = r+ + γr− (11)

Q(s3, a2) = r+ + γmax{Q(s2, a1), Q(s2, a2)} (12)

We can substitute in forQ(s3, a1) andQ(s2, a2) given Eq. 9
and 12.

Q(s2, a1) = r+ + γmax{
(
r+ + γr−

)
, Q(s3, a2)} (13)

Q(s3, a2) = r+ + γmax{Q(s2, a1),
(
r+ + γr−

)
} (14)

For the Q-value of state-action pair, Q(s2, a1), we must
determine whether (r+ + γr−) is less than or equal to
Q(s3, a2). If the agent were to apply action a2 in state
s3, we can see from Eq. 14 that the agent would receive
at a minimum Q(s3, a2) ≥ r+ + γ (r+ + γr−), because
r+ + γ (r+ + γr−) > r+ + γr−, Q(s3, a2) must be the
maximum from Eq. 13. We can make a symmetric argument
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for Q(s3, a2) in Eq. 14. Given this relation, we arrive at
Eq. 15 and 16.

Q(s2, a1) = r+ + γQ(s3, a2) (15)

Q(s3, a2) = r+ + γQ(s2, a1) (16)

Eq. 15 and 16 represent a recursive, infinite geometric series,
as depicted in Eq. 18.

Q(s2, a1) = Q(s3, a2) = r+ + γr+ + γ2r+ + . . .

= r+
(
γ0 + γ + γ2 + . . .

)
(17)

= r+
T∑
t=0

γt (18)

In the case that T = ∞, Eq. 18 represents an infinite
geometric series, the solution to which is r+

1+γ . In our
case however, T = 3 (i.e., four-time steps). As such,
Q(s2, a1) = Q(s3, a2) = r+(1 + γ + γ2 + γ3), as shown
in Eq. 19.

Q(s2, a1) = Q(s3, a2) = r+(1 + γ + γ2 + γ3) (19)

Recall that r− < 0 given our definition of the MDP in Fig. 1.
Therefore, Q(s2, a1) = Q(s3, a2) =

r+

1−γ ≥ Q(s2, a2) =

Q(s3, a1) = r+ + γr−. If the RL agent is non-myopic, i.e.,
γ ∈ (0, 1], then we have the strict inequality Q(s2, a1) =
Q(s3, a2) > Q(s2, a2) = Q(s3, a1). For these non-trivial
settings of γ, we can see that the optimal policy for the RL
agent is to apply action a1 in state s2 and action a2 in state
s3. Lastly, because s1 and s4 are terminal states, the choice
of action is irrelevant, as seen in Eq. 4.

The optimal policy is then given by Eq. 20.

π∗(s, a) =


1, if s = 2, a1 or s = 3, a2

0, if s = 2, a2 or s = 3, a1
1/2, otherwise

(20)

Appendix B: Policy Traces and Value

This section reports the execution traces and corresponding
value calculations of a Boolean decision treee with varying
φ for the simple MDP model from Figure 1.

Appendix C: Q-learning Leaf Values

For the decision tree in Fig. 2, there are four leaf values:
ŷTRUEa2 , ŷTRUEa1 , ŷFALSEa2 , and ŷFALSEa1 . Table 3 contains
the settings of those parameters. In Table 3, the first column
depicts the leaf parameters; the second column depicts the
Q-function state-action pair; the third column contains the
equation reference to Appendix A, where the Q-value is cal-
culated; and the fourth column contains the corresponding
Q-value. These Q-values assume that the agent begins in a
non-terminal state (i.e., s2 or s3) and follows the optimal
policy represented by Eq. 20.

Table 1: The set of execution traces for a Boolean decision
tree with varying φ, assuming so = 3. Columns indicate
increasing time, rows indicate settings for φ, and entries
indicate (st, R(st, at), at).

φ t = 0 t = 1 t = 2 t = 3

0 (3, r+, 2) (2, r+, 2) (1, r−, 2)
1 (3, r+, 2) (2, r+, 2) (1, r−, 1)
2 (3, r+, 2) (2, r+, 1) (3, r+, 2) (2, r+, 1)
3 (3, r+, 1) (4, r−, 2)
4 (3, r+, 1) (4, r−, 1)

Table 2: Derived from Table 1, the values V πφ of Boolean
decision tree policies πφ with varying φ and assuming so =
3.

φ
γtrt

V πφ(s3)t = 0 t = 1 t = 2 t = 3

0 r+ r+γ r−γ2 r+(1 + γ) + r−

1 r+ r+γ r−γ2 r+(1 + γ) + r−

2 r+ r+γ r+γ2 r+γ3 r+(1 + γ + γ2 + γ3)
3 r+ r−γ r+ + r−γ
4 r+ r−γ r+ + r−γ

Figure 2: This figure depicts the tree for our case study.

Table 3: Derived from Table 1, the values V πφ of Boolean
decision tree policies πφ with varying φ and assuming so =
3.

Leaf Q-function Eq. Q-value

ŷFALSEa2 Q(s2, a2) Eq. 10 r+ + γr−

ŷTRUEa1 Q(s3, a1) Eq. 11 r+ + γr−

ŷFALSEa1 Q(s2, a1) Eq. 19 r+(1 + γ + γ2 + γ3)
ŷTRUEa2 Q(s3, a2) Eq. 19 r+(1 + γ + γ2 + γ3)
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Figure 3: This figure demonstrates the probability of taking
a "wrong" action for PG with γ = 0.95, a = 10, r+ = 1, and
r− = −1.

Appendix D: Probability of Incorrect Action

πT (s, a) = µ(s)ŷTRUE
a + (1− µ(s)) ŷFALSE

a (21)

The output of the differentiable tree is a weighted, nonlinear
combination of the leaves (Eq. 21). Using PG, one samples
actions probabilistically from πT (s, a). The probability of
applying the “wrong” action (i.e., one resulting in a negative
reward) is πT (s3, a1) in state s3 and πT (s2, a2) in state s2.
Assuming it equally likely to be in states s3 and s2, the
overall probability is 1

2 (πT (s2, a2) + πT (s3, a1)). These
probabilities are depicted in Fig. 3, which shows how the
optimal setting, φ∗, for φ should be φ∗ = 2.5 using PG.

Appendix E: Architecture Sweeps

We performed architecture sweeps, as mentioned in the
main paper, across all types of models. We found that
the MLP requires small models for simple domains, the
DDT methods are all relatively unaffected by increased
depth, representing a benefit of applying DDTs to various
RL tasks. For this result, see Figure 4. As shown in Figure
5, in more complex domains, the results are less conclusive
and increased depth does not show clear trends for any
approach. Nonetheless, we show evidence that DDTs are
at least competitive with MLPs for RL tasks of varying
complexity, and that they are more robust to hyperparameter
tuning with respect to depth and number of layers.

We find that the MLP with no hidden layers performs the
best on the two OpenAI Gym domains, cart pole and lunar
lander. The best differentiable decision tree architectures
for the cart pole domain are those with two leaves and two
rules, while the best architectures for lunar lander include
32 leaves and 16 rules.

In the wildfire tracking domain, the 8-layer MLP performed
the best of the MLPs, while the 32-leaf differentiable deci-
sion tree was the top differentiable decision tree, and the
32-rule differentiable rule list performed the best of the
differentiable rule lists.

Finally, the MLP in the FindAndDefeatZerglings domain is

an 8-layer MLP, and the differentiable decision tree uses 8
leaves while the differentiable rule list uses 8 rules.

MLP hidden layer sizes preserve the input data dimension
through all hidden layers until finally downsampling to the
action space for the final layer. MLP networks all use the
ReLU activation after it performed best in a hyperparameter
sweep.

Appendix F: Domain Details

0.1 Wildfire Tracking

The wildfire tracking domain input space is:

• Fire 1 Distance North (float)
• Fire 1 Distance West (float)
• Closest To Fire 1 (Boolean)
• Fire 2 Distance North (float)
• Fire 2 Distance West (float)
• Closest To Fire 2 (Boolean)

Distance features are floats, representing how far north or
west the fire is, relative to the drone. Distances can also be
negative, implying that the fire is south or east of the drone.

0.2 StarCraft II Micro-battle Evaluation

The FindAndDefeatZerglings manufactured input space is:

• X Distance Away (float)
• Y Distance Away (float)
• Percent Health Remaining (float)
• Percent Weapon Cooldown Remaining (float)

for each agent-controlled unit and 2 allied units, as well as:

• X Distance Away (float)
• Y Distance Away (float)
• Percent Health Remaining (float)
• Percent Weapon Cooldown Remaining (float)
• Enemy Unit Type (Boolean)

for the five nearest enemy units. Missing data is filled in
with −1. The action space for this domain consists of:

• Move North
• Move East
• Move West
• Move South
• Attack Nearest Enemy
• Attack Second Nearest Enemy
• Attack Third Nearest Enemy
• Attack Second Farthest Enemy
• Attack Farthest Enemy
• Do Nothing
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(a) Cart Pole (b) Lunar Lander

Figure 4: Average cumulative reward and standard deviation across architectures of various sizes in the Gym domains. MLP
with number of hidden layers, DDT (Rule List) with number of rules, and DDT (Balanced) with number of leaves.

(a) Wildfire Tracking (b) FindAndDefeatZerglings

Figure 5: Average cumulative reward and standard deviation across architectures of various sizes in the wildfire and SC2
domains. MLP with number of hidden layers, DDT (Rule List) with number of rules, and DDT (Balanced) with number of
leaves.
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Interpretable Policies

Here we include interpretable policies for each domain,
without the pruning that is included in versions in the main
body. See Figures 6, 7, 8, and 9. Finally, we also include
examples of two MLPs represented as decision-making aids.
The first is the one-hot MLP that was given to study partici-
pants for evaluation of interpretability and efficiency, shown
in Figure 10. The second is the true cart pole MLP, available
in Figure 11. This decision-making aid turned out to be ex-
ceptionally complicated, even with no activation functions
and no hidden layer.

Sample Survey Questions

Survey questions included Likert scale questions ranging
from 1 (Very Strongly Disagree) to 7 (Very Strongly Agree).
For both the MLP and decision trees, some questions in-
cluded:

1. I understand the behavior represented within the model.

2. The decision-making process does not make sense.

3. The model’s logic is easy to follow

4. I like the level of readability of this model.

5. The model is difficult to understand.
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Figure 6: Full interpretable cart pole policy. Two decision nodes are redundant, leading to the same action regardless of how
the node is evaluated.

Figure 7: Full interpretable lunar lander rule list policy. Many nodes in the list are not reachable due to previous nodes.
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Figure 8: Full interpretable wildfire tracking policy. One node is redundant, leading to the same action regardless of how it
is evaluated.

Figure 9: Full interpretable FindAndDefeatZerglings policy. One node is redundant, leading to the same action regardless of
how it is evaluated.



Manuscript under review by AISTATS 2020

Figure 10: The MLP given to participants for our user study.
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Figure 11: The actual MLP originally intended to go into the user study. Note that it is markedly more complicated than the
version given to participants.
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