
Supplementary material - Sample complexity bounds for localized
sketching

1 Proof of Theorem 1

The fundamental property of a distribution of matrices
D that enables any S ∼ D to satisfy (8, main paper) is
the subspace embedding moment property, defined in
[Avron et al., 2016]:

E
S∼D

∥∥(SU)T (SU)− I
∥∥l ≤ εlδ, (1)

for some l ≥ 2, where ε and δ are tolerance parameters
that determine the sample complexity and U is any
orthobasis for the span of the columns of W and Y.
Thus, our main goal is to prove the subspace embedding
moment property holds for block diagonal sketching
matrices.

Our methods differ from the common ε-net argument,
since using union bound for block diagonal matrices
results in a suboptimal sample complexity. The main
tools we use are the estimates for the suprema of
chaos processes found in [Krahmer et al., 2014] and
an entropy estimate from the study of restricted isom-
etry properties of block diagonal matrices computed in
[Eftekhari et al., 2015]. We first establish tail bounds
on the spectral norm of the matrix

∆ = (SDU)T (SDU)− I, (2)

where U is an orthobasis for a subspace of dimension d
and then bound its moments to establish the subspace
embedding moment property.

1.1 Suprema of chaos processes

We briefly state here the main result from
[Krahmer et al., 2014] that provides a uniform bound
on the deviation of a Gaussian quadratic form from
its expectation. Obtaining a tail bound on the spec-
tral norm of ∆ is just a particular application of this
general framework.

For a given set of matrices P, we define the spectral
radius d2(P), the Frobenius norm radius dF (P), and

the Talagrand functional γ2(P, ‖ · ‖2) as

d2(P) = sup
P∈P
‖P‖ ,

dF (P) = sup
P∈P
‖P‖F ,

γ2(P, ‖ · ‖2) =

∫ d2(P)

0

√
logN(P, ‖‖2, u)du,

where N(P, ‖‖2, u) denotes the covering number of the
set P with respect to balls of radius u in the spectral
norm. The main result of [Krahmer et al., 2014] then
is the following theorem.

Theorem 1 [Theorem 3.1, [Krahmer et al., 2014] ]
Let P be a set of matrices and let φ be a vector of
i.i.d. standard normal entries. Then for t ≥ 0,

P
(

sup
P∈P
|‖Pφ‖2 − E ‖Pφ‖2| > c1E + t

)
≤ 2e−c2 min{ t2

V 2 ,
t
U }

(3)
where

E = γ2(P)[γ2(P) + dF (P)] + d2(P)dF (P),

V = d2(P)[γ2(P) + dF (P)],

U = d22(P).

A similar approach of using the results from
[Krahmer et al., 2014] to analyze block diagonal ran-
dom matrices was first used in [Eftekhari et al., 2015]
in the context of compressed sensing. However, we tar-
get a different set of problems that result in different
theoretical considerations and proof techniques.

1.2 Tail bound on the spectral norm of the
matrix ∆

We first express ‖∆‖ as

‖∆‖ = sup
z∈Rd
‖z‖=1

∣∣zT (SDU)T (SDU)z− 1
∣∣ (4)

= sup
z∈Rd
‖z‖=1

∣∣∣‖SDUz‖2 − E ‖SDUz‖2
∣∣∣ . (5)

For the matrices Sj , let vec(Sj) denote their
vectorized versions, obtained by stacking the
columns one below the other. Let Sv =
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[vec(S1)T vec(S2)T · · · vec(SJ)T ]T be the vector con-
taining all of the vec(Sj)’s. Note that Sv is a vector
with entries drawn from N (0, 1). We can then express
(4) as

‖∆‖ = sup
Pz∈P

∣∣∣‖PzSv‖2 − E ‖PzSv‖2
∣∣∣

where P is defined

P =

Pz =


P1(z) 0 · · · 0

0 P2(z) · · · 0
...

...
. . .

...
0 0 · · · PJ(z)


 ,

Pj(z) =
1√
Mj


(U1z)

T 0 · · · 0
0 (U1z)

T · · · 0
...

...
. . .

...
0 0 · · · (U1z)

T


where z ∈ Rd and ‖z‖ = 1. Observe that ‖∆‖ is then
the supremum of the deviation of a Gaussian quadratic
form from its expectation, taken over the set P.

We can then compute the corresponding quantities
d2(P), dF (P) and γ2(P, ‖·‖2) as follows.

The spectral radius d2(P) is defined as

sup
Pz∈P

‖Pz‖ = max
j,‖z‖2=1

‖Ujz‖√
Mj

≤ min

(√
N ‖Uj‖∞ ‖z‖1√

Mj

,
‖Uj‖ ‖z‖2√

Mj

)

≤ min

(√
N ‖Uj‖∞ ‖z‖1√

Mj

,
‖Uj‖ ‖z‖1√

Mj

)

≤ ‖z‖1 /
√
M0 ≤

d1√
M0

where the fourth line follows from the definition of Mj .

The radius in the Frobenius norm dF (P) is defined as

sup
Pz∈P

‖Pz‖F =
∑
j

‖Ujz‖2 = 1.

The upper bound for γ2(P, ‖·‖) can be obtained from
the Equation (34) in Eftekhari et al., 2015).. In their
derivation, they consider a full orthobasis and the set
of d-sparse vectors. This bound also holds for a fixed
d-dimensional subspace. Hence,

γ2(P, ‖·‖) .
√

d

M0
log d log M̃ (6)

Plugging these quantities into Theorem 1, we can ob-
tain Lemma 1.

Lemma 1 For any orthonormal matrix U ∈ RÑ×d

and a block diagonal matrix SD as in Theorem 1, there
exists a constant c such that

P

‖∆‖ ≤ c√d log(2/δ)

M0

 ≥ 1− δ. (7)

For a desired tolerance ε, if M0 = Ω
(
d log(2/δ)

ε2

)
,

P (‖∆‖ ≤ ε) ≥ 1 − δ. This is similar to a subspace
embedding guarantee. We now show that this tail
bound naturally induces a bound on the moments of
‖∆‖, from which the main theorems in Section 2 can
be proved.

1.3 Moment bound on ‖∆‖

Tail bounds for certain random variables can be trans-
lated into bounds on their moments using the following
result:

Lemma 2 (Proposition 7.13, [Foucart and Rauhut, 2013])
Suppose that a random variable q satisfies, for some
γ > 0,

P
(
|q| ≥ e1/γαu

)
≤ βe−u

γ/γ

for all u > 0. Then, for p > 0,

E |q|p ≤ βαp(eγ)p/γΓ

(
p

γ
+ 1

)
where Γ(·) is the Gamma function.

To adapt this result to bound the moments of the
spectral norm of the random matrix ∆, we can choose
q = ‖∆‖, γ = 2, β = 1 and e−u

2/2 = δ. We can then
obtain the following result.

Lemma 3 For any orthonormal matrix U ∈ RÑ×d

and a block diagonal matrix SD as in Theorem 1 and

M0 = Ω
(
d log(2/δ)

ε2

)
, then

E ‖∆‖p ≤ εpδ (8)

for p = ( log(1/δ)
ε2 ).

1.4 Approximate matrix product guarantee

With the moment bound established above, we can
now use the framework given by [Cohen et al., 2015]
to establish (8, main paper). However, we cannot use

their proof directly, since the sample complexity M̃ in
the moment bound in (8) is not oblivious to the matrix
U. However, once we fix the data matrix, we can adapt
the argument used in [Cohen et al., 2015] to show that
(8, main paper) holds.



Let W and Y be as in (8, main paper). As explained
in [Cohen et al., 2015], we can assume that they have
orthogonal columns. For a given k as in (8, main
paper), let W and Y be partitioned into groups of
k columns, with Wl and Yl′ denoting the lth groups.
[Cohen et al., 2015] then use the following result in
their argument, which follows from (8):

E
∥∥(SWl)

T (SYl′)−WT
l Yl′

∥∥p ≤ εp ‖Wl‖p ‖Yl′‖p δ
(9)

for all pairs (l, l′). This holds since in their setting, the
sketching matrices are oblivious to the data matrices.

Although block diagonal matrices are not oblivious,

this result holds with for M0 = Ω
(

2k log(2/δ)
ε2

)
. This is

because of the observation that if U is an orthobasis
for the span of W and Y and Ul,l′ is an orthobasis for
the span of Wl and Yl′ , then

Γ(Ul,l′

j ) ≤ Γ(Uj) (10)

for all pairs (l, l′). Hence, a given block diagonal sketch-
ing matrix SD can satisfy (9) as well. The rest of the
proof remains the same as [Cohen et al., 2015]. This
concludes the proof for Theorem 1. Extending this to
prove Theorem 2 is straightforward, with SD being a
particular case of their framework.

2 Algorithm for estimation of the
incoherence parameters Γ(Uj)

Our algorithm for estimating the block incoherence
parameters is inspired by the algorithms for lever-
age score estimation in the row sampling literature
[Drineas et al., 2012, Woodruff, 2014] and from ran-
domized SVD algorithms [Halko et al., 2011].

The main idea is the following: suppose we had access
to the QR factorization of the data matrix A ∈ Ñ × d:

A = QR. (11)

Then, an orthobasis can be obtained by computing
Q = AR−1. However, computing the QR-factorization
is as expensive as the matrix multiplication or ridge
regression problems. We use a similar approach, but
we only aim to capture the row space of A in a dis-
tributed fashion. However, we take random projec-
tions in an iterative fashion, until the row space of
the sketch “converges”. we estimate the QR factor-
ization from this resulting sketch. Our algorithm is
described in Algorithm 1. Note that we only aim to
compute a constant factor approximation of the QR
factors. Hence, computing the R takes, in the worst
case, O(JdN logN) = O(Ñd logN) time. The QR
factorization in each iteration can be updated from
its previous estimates efficiently. Computing the final

Algorithm 1 Estimation of incoherence parameters
up to constant factor error

Input: Blocks Aj .

Initialize Ω ∈ RO(1)×N ,Q = 0,R = 0, Â = 0 where Ω
is drawn from any subsampled randomized FJLT.
rank(R) not converged Compute Âj = ΩA.

Aggregate Â = [Â>1 Â>2 · · · Â>J ]> at the central pro-
cessing unit with previous estimate
Update QR = qr(Â)
Draw a new independent realization of Ω

Compute Γ̂(Uj) =
∥∥AR−1

∥∥2
F

Output: Normalized estimates Γ̂(Uj)/
∑
j Γ̂(Uj)

estimate takes about O(Jd3) time. Finally computing

Γ̂(Uj)’s takes O(Ñd) time, resulting in a total worst

case time complexity of O(Ñd logN).
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