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A Supplementary Material

A.1 The proposed DAve-QN method with exact time indices

Algorithm 2 Illustration of the DAve-QN Algorithm

Master:

Initialize x, Bi, g =
∑n
i=1∇fi(x), B−1 =

(
∑n
i=1 Bi)

−1,u =
∑n
i=1 Bix,

for t = 1 to T − 1 do
If a worker sends an update:
Receive ∆u, y, q, α, β from it
u = u + ∆u, g = g + y, v = (B)−1y

U = (B)−1 − vv>

α+v>y

w = Uq, (B)−1 = U + ww>

β−q>w

x = (B)−1(u− g)
Send x to the worker in return

end
Interrupt all workers
Output xT

Worker i:

Initialize xi = x, Bi

while not interrupted by master do
Receive x
si = x− zi
yi = ∇fi(x)−∇fi(zi)
qi = Bisi
α = y>i si
β = s>i B

t
isi

u = Bizi

Bi = Bi +
yiy
>
i

α
− qiq

>
i

β

∆u = Bix− u
zi = x
Send ∆u,yi,qi, α, β to the master

end

A.2 Proof of Lemma 1

Proof. To verify the claim, we need to show that ut =
∑n
i=1 B

t
iz
t
i and gt =

∑n
i=1∇fi(zti). They follow from our

delayed vectors notation zti = z
t−dti
i and how ∆ut−d

t
i and y

t−dti
i are computed by the corresponding worker.

A.3 Proof of Lemma 2

To prove the claim in Lemma 2 we first prove the following intermediate lemma using the result of Lemma 5.2 in
Broyden et al. (1973b).

Lemma 4. Consider the proposed method outlined in Algorithm 1. Let M be a nonsingular symmetric matrix
such that

‖Myti −M−1sti‖ ≤ β‖M−1sti‖, (21)

for some β ∈ [0, 1/3] and vectors sti and yti in Rp with sti 6= 0. Let’s denote i as the index that has been updated
at time t. Then, there exist positive constants α, α1, and α2 such that, for any symmetric A ∈ Rp×p we have,

‖Bt
i −A‖M ≤

[
(1− αθ2)1/2 + α1

‖My
t−Dt

i
i −M−1st−D

t
i

i ‖
‖M−1st−D

t
i

i ‖

]
‖Bt−Dt

i
i −A‖M

+ α2
‖yt−D

t
i

i −As
t−Dt

i
i ‖

‖M−1st−D
t
i

i ‖
, (22)

where α = (1− 2β)/(1− β2) ∈ [3/8, 1], α1 = 2.5(1− β)−1, α2 = 2(1 + 2
√
p)‖M‖F, and

θ =
‖M(B

t−Dt
i

i −A)s
t−Dt

i
i ‖

‖Bt−Dt
i

i −A‖M‖M−1s
t−Dt

i
i ‖

for Bt−Dt
i

i 6= A, θ = 0 for Bt−Dt
i

i = A. (23)

Proof. By definition of delays dti, the function fi was updated at step t − dti and Bt−1
i is equal to B

t−Dt
i

i .
Considering this observation and the result of Lemma 5.2 in Broyden et al. (1973b), the claim follows.
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Note that the result in Lemma 4 characterizes an upper bound on the difference between the Hessian approximation
matrices Bt

i and B
t−Dt

i
i and any positive definite matrix A. Let us show that matrices M = ∇2fi(x

∗)−1/2 and
A = ∇2fi(x

∗) satisfy the conditions of Lemma 4. By strong convexity of fi we have ‖∇2fi(x
∗)1/2st−D

t
i

i ‖ ≥
√
µ‖st−D

t
i

i ‖. Combined with Assumption 2, it gives that

‖yt−D
t
i

i −∇2fi(x
∗)st−D

t
i

i ‖
‖∇2fi(x∗)1/2s

t−Dt
i

i ‖
≤ L̃‖st−D

t
i

i ‖max{‖zt−D
t
i

i − x∗‖, ‖zti − x∗‖}
√
µ‖st−D

t
i

i ‖
=

L̃
√
µ
σti (24)

This observation implies that the left hand side of the condition in (21) for M = ∇2fi(x
∗)−1/2 is bounded above

by

‖My
t−Dt

i
i −M−1st−D

t
i

i ‖
‖M−1st−D

t
i

i ‖
≤ ‖∇

2fi(x
∗)−1/2‖‖yt−D

t
i

i −∇2fi(x
∗)st−D

t
i

i ‖
‖∇2fi(x∗)1/2s

t−Dt
i

i ‖
≤ L̃

µ
σti (25)

Thus, the condition in (21) is satisfied since L̃σti/µ < 1/3. Replacing the upper bounds in (24) and (25) into the
expression in (22) implies the claim in (20) with

β =
L̃

µ
σti , α =

1− 2β

1− β2
, α3 =

5L̃

2µ(1− β)
, α4 =

2(1 + 2
√
p)L̃

√
µ

‖∇2fi(x
∗)−

1
2 ‖F, (26)

and the proof is complete.

A.4 Proof of Lemma 3

We first state the following result from Lemma 6 in Mokhtari et al. (2018a), which shows an upper bound for the
error ‖xt−x∗‖ in terms of the gap between the delayed variables zti and the optimal solution x∗ and the difference
between the Newton direction ∇2fi(x

∗) (zti − x∗) and the proposed quasi-Newton direction Bt
i (zti − x∗).

Lemma 5. If Assumptions 1 and 2 hold, then the sequence of iterates generated by Algorithm 1 satisfies

‖xt − x∗‖ ≤ L̃Γt

n

n∑
i=1

∥∥zti − x∗
∥∥2 +

Γt

n

n∑
i=1

∥∥(Bt
i −∇2fi(x

∗)
) (

zti − x∗
)∥∥ , (27)

where Γt := ‖((1/n)
∑n
i=1 B

t
i)
−1‖.

We use the result in Lemma 5 to prove the claim of Lemma 3. We will prove the claimed convergence rate in
Lemma 3together with an additional claim ∥∥Bt

i −∇2fi(x
∗)
∥∥
M
≤ 2δ

by inductions on m and on t ∈ [Tm, Tm+1). The base case of our induction is m = 0 and t = 0, which is the
initialization step, so let us start with it.

Since all norms in finite dimensional spaces are equivalent, there exists a constant η > 0 such that ‖A‖ ≤ η‖A‖M
for all A. Define γ := 1/µ and d := maxm(Tm+1 − Tm), and assume that ε(r) = ε and δ(r) = δ are chosen such
that

(2α3δ + α4)
dε

1− r
≤ δ and γ(1 + r)[L̃ε+ 2ηδ] ≤ r, (28)

where α3 and α4 are the constants from Lemma 2. As ‖B0
i −∇2fi(x

∗)‖M ≤ δ, we also have

‖B0
i −∇2fi(x

∗)‖ ≤ ηδ.

Therefore, by triangle inequality from ‖∇2fi(x
∗)‖ ≤ L we obtain ‖B0

i ‖ ≤ ηδ + L, so ‖(1/n)
∑n
i=1 B

0
i ‖ ≤ ηδ + L.

The second part of inequality (28) also implies 2γ(1+r)ηδ ≤ r. Moreover, it holds that ‖B0
i−∇2fi(x

∗)‖ ≤ ηδ < 2ηδ
and by Assumption 1 γ ≥ ‖∇2fi(x

∗)−1‖, so we obtain by Banach Lemma that

‖(B0
i )
−1‖ ≤ (1 + r)γ.

We formally prove this result in the following lemma.
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Lemma 6. If the Hessian approximation Bi satisfies the inequality ‖Bi−∇2fi(x
∗)‖ ≤ 2ηδ and ‖∇2fi(x

∗)−1‖ ≤ γ,
then we have ‖B−1i ‖ ≤ (1 + r)γ.

Proof. Note that according to Banach Lemma, if a matrix A satisfies the inequality ‖A− I‖ ≤ 1, then it holds
‖A−1‖ ≤ 1

1−‖A−I‖ .

We first show that ‖∇2fi(x
∗)−1/2Bi∇2fi(x

∗)−1/2 − I‖ ≤ 1. To do so, note that

‖∇2fi(x
∗)−1/2Bi∇2fi(x

∗)−1/2 − I‖ ≤ ‖∇2fi(x
∗)−1/2‖‖Bi −∇2fi(x

∗)‖‖∇2fi(x
∗)−1/2‖

≤ 2ηδγ

≤ r

r + 1

< 1. (29)

Now using this result and Banach Lemma we can show that

‖∇2fi(x
∗)1/2B−1i ∇

2fi(x
∗)1/2‖ ≤ 1

1− ‖∇2fi(x∗)−1/2Bi∇2fi(x∗)−1/2 − I‖

≤ 1

1− r
r+1

= 1 + r (30)

Further, we know that

‖∇2fi(x
∗)1/2B−1i ∇

2fi(x
∗)1/2‖ ≥ ‖B

−1
i ‖
γ

(31)

By combining these results we obtain that

‖B−1i ‖ ≤ (1 + r)γ. (32)

Similarly, for matrix ((1/n)
∑n
i=1 B

0
i )
−1 we get from ‖(1/n)

∑n
i=1 B

0
i−(1/n)

∑n
i=1∇2fi(x

∗)‖ ≤ (1/n)
∑n
i=1 ‖B0

i−
∇2fi(x

∗)‖ ≤ ηδ and ‖∇2f(x∗)−1‖ ≤ γ that∥∥∥∥∥∥
(

1

n

n∑
i=1

B0
i

)−1∥∥∥∥∥∥ ≤ (1 + r)γ.

We have by Lemma 2 and induction hypothesis∥∥Bt
i −∇2fi(x

∗)
∥∥
M
−
∥∥∥Bt−Dt

i
i −∇2fi(x

∗)
∥∥∥
M
≤ α3σ

t−Dt
i

i

∥∥∥Bt−Dt
i

i −∇2fi(x
∗)
∥∥∥
M

+ α4σ
t−Dt

i
i

≤
(
α3

∥∥∥Bt−Dt
i

i −∇2fi(x
∗)
∥∥∥
M

+ α4

)
rm−1ε

≤ (2α3δ + α4) rm−1ε,

By summing this inequality over all moments in the current epoch when worker i performed its update, we obtain
that ∥∥Bt

i −∇2fi(x
∗)
∥∥
M
−
∥∥∥∥BTm−dTm

i
i −∇2fi(x

∗)
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M

≤ (2α3δ + α4) drm−1ε,

Summing the new bound again, but this time over all passed epoch, we obtain

∥∥Bt
i −∇2fi(x

∗)
∥∥
M
−
∥∥B0

i −∇2fi(x
∗)
∥∥
M
≤ (2α3δ + α4) dε
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k=0

rk ≤ (2α3δ + α4) dε

1− r
≤ δ.
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Therefore,
∥∥Bt

i −∇2fi(x
∗)
∥∥
M
≤ 2δ. By using the Banach argument again, we can show that ‖( 1

n

∑n
i=1 B

t
i)
−1‖ ≤

(1 + r)γ. Using this result, for any t ∈ [Tm, Tm+1) we have zti = xt−D
t
i ∈ [Tm−1, t) and we can write

‖xt − x∗‖ ≤ (1 + r)γ

[
L̃

n

n∑
i=1

∥∥zti − x∗
∥∥2 +

1

n

n∑
i=1

∥∥[Bt
i −∇2fi(x

∗)
] (

zti − x∗
)∥∥]

≤ (1 + r)γ
[
L̃ε+ 2ηδ

]
max
i
‖zti − x∗‖

≤ rmax
i
‖zti − x∗‖

≤ rm‖x0 − x∗‖. (33)

A.5 Proof of Theorem 1

Dividing both sides of (27) by (1/n)
∑n
i=1 ‖zti − x∗‖, we get

‖xt − x∗‖
1
n

∑n
i=1 ‖zti − x∗‖

≤ L̃Γt
n∑
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∥∥(Bt
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∗)
)
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(34)

As every term in
∑n
i=1 ‖zti − x∗‖ is non-negative, the upper bound in (34) will remain valid if we keep only one

summand out of the whole sum in the denominators of the right-hand side, so

‖xt − x∗‖
1
n

∑n
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≤ L̃Γt
n∑
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+ Γt

n∑
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∥∥(Bt
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∗)
)
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∥∥
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= L̃Γt
n∑
i=1
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∥∥+ Γt

n∑
i=1

∥∥(Bt
i −∇2fi(x

∗)
)
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∥∥

‖zti − x∗‖
. (35)

Now using the result in Lemma 5 of Mokhtari et al. (2018a), the second sum in (35) converges to zero. Further,
Γt is bounded above by a positive constant. Hence, by computing the limit of both sides in (35) we obtain

lim
t→∞

‖xt − x∗‖
1
n

∑n
i=1 ‖zti − x∗‖

= 0.

Therefore, if T is big enough, for t > T we have

‖xt − x∗‖ ≤ 1

n

n∑
i=1

∥∥zti − x∗
∥∥ =

1

n

n∑
i=1

∥∥∥xt−Dt
i

i − x∗
∥∥∥ ≤ max

i

∥∥∥xt−Dt
i

i − x∗
∥∥∥ . (36)

Now, let t0 = t0(m) := min{t̃ ∈ [Tm+1, Tm+2) : ‖xt̃ − x∗‖ = maxt∈[Tm+1,Tm+2) ‖xt − x∗‖}. In other words, t0
is the first moment in epoch m + 1 attaining the maximal distance from x∗. Then, for all t ∈ [Tm+1, t0) we
have ‖xt − x∗‖ < ‖xt0 − x∗‖. Furthermore, from equation (36) and the fact that, according to Proposition 1,
t0 −Dt0

i ∈ [Tm, t0) we get

max
t∈[Tm+1,Tm+2)

‖xt − x∗‖ = ‖xt0 − x∗‖ ≤ max
i

∥∥∥∥xt0−Dt0
i

i − x∗
∥∥∥∥ ≤ max

t∈[Tm,t0)
‖xt − x∗‖.

Note that it can not happen that maxt∈[Tm,t0) ‖xt − x∗‖ = maxt∈[Tm+1,t0) ‖xt − x∗‖ as that would mean that
there exists a t̂ ∈ [Tm+1, t0) such that ‖xt̂−x∗‖ ≥ ‖xt0 −x∗‖, which we made impossible when defining t0. Then,
the only option is that in fact

max
t∈[Tm,t0)

‖xt − x∗‖ = max
t∈[Tm,Tm+1)

‖xt − x∗‖.
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Finally,

lim
t→∞

maxt∈[Tm+1,Tm+2) ‖xt − x∗‖
maxt∈[Tm,Tm+1) ‖xt − x∗‖

= lim
t→∞

‖xt0(m) − x∗‖
maxt∈[Tm,Tm+1) ‖xt − x∗‖

= lim
t→∞

‖xt0(m) − x∗‖
maxt∈[Tm,t0(m)) ‖xt − x∗‖

≤ lim
t→∞

‖xt0(m) − x∗‖
maxi ‖xt0(m)−Dt0(m)

i − x∗‖

≤ lim
t→∞

‖xt0(m) − x∗‖
1
n

∑n
i=1 ‖z

t0(m)
i − x∗‖

= 0,

where at the last step we used again the fact that zti = xt−D
t
i .

B Implementation of Dave-QN

In Algorithm 2, we provide a simplified version of the Dave-QN in terms of notation and indices of the variables,
which illustrates how Dave-QN can be implemented from master’s and worker nodes’ side further. We observe
that steps at worker i is devoted to performing the update in (11). Using the computed matrix Bi, node i
evaluates the vector ∆u. Then, it sends the vectors ∆u, yi, and qi as well as the scalars α and β to the master
node. The master node uses the variation vectors ∆u and y to update u and g. Then, it performs the update
xt+1 = (Bt+1)−1

(
ut+1 − gt+1

)
by following the efficient procedure presented in (16)–(17).
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