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Abstract

We present a framework for building unsu-
pervised representations of entities and their
compositions, where each entity is viewed as
a probability distribution rather than a vector
embedding. In particular, this distribution is
supported over the contexts which co-occur
with the entity and are embedded in a suit-
able low-dimensional space. This enables us
to consider representation learning from the
perspective of Optimal Transport and take
advantage of its tools such as Wasserstein dis-
tance and barycenters. We elaborate how the
method can be applied for obtaining unsu-
pervised representations of text and illustrate
the performance (quantitatively as well as
qualitatively) on tasks such as measuring sen-
tence similarity, word entailment and similar-
ity, where we empirically observe significant
gains (e.g., 4.1% relative improvement over
Sent2vec, GenSen).

The key benefits of the proposed approach
include: (a) capturing uncertainty and poly-
semy via modeling the entities as distributions,
(b) utilizing the underlying geometry of the
particular task (with the ground cost), (c) si-
multaneously providing interpretability with
the notion of optimal transport between con-
texts and (d) easy applicability on top of exist-
ing point embedding methods. The code, as
well as pre-built histograms, are available un-
der https://github.com/context-mover/.

1 Introduction

One of the driving factors behind recent successes in
machine learning has been the development of better
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Figure 1: Distributional estimate for the entity ‘radio’.

methods for data representation. Examples include con-
tinuous vector representations for language (Mikolov
et al., 2013; Pennington et al., 2014), CNN based
feature representations for images and text (LeCun
et al., 1998; Collobert and Weston, 2008; Kalchbrenner
et al., 2014), or via the hidden state representations of
LSTMs (Hochreiter and Schmidhuber, 1997; Sutskever
et al., 2014). Pre-trained unsupervised representations,
in particular, have been immensely useful as general
purpose features for model initialization (Kim, 2014),
downstream tasks (Severyn and Moschitti, 2015; Deriu
et al., 2017), and in domains with limited supervised
information (Qi et al., 2018). A shared theme across
these methods is to map input entities to dense vector
embeddings lying in a low-dimensional latent space
where the semantics of inputs are preserved. Thus,
each entity of interest (e.g., a word) is represented di-
rectly as a single point (i.e., its embedding vector) in
space, which is typically Euclidean.

In contrast, we approach the problem of building unsu-
pervised representations in a fundamentally different
manner. We focus on the co-occurrence information be-
tween the entities and their contexts, and represent each
entity as a probability distribution (histogram) over its
contexts. Here the contexts themselves are embedded
as points in a suitable low-dimensional space. This
allows us to cast finding distance between entities as
an instance of the Optimal Transport problem (Monge,
1781; Kantorovich, 1942; Villani, 2008). So, our result-
ing framework intuitively compares the cost of moving
the contexts of a given entity to the contexts of another,
which motivates the naming: Context Mover’s Distance
(CMD).

We call this distribution over contexts embeddings as
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the distributional estimate of our entity of interest (see
Figure 1), while we refer to the individual embeddings
of contexts as point estimates. More precisely, the
contexts refer to any generic entities or objects (such
as words, phrases, sentences, images, etc.) co-occurring
with the entities to be represented.

The main motivation for our proposed approach orig-
inates from the domain of natural language, where
the entities (words, phrases, or sentences) generally
have different semantics depending on the context in
which they occur. Hence, it is important to consider
representations that effectively capture such inherent
uncertainty and polysemy, and we will argue that dis-
tributional estimates capture more of this information
compared to point-wise embedding vectors alone.

The co-occurrence information that is the crucial build-
ing block of our approach in building the distributions
is actually inherent to a wide variety of problems, for
instance, recommending products such as movies or
web-advertisements (Grbovic et al., 2015), nodes in
a graph (Grover and Leskovec, 2016), sequence data,
or other entities (Wu et al., 2017). Particularly when
training point-wise embeddings for textual data, the
co-occurrence information is already computed as the
first step, like in GloVe (Pennington et al., 2014), but
does not get utilized beyond this.

Lastly, the connection to optimal transport at the level
of entities and contexts paves the way to make bet-
ter use of its vast toolkit (e.g., Wasserstein distances,
barycenters, barycentric coordinates, etc.) for appli-
cations, which in the case of NLP has primarily been
restricted to document distances (Kusner et al., 2015;
Huang et al., 2016).

Contributions: 1) Employing the notion of optimal
transport of contexts as a distance measure, we illus-
trate how our framework can be beneficial for important
tasks involving word and sentence representations, such
as sentence similarity, hypernymy (entailment) detec-
tion and word similarity. The method can be readily
used on top of existing embedding methods and does
not require any additional learning.

2) The resulting representations, as portrayed in Fig-
ures 1, 3, 4, capture the various senses under which
the entity occurs. Further, the transport map obtained
through CMD (see Figure 2) gives a clear interpretation
of the resulting distance obtained between two entities.

3) CMD can be used to measure any task-specific dis-
tance (even asymmetric costs) between words, by defin-
ing a suitable underlying cost on the movement of
contexts, which we show can lead to a state-of-the-art
metric for unsupervised word entailment.

4) Defining the transport over contexts has the ad-

ditional benefit that the representations are composi-
tional - they directly extend from entities to groups of
entities (of any size), such as from word to sentence
representations. To this end, we utilize the notion of
Wasserstein barycenters, which to the best of our knowl-
edge has never been considered in the past. This results
in a significant performance boost on multiple datasets,
and even outperforming popular supervised methods
like InferSent (Conneau et al., 2017) and GenSen (Sub-
ramanian et al., 2018) by a decent margin.

2 Related Work

Vector representations.  The idea of using vector
space models for natural language dates back to Bengio
et al. (2003), but in particular, has been popularized
by Word2vec (Mikolov et al., 2013) and GloVe (Pen-
nington et al., 2014). One of the problems that still
persists is the inability to capture, within just a point
embedding, the multiple senses or semantics associated
with the occurrence of a word. This has resulted in
works that either maintain multiple embeddings Huang
et al. (2012), or utilize bilingual parallel corpora Guo
et al. (2014), or learn embeddings that capture some
specific information Levy and Goldberg (2014a), but a
general solution still remains to be found.

Representing with distributions. This line of
work is fairly recent, mainly originating from Vilnis and
McCallum (2014), who proposed to represent words
with Gaussian distributions, and later extended to mix-
tures of Gaussians in (Athiwaratkun and Wilson, 2017).
Concurrent to this work, Muzellec and Cuturi (2018)
and Sun et al. (2018) have suggested using elliptical
and Gaussian distributions endowed with a Wasserstein
metric respectively. While these methods' already pro-
vide richer information than typical vector embeddings,
their form restricts what could be gained by allowing
for arbitrary distributions (in terms of being free from
assumptions on their shape or modality) as possible
here. Our proposal of distributional estimate (i.e., dis-
tribution over context embeddings), inherently relies
upon the empirically obtained co-occurrence informa-
tion of a word and its contexts. Hence, this naturally
allows for the use of optimal transport (or Wasserstein
metric) in the space containing the contexts, and leads
to an interpretation® (Figure 2) which is not available
in the above approaches.

After the release of our initial technical report?, Frogner

'Elliptical embeddings (Muzellec and Cuturi, 2018) also
depend on WordNet supervision in the case of hypernymy.

2We explicitly connect the ground space to the space
of contexts, which enables a better interpretation of the
transport map.

3The first version of this article appeared on 5th June,
2018 at https://openreview.net/forum?id=Bkx2jd4Nx7
titled as ‘Wasserstein is all you need’.
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et al. (2019) also independently propose to embed enti-
ties as discrete distributions in the Wasserstein space.
A key distinction is that the training procedure re-
quired to learn such representations in their and the
above-mentioned methods is not necessary for our ap-
proach, since we can just utilize the existing pre-trained
point-embeddings together with the co-occurrence in-
formation. Further, these methods (except for Frogner
et al. (2019)) don’t provide a way to represent compo-
sition of entities (e.g. sentences) which is available via
our framework (see Section 5).

Optimal Transport in NLP. The primary focus
of the explorations of optimal transport in NLP has
been on transporting words or sets of words directly,
and for downstream applications rather than represen-
tation learning in general. Existing examples include
document distances (Kusner et al., 2015; Huang et al.,
2016), topic modelling (Rolet et al., 2016; Xu et al.,
2018), document clustering (Ye et al., 2017), and oth-
ers (Zhang et al., 2017; Grave et al., 2018). For example,
the Word Mover’s Distance (WMD; Kusner et al., 2015)
considers computing the distance between documents
as an optimal transport between their bag-of-words,
and in itself doesn’t lead to a representation. When
the transport is defined at the level of words, like in
these approaches, it can not be used to represent words
themselves. In our approach, the transport is consid-
ered over contexts instead, which enables us to develop
representations for words and extend them to represent
composition of words (i.e., sentences, documents) in a
principled manner, as illustrated in Sections 5 and 6.

3 Background on Optimal Transport

Optimal Transport (OT) provides a way to compare
two probability distributions defined over a space G
(commonly known as the ground space), given an un-
derlying distance or more generally the cost of moving
one point to another in the ground space. In other
terms, it lifts a distance between points to a distance
between distributions. In contrast, Kullback-Leibler
(KL), or f-divergences in general, only focus on the
probability mass values, thus ignoring the geometry of
the ground space: something which we exploit via OT.
Also, KL(p||v) is defined only when the distribution u
is absolutely continuous with respect to v. Below is a
brief background on OT in the discrete case.

Linear Program (LP) formulation. Consider an
empirical probability measure of the form pu =
S aid(2) where X = (21, 2™) € g", §(x)
denotes the Dirac (unit mass) distribution at point
x € G, and (ay,...,a,) lives in the probability sim-
plex ¥, == {pe R | X1 pi=1}. Now given a
second empirical measure, v = 7", b;6(y"7)), with
Y = (y®,...,y™) € ¢™, and (by,...,by) € S,

and if the ground cost of moving from point = to
y\9) is denoted by M;;, then the OT distance between
w1 and v is the solution to the following LP.

ZTz‘jMij (1)

t]

OT(p,v; M) := min
TeR}*™
s.t. \V/i,zj Tij=a;, \V/],E,L Tb'j:bj

The optimal T € R} ™ is referred to as the transporta-
tion matriz, where T;; denotes the optimal amount
of mass to move from point ¥ to point y@). Intu-
itively, OT is concerned with the problem of moving
a given supply of goods from certain factories to meet
the demands at some shops, such that the overall trans-
portation cost is minimal.

Distance. When G = R¢ and the cost is defined
with respect to a metric Dg over G (i.e., M;; =
Dg(x®,y@W)P for any i,j), OT defines a distance
between empirical probability distributions. This is
the p-Wasserstein distance, defined as W, (u,v) :=
OT(u,v; D’g’)l/ P, In most cases, we are only concerned
with the case where p =1 or 2.

Barycenters. In Section 5, we will make use of the
notion of averaging in the Wasserstein space. More
precisely, the Wasserstein barycenter (Agueh and Car-
lier, 2011) is a probability measure that minimizes the
sum of (p-th power) Wasserstein distances to the given
measures. Formally, given N measures {v1,...,vy}
with corresponding weights n = {m,...,nn} € Zn,
the Wasserstein barycenter can be written as

N
Bp(v1,...,vy) = argmin Zme(p, vi)?. (2)
|

Regularization and Sinkhorn iterations. The
cost of exactly solving OT scales at least in O(n3 log(n))
(n being the cardinality of the support of the em-
pirical measure) when using network simplex or in-
terior point methods. Following Cuturi (2013), we
consider the entropy regularized Wasserstein distance,
Wpalp,v) = OTx(p,v; Dé)l/p, where the search
space for the optimal 7" is instead restricted to a smooth
solution close to the extreme points of the linear pro-
gram identical to (2), but subtracting AH(T') from
the linear objective, where H(T) = — >, Ti;log T};.
The regularized problem (A > 0) can then be solved
efficiently using Sinkhorn iterations (Sinkhorn, 1964).
While the cost of each Sinkhorn iteration is quadratic
in n, it has been shown in Altschuler et al. (2017) that
convergence can be attained in a number of iterations
that is independent of n, thus resulting in an overall
complexity of O(n?). Similarly, we consider the reg-
ularized barycenter (B, ) (Cuturi and Doucet, 2014)
which uses regularized Wasserstein distances W, » in
Eq. (2) and can be cheaply computed by iterative Breg-
man projections (Benamou et al., 2015) to yield an
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approximate solution. Overall, thanks to this entropic
regularization, OT computations can be carried out
efficiently in a parallel and batched manner on GPUs
(in our use case, n = 300).

4 Methodology

In this section, we define the distributional estimate
that we use to represent each entity and the corre-
sponding OT based distance measure. Since we take
the guiding example of building text representations,
we consider each entity to be a word for clarity.

Distributional Estimate (P}{}). For a word w, its
distributional estimate is built from a histogram H"Y
over the set of contexts C, and an embedding of these
contexts into a space G. The histogram measures how
likely it is that a word w occurred in a particular con-
text ¢, i.e., probability p(c|lw). In absence of an exact
closed-form expression, we can use its empirical esti-
mate given by the frequency of the word w in context c,
relative to the total frequency of word w in the corpus.

Thus one natural way to build this histogram is to
maintain a co-occurrence matrix between words in our
vocabulary and all possible contexts, where each entry
indicates how often a word and context occur in a
(symmetric) window of fixed size L. Then, the bin
values (H").cc of the histogram can be viewed as the
row corresponding to w in this co-occurrence matrix.

Next, the simplest embedding of contexts is into the
space of one-hot vectors of all the possible contexts.
However, this induces a lot of sparsity in the represen-
tation and the distance between such embeddings of
contexts does not reflect their semantics. A classical so-
lution would be to instead find a dense low-dimensional
embedding of contexts that captures the semantics,
possibly using techniques such as SVD or deep neural
networks. We denote by V' = (v.).ec an embedding of
the contexts into this low-dimensional space G C R¢,
which we refer to as the ground space.

Combining the histogram H" and the context embed-
dings V, we represent the word w by the following
empirical distribution, referred to as the distributional
estimate of the word:

V=) (H")e 6(ve). (3)

ceC

Distance. If we equip the ground space G with a
meaningful metric Dg and use distributional estimates
(P) to represent the words, then we can define a
distance between two words w; and w; as the solution
to the following optimal transport problem:

def

OMD (w;, wjs DG) = OT(PY:, Py Dg) = Wy (P, Py )P

(4)

man - .

poaching

giraffe .
wr| W W

Elephant

endangered
skins

Mammal

Figure 2: Illustration of Context Mover’s Distance
(CMD) (Eq. (4)) between elephant & mammal (when
represented with their distributional estimates and us-
ing entailment ground metric discussed in Section 6).
Here, we pick four contexts at random from their top
20 contexts in terms of PPMI. The square cells denote
the entries of the transportation matrix 7" obtained
while computing CMD. The darker a cell, larger the
amount of mass moved.

Intuition. Two words are similar in meaning if the
contexts of one word can be easily transported to the
contexts of the other, with this cost of transporta-
tion being measured by Dg. This idea still remains in
line with the distributional hypothesis (Harris, 1954;
Rubenstein and Goodenough, 1965) that words in sim-
ilar contexts have similar meanings, but provides a
precise way to quantify it. We thus call the distance in
Eq.(4) the Context Mover’s Distance (CMD).

Interpretation. The particular definition of CMD
in Eq.(4), lends a pleasing interpretation (c.f. Figure 2)
in terms of the transportation map 7. This can be
useful in understanding why and how are the two words
being considered as similar in meaning, by looking at
this movement of contexts.

Additionally, CMD between two words can be thought
of as computing the WMD between some hypothetical
documents associated to each word, which contain all
possible contexts of the respective words.

Mixed Distributional Estimate. Based on a
given task, it might be useful to reduce the cost in-
curred from extraneous contexts, or in other words, to
adjust the amounts of “distribution” and “point” nature
needed for the representation. This can be done by
adding the point estimate of the target entity as an
additional context in the distributional estimate, with a
particular mixing weight m. The other contexts in the
distributional estimate are reweighted to sum to 1 —m.

Concrete Framework. For simplicity, we limit the
contexts to consist of single words and discuss how the
framework can be concretely applied as follows:

(i) Making associations better. It is commonly under-
stood that co-occurrence counts alone may not neces-
sarily suggest a strong association between a word and
a context. The well-known Positive Pointwise Mutual
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Information (PPMI) matrix (Church and Hanks, 1990;
Levy et al., 2015) addresses this shortcoming, and in
particular, we use its smoothed and shifted variant
called SPPMI (Levy and Goldberg, 2014b). Overall,
this enables us to extract better semantic associations
from the co-occurrence matrix. Hence, the bin values
(at context ¢) for the histogram of word w in Eq. (3)

can be written as: (HY), := Ziipsl\g—m
c 7,

this histogram information comes almost for free while
learning point embeddings, as in GloVe (Pennington
et al., 2014).

. Building

(i) Computational considerations: A natural question
could arise that CMD might be computationally in-
tractable in its current formulation, as the possible
number of contexts can be enormous. Since the con-
texts are mapped to dense embeddings, it is possible to
only consider K representative contexts® , each covering
some part Cy, of the set of contexts C. The histogram
for word w with respect to these contexts can then
be written as Iﬁ“‘g = Zszl(I]Iw)k 6(Vy), where v, € V
is the point estimate of the k' representative con-
text, and (H" )z denotes the new histogram bin values
(formed by combining the SPPMI contributions). More
details on this, including precise definitions of SPPMI
and the effect of number of clusters, are given in the
supplementary sections S1.2 and S2.

Another way would have been to consider the top-K
contexts by SPPMI but we don’t go this route, since the
computations can’t be batched when the supports are
different. Also this would require reducing the support
of the obtained barycenter, back to K, everytime.

Overall efficiency. Thus, with the batched imple-
mentations on a Nvidia TitanX GPU, it is possible
to compute ~ 13,700 Wasserstein-distances/second
(for histogram size 100), and 4,600 Wasserstein-
barycenters/second (for sentence length 25 and his-
togram size 100).

5 Sentence Representations

The goal of this task is to develop a representation for
sentences, that captures the semantics conveyed by it.
Most unsupervised representations proposed in the past
rely on the composition of word embeddings, through
additive, multiplicative, or other ways (Mitchell and La-
pata, 2008; Arora et al., 2017; Pagliardini et al., 2017).
As before, our aim is to represent sentences by distribu-
tional estimates to better capture the inherent uncer-
tainty and polysemy. We hypothesize that a sentence,
S = (wy,ws,...,wy), can be effectively represented
via the Wasserstein barycenter of the distributional es-

timates of its words, ]f”‘% = Bp.a (HS’&I,EDL&Q, e ,]f’”“}”).

4In practice, these are the cluster centroids obtained by
applying K-means to context embeddings under Dg.

RS
S T

(a) Dist. estimate (b) Euclidean avg (c) W-barycenter.

Figure 3: Distributional estimate of ‘my’ (green), ‘love’
(red) and ‘ife’ (blue). Illustrates how Wasserstein
barycenter (and thus CoMB) utilizes the geometry
of ground space, while the Euclidean averaging just
focuses on the probability mass. °

The motivation is that since the barycenter minimizes
the sum of optimal transports, cf. Eq. (2), it should
result in a representation which best captures the simul-
taneous occurrence of the words in a sentence. Hence-
forth, we refer to this representation as Context Mover’s
Barycenters (CoMB).

To give a better idea of the nature of Wasserstein
barycenter underlying CoMB, consider two Diracs
measures, d(z) and d(y), with equal weights and un-
der Euclidean ground metric. Then, the Wasserstein
barycenter is 5(%) while simple averaging gives
1(8(z) + 6(y)). Figure 3 highlights this interpolat-
ing nature of Wasserstein barycenter in the ground
space, and illustrates how it is better suited for using
the innate geometry of tasks (here context embeddings)
as compared to the simple Euclidean averaging.

Averaging of point-estimates, in many variants (Iyyer
et al., 2015; Arora et al., 2017; Pagliardini et al., 2017),
has been shown to be surprisingly effective for multiple
NLP tasks including sentence similarity. Interestingly,
this can be seen as a special case of CoMB, when the
distribution associated to a word is just a Dirac at its
point estimate. It becomes apparent that having a rich
distributional estimate for a word could be beneficial.

Since with CoMB, each sentence is also a distribu-
tion over the ground space G containing the contexts,
we utilize the Context Mover’s Distance (CMD) de-
fined in Eq.(4) to define the distance between two
sentences S7 and S; as follows, CMD(Sl,Sg;Dg) =
OT(Py!,Py?; DE) ~ Woa(Py*,By?)P.  Here, the
ground metric Dg is typically Euclidean or angular
distance between the point embeddings.

Experimental Setup. To evaluate the effectiveness
of an unsupervised sentence representation, we consider
the semantic textual similarity (STS) tasks across 24
datasets from SemEval (Agirre et al., 2012, 2013, 2014,
2015, 2016), containing sentences from domains such
as news headlines, forums, Twitter, etc. The objective

SFor visualization purposes in Figures 1, 3, 4, we com-
pute a 2D representation of the actual context embeddings
using t-SNE (Maaten and Hinton, 2008) and use a kernel
density estimate to smooth the distributions.
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| | Val. Set | Test Set
Model | Corpus (# tokens) | sTsi6 | STS12 STS13 STS14  STSI5 | Avg.
(a) Unsupervised methods based on GloVe embeddings
NBoW 19.2 21.1 13.5 25.0 30.7 22.6
SIF 26.6 32.4 23.0 34.1 35.3 31.2
SIF (PG removed) 57.6 41.0 50.1 51.9 52.8 49.0
Euclidean avg. TBC (0.9 B) 50.7 45.7 39.0 49.9 53.5 47.0
CoMB 52.4 48.2 42.2 54.9 53.8 49.8
CoMB \jix 60.2 50.5 51.0 58.3 60.5 55.1
CoMB ix - PC removed 63.0 49.3 56.5 60.8 64.0 57.7
(b) Unsupervised methods based on Sent2vec embeddings
Sent2vec 69.1 55.6 57.1 68.4 74.1 63.8
Sent2vec (pG removed) TBC (0.9 B) 69.0 57.0 62.8 70.1 72.8 65.7
CoMB pix 70.1 56.1 59.7 68.8 73.7 64.6
CoMB \ix + PC removed 70.6 57.9 64.2 70.3 73.1 66.4
(c) Unsupervised methods across different corpora
Skip-thought (Arora et al., 2017) TBC (0.9 B) NA 30.8 24.8 31.4 31.0 29.5
WME (Word2vec) Google News (100 B) NA 60.6 54.5 65.5 61.8 60.6
SIF pG removed (GloVe) Common Crawl (840 B) NA 56.2 56.6 68.5 71.7 63.3
CoMB 1fix & PC removed (GloVe) | TBC + News Crawl (5 B) 72.0 54.9 67.2 67.5 72.0 65.4
(d) Supervised methods
GenSen (Kiros and Chan, 2018) AlINLI, TBC, WMT, etc. 66.4 60.6 54.7 65.8 74.2 63.8
InferSent AIlINLI (26 M) 71.5 59.2 58.9 69.6 71.3 64.8

Table 1: Average Pearson correlation (x100) on STS tasks for CoMB and other baselines. ‘Miz’ denotes the
mixed distributional estimate. ‘PC removed’ refers to removing contribution along the principal component of
point estimates (as in SIF). See S3 for detailed results and hyperparameters.

here is to give a similarity score to each sentence pair
and rank them, which is evaluated against the ground
truth ranking via Pearson correlation.

We benchmark the performance of CoMB using Sen-
tEval (Conneau and Kiela, 2018) against a variety
of unsupervised methods such as (a) Neural Bag-of-
Words (NBoW) averaging of point estimates, (b) SIF
from Arora et al. (2017) who regard it as a “sim-
ple but tough-to-beat baseline” and utilize weighted
NBoW averaging with principal component removal,
(c) Sent2vec (Pagliardini et al., 2017) which learns word
embeddings so that their average works well as a sen-
tence representation, (d) Skip-thought (Kiros et al.,
2015) which trains an LSTM-based encoder to predict
surrounding sentences, and (e) Word Mover’s Embed-
ding (WME; Wu et al., 2018) which is a recent variant of
WMD. For comparison, we also show the performance
of recent supervised methods such as InferSent (Con-
neau et al., 2017) and GenSen (Subramanian et al.,
2018), although these methods are clearly at an advan-
tage due to training on labeled corpora.

Empirical Results. (i) Ground Metric: GloVe.
Table 1 (a) compares the performance of CoMB against
other methods using the same GloVe embeddings
trained on the common Toronto Book Corpus (TBC)
(Zhu et al., 2015). We observe that the vanilla CoMB
significantly outperforms SIF and NBoW, showing the
benefit of having the distributional estimate instead
of just a Dirac. Also, it is better than SIF p¢ removed

on average across the test set, and using the mixed
distributional estimate (CoMB i) further improves
the average test performance by 10%. Next, when the
PC removal is carried out for point estimates during
mixing (i.e., CoMB mix + PC removed ), the average per-
formance increases to 57.7. Both of these are for mixing
weight m = 0.4 towards the point estimate. Also, we
see empirical evidence that the Euclidean average of
the distributional estimates (Figure 3b) performs worse
than Wasserstein barycenter (CoMB), when measuring
the sentence similarity using CMD for both.

(i) Ground Metric: Sent2Vec. Our method is not
specific to GloVe embeddings, and in Table 1 (b), we
see the effect of using an improved ground metric, by
employing word vectors from Sent2vec. Here, we notice
that our best variant, CoOMBix + PC removed, results
in a relative improvement of 4% over Sent2vec, which
is a decent gain considering that for unstructured text
corpora it is a state-of-the-art unsupervised method.

(#ii) Owverall comparisons: To facilitate an accurate
comparison with baselines which typically use huge
corporas, in Table 1 (c) we report our results (with
ground metric GloVe) by using the News Crawl corpus
(Bojar et al., 2018) combined with TBC. First of all,
this increase in data boosts the performance of CoMB
from 57.7 to 65.4, which outperforms WME despite
using a smaller corpus. Thus, pointing towards the
advantage of defining transport over contexts than
words. Further, CoMB also outperforms SIF p¢ removed
trained on Common Crawl and popular supervised
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sentence embedding methods’ such as GenSen and
InferSent which utilize labeled corpora.

Qualitative analysis and ablation. We discuss this
extensively in our supplementary section, but the main
observations include: (a) Section S4.3: we qualitatively
analyze the averaging of distributional estimates ver-
sus point estimates and find that the nature of errors
made by CoMB and SIF are complementary in nature.
CoMB outperforms when the difference in sentences
stems from predicate while SIF is better when the dis-
tinguishing factor is the subject of the sentences. (b)
Section S2.3: we observe that by around K = 300 to
500, the performance gained by increasing the number
of clusters starts to plateau, implying that it is suffi-
cient to only consider the representative contexts. (c)
Section S5: CoMB shows promise for application in a
downstream task like sentence completion, although a
quantitative evaluation remains beyond the scope.

Summary and further prospects. Overall, this
highlights the advantage of distributional estimates for
words, that can be extended to give meaningful repre-
sentation of sentences via CoMB in a principled manner.
In terms of efficiency, it takes about 3 minutes on one
GPU to get results on all the STS tasks comprising
25,000 sentences (see S1.4 for details). A future avenue
would be to utilize the non-associativity of Wasserstein
barycenters (i.e., B,(u, Bp(v,€)) # By(Bp(p,v),§)), to
take into account the word order with various aggrega-
tion strategies (like parse trees).

6 Hypernymy Detection

In linguistics, hypernymy is a relation between words
where the semantics of one word (the hyponym) are
contained within that of another word (the hypernym).
A simple form of this relation is the is-A relation, e.g.,
cat is an animal. Hypernymy is a special case of the
more general concept of lexical entailment, detecting
which is relevant for tasks such as Question Answering.

Early unsupervised approaches for this task exploited
various linguistic properties of hypernymy (Weeds and
Weir, 2003; Kotlerman et al., 2010; Santus et al., 2014;
Rimell, 2014). While most of these are count-based,
point embedding methods (Chang et al., 2017; Hender-
son and Popa, 2016) have become popular in recent
years. Other approaches represent words by Gaussian
distributions with KL-divergence as an entailment mea-
sure (Vilnis and McCallum, 2014; Athiwaratkun and
Wilson, 2017). These methods have proven powerful,
as they capture not only the semantics, but also the un-

"USE (Cer et al., 2018), which relies on a labeled corpus,
doesn’t report results on STS12-15 but according to (BERT
official repo, 2019), its performance is 67.5 which is close
to CoMB’s unsupervised performance of 66.4. See also
BERT’s performance in BERT official repo (2019).

. rock
music

Figure 4: Distributional estimates of rock and music.
The two words have an overlapping mode (for rock in
the sense of rock music) and separate modes for other
senses (such as rock in the sense of a stone).

certainty about the contexts in which a word appears.

Therefore, hypernymy detection is a great testbed to
verify the effectiveness of our approach to represent
each entity by the distribution of its contexts. The
intuitive idea for the applicability of our method to
this task originates from the Distributional Inclusion
Hypothesis (Geffet and Dagan, 2005), which states
that a word v entails another word w if “the most
characteristic contexts of v are expected to be included
in all w’s contexts (but not necessarily amongst the
most characteristic ones for w)". The inclusion of the
contexts for the words rock and music is illustrated
in Figure 4. We view our method as a relaxation
of this strict inclusion condition by modeling it more
softly with the optimal transport between the set of
contexts corresponding to the hyponym and hypernym.
Hence, it is natural to make use of the Context Mover’s
Distance (CMD), Eq. (4), but with a ground cost that
measures entailment relations.

For this, we utilize a recently proposed method by
Henderson et al. (Henderson and Popa, 2016; Hender-
son, 2017), which explicitly models what information
is known about a word, by interpreting each entry
of the embedding as the degree to which a certain
feature is present. Based on the logical definition of
entailment they derive an operator measuring the en-
tailment similarity between two so-called entailment
vectors defined as follows: v; Gv; = o(—v;)-log o(—v;),
where the sigmoid ¢ and log are applied component-
wise on the embeddings. Thus, we use as ground cost
Dge“d' := —v; © v;. This asymmetric ground cost
shows that our framework can be flexibly used with an
arbitrary cost function defined on the ground space.

Evaluation. In total, we evaluate our method on
10 standard datasets using the HypEval'® evaluation
toolkit. The foremost thing that we would like to
check is the benefit of having a distributional estimate
in comparison to just the point embeddings. Here,

9Scores for GE+C, GE+KL, and DIVE are taken from
(Chang et al., 2017) as we use the same evaluation setup.
Ohttps://github.com/context-mover/HypEval
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Validation Set Test Set
Method HypeNet-Train | HypeNet-Test EVALution LenciBenotto Weeds Turney Baroni BIBLESS

(Shwartz et al., (Shwartz  (Santus et al., Benotto (Weeds et al., (Turney and (Baroni and  (Kiela et al.,

2016) et al., 2016) 2015) (2015) 2014) Mohammad, 2015)  Lenci, 2011) 2015)

DHend: 29.0 28.8 31.6 44.8 60.8 56.6 78.3 67.7
CMD g g0+ DHend: 53.4 53.4 38.1 50.1 63.9 56.0 67.5 75.4
CMD g —a50+D"d 53.6 53.7 37.1 49.9 63.8 56.3 67.3 75.2
GE + Cosine NA 21.6 26.7 43.3 52.0 53.9 69.7 NA
GE + KL NA 23.7 29.6 45.1 51.3 52.0 64.6 NA
DIVE NA 32.0 33.0 50.4 65.5 57.2 83.5 NA
Poincaré GloVe NA NA NA NA NA NA NA 65.2

Table 2: Comparison of the entailment vectors from Henderson (2017) used alone (D™e"d") and when used
together with our Context Mover’s Distance (CMDy) as the underlying ground metric, with state-of-the-art
unsupervised methods. The two listed CMD variants are the ones with best validation performance for K = 200
and 250 clusters. The scores are AP@all (%), except for BIBLESS where it is accuracy. More details about
the training setup and results on other datasets can be found in Section S1.1, and Table S12 in Section S6.2.
Best results for each column are in bold and the 2°¢ best are underlined.

Validation Set Test Set
Method MEN + MC MTurk-287 MTurk-771  RG RW SimLex Verb WS-ALL ~ WS-REL ~ WS-SIM YP SimVerb-T Wt.
SimVerb-D [30] [285] [771) [65] [1493] [998] [144] [352] [251] [203] [130] [2099] | Average
[2499] [7721]
DGlove 61.1 67.8 66.8 61.7 73.7 33.7 34.8 26.4 53.5 40.9 68.2 54.5 19.4 35.0
CMDg—400 + D°V¢  60.8 69.6 67.8 62.1 73.1 38.9 33.9 23.6 55.3 44.1 69.2 53.0 18.9 35.9

Table 3: Performance on standard word similarity tasks measured by Spearman’s rho x 100. Both methods are
based on Toronto Book Corpus (0.9 B) to ensure fair comparison. The last column is the weighted average of test
set performance, with weights as [# of word pairs| present in the vocabulary for each dataset.

we observe that employing CMD along with the en-
tailment embeddings, leads to a significant boost on
most of the datasets, except on Baroni and Turney,
where the performance is still competitive with the
other state of the art methods like Gaussian embed-
dings (GE). The more interesting observation is that on
some datasets (EVALution, HypeNet, LenciBenotto)
we even outperform or match state-of-the-art perfor-
mance (cf. Table 2), by simply using CMD together
with this ground cost Dgend' based on the entailment
embeddings. Further, on BIBLESS (equivalent to WB-
LESS), CMD performs better than the state-of-the-art
unsupervised method, Poincaré GloVe, as reported in
Tifrea et al. (2018). Also, qualitative analysis can be
found in Table S18/S19 of the supplementary. Lastly,
these results can be efficiently computed in less than
3 minutes on a single GPU for all datasets (>100,000
pairs) and check Table S15 for details.

7 Word Similarity

The hypernymy detection results indicate the advan-
tage gained by representing with a distribution over
contexts than a point embedding for a word-level task.
Nevertheless, we present results for another standard
word-level task: namely word similarity and related-
ness (Faruqui and Dyer, 2014) in Table 3. We utilize
GloVe embeddings with cosine similarity as a baseline
for point embedding methods and compare the perfor-
mance by using our Context Mover’s Distance (CMD)
on top. But some other point embedding method can
also be plugged into CMD similarly.

In the above, we use the combined development sets
of MEN and SimVerb for validation, as these are the
only datasets with pre-defined development and test
splits. The mixing weight m (see Section 4) is 0.8, the
PPMI smoothing o = 0.15 and the number of clusters
K = 400 for the CMD experiment. We observe that
on a majority of the test datasets, CMD results in a
performance gain and also performs better on average.
An extensive analysis with different embeddings and
corpora is however outside the current scope.

8 Conclusion

We advocate for representing entities by a distribu-
tional estimate on top of any given co-occurrence struc-
ture. For each entity, we jointly consider the histogram
information (with its contexts) as well as the point em-
beddings of the contexts. We show how this enables the
use of optimal transport over distributions of contexts.
Our framework results in an efficient, interpretable and
compositional metric to represent and compare entities
(e.g. words) and groups thereof (e.g. sentences), while
leveraging existing point embeddings. We demonstrate
its performance on several NLP tasks such as word and
sentence similarity, as well as hypernymy detection. A
practical take-home message is: do not throw away the
co-occurrence information (e.g. when using GloVe),
but instead pass it on to our method. Motivated by the
promising results, learning the distributional estimates
and applying the proposed framework on co-occurrence
structures beyond NLP are exciting future directions.
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