DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlinear Convergence Rate

A Supplementary Material

A.1 The proposed DAve-QN method with exact time indices

Algorithm 2 Illustration of the DAve-QN Algorithm

Initialize x, B;, g = >, Vfi(x), B™' = Initialize x; = x, B;
(X", Bi) Hu=Y" Bix while not interrupted by master do
=1 ’ =170 Receive x
fort=1toT —1do Ve
If a worker sends an update: Si =X—12
Receive Au, y, q, «, 8 from it yi = Vfi(x) — Vfi(zi)
u=u+Au,g=g+y,v=(B)ly q: = Bss;
_ —1_ _wv' a=Yy; S
U= (B) atv iy - B = S;rBfSZ
_ -1 _ wWwW — iy
W = Uq: 1(B) =U+ B—alw u Biz; iyT asaT
x=(B) "} (u—g) B, = B, + ¥ -l
Send x to the worker in return Au=B;x—u
end Zi =X
Interrupt all workers Send Au,y;, qi, a, 8 to the master
Output x7 end

A.2 Proof of Lemma[1l

Proof. To verify the claim, we need to show that u® = """  Blz! and g' =" | Vf;(z!). They follow from our
t

—dt —dt .
b= z: % and how Aut~% and ylt- % are computed by the corresponding worker. [J

delayed vectors notation z; =

A.3 Proof of Lemma 2]
To prove the claim in Lemma 2] we first prove the following intermediate lemma using the result of Lemma 5.2 in
Broyden et al| (1973b).

Lemma 4. Consider the proposed method outlined in Algorithm[1l Let M be a nonsingular symmetric matriz
such that

My —M™'si|| < B|M sl (21)

for some B € [0,1/3] and vectors st and y! in RP with st # 0. Let’s denote i as the index that has been updated
at time t. Then, there exist positive constants o, a1, and as such that, for any symmetric A € RP*P we have,

t—D t—D!
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1B~ Al < | (1 a?)72 g P =S tont gy
M-tsy
t—Dt t—D?
=Di _ AglTPi
by Iy tj; (22)
[M~1s; ™
where o= (1-28)/(1 — 6?) € [3/8,1], a1 = 2.5(1 — /)=, az = 2(1 + 2,/p)||M]r, and
M(BP At _pt - D
- I Bl BT A 60 fr BT A (23)
IB; " — Alm|M~ts;
t—D!

Proof. By definition of delays d!, the function f; was updated at step ¢ — d! and Bg_l is equal to B,
Considering this observation and the result of Lemma 5.2 in Broyden et al.| (1973b)), the claim follows. O
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Note that the result in Lemmald] characterizes an upper bound on the difference between the Hessian approximation
matrices B! and BE_D’? and any positive definite matrix A. Let us show that matrices M = V2 f;(x*)~/2 and
A = V2f;(x*) satisfy the conditions of Lemma By strong convexity of f; we have |V2f; (x*)l/stiDz
\/EHSE_DE |. Combined with Assumption it gives that

t—D! t—D! = t—D! =
ly; ' = V2fi(x)s, 1H<Llls P! || max{ | x|l Xy L

t — t ; (24)
— Dt — Dt 7
V2 fi(x*)/2s; 7" Vals: Yz

This observation implies that the left hand side of the condition in for M = V2 f;(x*)~'/2 is bounded above
by
—-Dt _ —-D! ) — _ D; ~
IMy; ™ = M VR )l = VRGeS L, (25)
s T 192 i) 1r2s | S

Thus, the condition in is satisfied since Eof /1 < 1/3. Replacing the upper bounds in and into the
expression in implies the claim in with

L, 1-28 5L 2(1+2p)L

ﬂ:—o‘i7a: a3 = s Q4=
I Vi

T T =) IV2£:x) " e, (26)

and the proof is complete.

A.4 Proof of Lemma [3|

We first state the following result from Lemma 6 in Mokhtari et al.| (2018a), which shows an upper bound for the
error ||x' —x*| in terms of the gap between the delayed variables z! and the optimal solution x* and the difference
between the Newton direction V2 f;(x*) (z! — x*) and the proposed quasi-Newton direction B! (zf — x*).

Lemma 5. If Assumptions[1] and[3 hold, then the sequence of iterates generated by Algorithm [1] satisfies

It — x*| < 7Z||z P S DIBE - VR G) (s - X)) 27)

i=1
where Tt := ||((1/n) Z;L:l B~

We use the result in Lemma [5] to prove the claim of Lemma [3] We will prove the claimed convergence rate in
Lemma [Bfogether with an additional claim

1B = V2 i) |y < 20

by inductions on m and on t € [Ty, Trmt1). The base case of our induction is m = 0 and ¢ = 0, which is the
initialization step, so let us start with it.

Since all norms in finite dimensional spaces are equivalent, there exists a constant n > 0 such that ||A] < n||Alm
for all A. Define v := 1/u and d := max,,(Trm4+1 — Tin), and assume that €(r) = € and §(r) = 0 are chosen such
that

<6 and ~y(1+7)[Le+ 208 <r, (28)

de
(2030 + a4)1

where a3 and a4 are the constants from Lemma [2] E As [|BY — V2 fi(x*)|lm < 8, we also have
IBY — V2 £i(x)|| < né.

Therefore, by triangle inequality from |[V2f;(x*)|| < L we obtain |B?|| < nd + L, so ||(1/n) > i, BY|| < nd + L.
The second part of inequality (28) also implies 2v(1+7)nd < r. Moreover, it holds that | BY—V?2 f;(x*)|| < nd < 2nd
and by Assumption I v > ||V2f1( *)~1|, so we obtain by Banach Lemma that

1B < (X +7r)y.

We formally prove this result in the following lemma.
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Lemma 6. If the Hessian approzimation B, satisfies the inequality |B; — V2 f;(x*)|| < 2nd and ||V? f;(x*) 71| < v,
then we have |B; Y| < (1+7)7y.

Proof. Note that according to Banach Lemma, if a matrix A satisfies the inequality ||A — I|| < 1, then it holds

—1 1
AT < =a—-

We first show that || V2f;(x*)~1/2B;V2f;(x*)~1/?2 —I|| < 1. To do so, note that

V2 fi(x) 2B V2 fi(x*) T2 = T < IV £i(x*) T2 IBs = VR £ () IV fi(x*) 2
< 2ndy
T
r+1
<1 (29)

IN

Now using this result and Banach Lemma we can show that

1
V2 : * 1/2B71v2 ; *\1/2 <
|| f (X ) i f (X ) || =71_ ||v2fi(X*),l/gBivgfi(X*),l/Q — IH
1
< G
1 - r+1
=147 (30)
Further, we know that
2 #\1/2p—12 *\1/2 ||B;1H
IVZFi(x") "B Vafi(x) ] = — (31)
By combining these results we obtain that
B < (1+7)y. (32)
O

Similarly, for matrix ((1/n) >, B?)~" we get from ||(1/n) >, BY —(1/n) >0, V2 fi(x*)]
V2fi(x*)|| < nd and ||[V2f(x*) "1 < v that

(711 zn: B?) < (1+47)y.
i=1

We have by Lemma [2] and induction hypothesis

< (1/n) 3o, 1B -
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+ a4> rmle
M
< (2030 + ) r™ e,

By summing this inequality over all moments in the current epoch when worker 7 performed its update, we obtain
that

HBf — V2 fi(x¥) |M — HBZ-Tm_di " V2 fi(x*) < (2036 + ag) dr™ e,

M
Summing the new bound again, but this time over all passed epoch, we obtain

20[3(5 =+ Oé4) dE

m—1
B! — 92 06" g~ B9 — V206 [ < (2aasd + e Y- o < 20T 5
k=0
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_ v2fi (X*)

1+ r)y. Using this result, for any ¢t € [T, Tini1) we have 2zt = 2t=Di € [T),,_1,t) and we can write
+ 7

=l < 1| ZHZ ZH B!~ V2/,x)] (2 — x)

< (1+7)y [Le+ 2n6} max ||z} — x"|

u < 20. By using the Banach argument again, we can show that || (£ Y7, B!) 7| <

< rmax ||z; — x"|
(2

< rmeO —x*. (33)

A.5 Proof of Theorem [I]

Dividing both sides of by (1/n) >0, ||zt — x*||, we get

ciry — x| ey IUBEZ VRAG)) (e = ) (34)

& i 2t — x| iz = Pt > i Iz — x|

As every term in ) ., ||z} — x*|| is non-negative, the upper bound in will remain valid if we keep only one
summand out of the whole sum in the denominators of the right-hand side, so

I —X*Hx*” < zpti Izt — x| th I(B (x")) (2t —x")|

& izt — 12} — x| —x*

_LI‘tZHz xH—I—FtZH sz ))(Zﬁx*)”. (35)

z; — x|

Now using the result in Lemma 5 of Mokhtari et al.| (2018a), the second sum in converges to zero. Further,
I' is bounded above by a positive constant. Hence, by computing the limit of both sides in we obtain

Therefore, if T' is big enough, for ¢ > T we have

t—D!

1 n
I — x| < == |
n
i=1

(36)

— X

H tin ’

Now, let tg = to(m) = min{t € [Tpi1, Tmyo) : |xF — x| = MaX;e[7,, 1, Ths) 1X° — X*[|}. In other words, tg
is the first moment in epoch m + 1 attaining the maximal distance from z*. Then, for all ¢t € [T,,+1,t0) we
have ||x! — x*|| < [|x! — x*||. Furthermore, from equation and the fact that, according to Proposition
to — DI € [Ty, to) we get

_p'o
max x! — x*|| = [|x' — x*|| < max X;O b < max [x'—x*|.
te[Tm+1,Tm+2) i t€[Tm,to)
Note that it can not happen that max,c(z,, 1) [|x" — x*|| = maxicr,, ., 10) [IX* — x*|| as that would mean that

there exists a £ € [T},41,%0) such that ||x* —x*|| > [|x’ — x*||, which we made impossible when defining o. Then,
the only option is that in fact

max ||x' —x*||= max [x'—x*|.
te[Tm,to) te[Trm, Tmy1)



DAve-QN: A Distributed Averaged Quasi-Newton Method with Local Superlinear Convergence Rate

Finally,

t
lim maxte[Tm,+1,Tm+2) ||): - X*H — lim ||Xt0(m) _ X*”
=00 MaXie(T,, T,,,q) X' —X*||  t=o0 maxyer,, 1.,

) X = x|

t—00 MAXye[T,,, 10 (m)) |IX! — X*||

¢t () — x|

< lim to(m)
t—o0 max; ||Xt0('m)—Di _ X*H
o) — x|
< lim =

T e LS gl x|

where at the last step we used again the fact that z! = x*~D.

B Implementation of Dave-QN

In Algorithm [2] we provide a simplified version of the Dave-QN in terms of notation and indices of the variables,
which illustrates how Dave-QN can be implemented from master’s and worker nodes’ side further. We observe
that steps at worker ¢ is devoted to performing the update in . Using the computed matrix B;, node i
evaluates the vector Au. Then, it sends the vectors Au, y;, and q; as well as the scalars « and  to the master
node. The master node uses the variation vectors Au and y to update u and g. Then, it performs the update
x!t1 = (B!1)~1 (utt! — g'*1) by following the efficient procedure presented in (16)—(L7).
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