
Supplementary Material to the Article
The Area of the Convex Hull of Sampled Curves:
a Robust Functional Statistical Depth Measure

First, Section A collects technical proofs omitted in the body of the article. Then, Section B provides the
exact algorithm for approximate computation of the proposed depth notion. Finally, Section C collects further
experimental results mentioned in the article.

A Technical proofs

This part presents the proofs of Proposition 3.1, Theorems 3.1 and 3.2 as well as the counter examples for the
non-satisfied properties. Most of the proofs are done for both DJ and DJ .

A.1 Proof of Proposition 3.1

A.1.1 Affine-invariance

Let a, b ∈ R, it is clear that

conv (graph ({aX1 + b, ..., aXn + b}))
= a× conv (graph ({X1, ..., Xn})) + b

where a × conv (graph ({X1, ..., Xn})) + b = {(t, ax + b) : (t, x) ∈ conv (graph ({X1, ..., Xn}))}. Following this,
and by properties of Lebesgue measure, we have

λ2 (a× conv (graph ({X1, ..., Xn})) + b)

λ2 (a× conv (graph ({X1, ..., Xn, z})) + b)
=

λ2 (a× conv (graph ({X1, ..., Xn})))
λ2 (a× conv (graph ({X1, ..., Xn, z})))

=
a× λ2 (conv (graph ({X1, ..., Xn})))
a× λ2 (conv (graph ({X1, ..., Xn, z})))

=
λ2 (conv (graph ({X1, ..., Xn})))
λ2 (conv (graph ({X1, ..., Xn, z})))

The case of a,b ∈ X :
Now, we just take a counter example to prove that it is not true if b belongs to X , the case where a ∈ X is trivial.
For the sake of simplicity, let I = [0, 1] and J = 2. If we take x ≡ 0, x1 ≡ 1, x2 ≡ 2 and X a random variable with
distribution P such that P(X ≡ x1) = 1

2 and P(X ≡ x2) = 1
2 . Let X1, X2 be samples from P and b be continuous

function t 7→ (10t − 4)1([0.4,0.5]) + (−10t + 6)1([0.5,0.6]). It is easy to see that DJ(x|P ) = 1
8 6= DJ(x + b|PX+b)

since

DJ(x+ b|PX+b) =
1

2
×
(

1

2
× 0.5

1.5
+

1

2
× 0.5

2.5

)j=1

+
1

2
×
(

1

4
× 0.5

1.5
+

1

4
× 0.5

2.5
+

1

2
× 1.5

2.5

)j=2

=
8

60
+

9

60

=
17

60
.

Note that even if we set j > 1 to avoid the fact that the convex hull of constant function have null Lebesgue
measure, DJ(x|P ) and DJ(x+ b|PX+b) remain different, see Fig. 1.
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Figure 1: Plots of the functions used in the case of a,b ∈ X . The three red lines come from x1, x2, x. The cyan
curves correspond to x1 + b and x2 + b and blue curve to x+ b.

A.1.2 Vanishing at infinity

Let J be fixed and xn a sequence of function such that ||xn|| tends to infinity when n grows, for every j ∈ {1, ..., J}
we define :

Φxn
: X⊗j −→ [0, 1]

(x1, ..., xj) 7−→
λ2 (conv (graph({x1, ..., xj})))

λ2 (conv (graph({x1, ..., xj , xn})))

As a continuous function on compact set, x1, ..., xj are bounded, then Φxn
−→

||xn||∞→∞
0. The result follows from

dominated convergence theorem since Φxn
is bounded by 1.

A.1.3 Continuity in x

Let x1, ..., xj , j ∈ {1, ..., J} be fixed curves in C(I) with at least two different curves, i.e, there exists a t ∈ I and
l, k ∈ 1, ..., j such that xk(t) 6= xl(t). If j = 1, we need that x1 is not a constant function. From Lemma A.6.1,
we know that the function

f : x 7−→ Band(x1, ..., xj , x)

is continuous.

Let K2 be the set of all compact set in R2 and KC2 the set of all convex bodies (compact, convex set with
non-empty interior). We equip both spaces with the Hausdorff distance. We know that :

conv :K2 −→ K2

K2 7−→ conv(K2)

and

ψ :KC2 −→ KC2
Kc

2 7−→ λ2(Kc
2)

are continuous with respect to the Hausdorff distance. See for example, Theorems 12.3.5 and 12.3.6 in
Schneider and Weil (2008) for g and Theorem 1.8.16 in Schneider (2013) for ψ. Then Φ := ψ ◦ conv ◦ f :
x 7→ λ2 (conv (graph{x1, ..., xj , x}))) is continuous.
It is straightforward to show that

φ : x 7−→ λ2 (conv (graph({x1, ..., xj})))
λ2 (conv (graph({x1, ..., xj , x})))

is continuous. Now, we just have to prove that

x 7−→ E
[
λ2 (conv (graph({x1, ..., xj})))
λ2 (conv (graph({x1, ..., xj , x})))

]
is continuous which is true by dominated convergence theorem. We conclude the proof with the continuity of
the sum of continuous functions.



A.2 Continuity in P

(C([0, 1]), ||.||∞) is a polish space and implies that the set of all probability measures on this space with the
Lévy-Prohorov metric ρLP is still polish. By the portmanteau theorem (e.g., see Theorem 11.3.3 in Dudley

(2002)) it follows that ρLP (Qn, Q)→ 0 is equivalent to Qn
d→ Q for Q,Qn respectively a measure and a sequence

of measures on C([0, 1]). It implies that ∫
fdQn −→

∫
fdQ

for every f bounded continuous real function on (C([0, 1]), ||.||∞).

Let j be fixed natural number and define the following function

Φx : X⊗j −→ [0, 1]

(x1, ..., xj) 7−→
λ2 (conv (graph({x1, ..., xj})))
λ2 (conv (graph({x1, ..., xj , x})))

If we equip C([0, 1])⊗j with the infinite norm |||.|||∞,j defined by

|||f |||∞,j = max(||f1||∞, ..., ||fj ||∞),

following the same argument from the proof A.1.3, Φx is bounded and continuous.
Now, let J ≤ n be fixed and Pn be a sequence of measures on C([0, 1]) such that ρLP (Qn, Q)→ 0. we have :

lim
n→∞

J∑
j=1

Dj(x|Qn) =

J∑
j=1

lim
n→∞

∫
C([0,1])⊗j

ΦxdQ
⊗j
n

=

J∑
j=1

∫
C([0,1])⊗j

ΦxdQ
⊗j

=

J∑
j=1

Dj(x|Q)

Then the results holds for
∑J
j=1Dj (and trivially for DJ).

A.3 Proof of the Theorem 3.1

For every 1 ≤ j ≤ J ,the term |Dj,n(x|Pn)−Dj(x|P )| goes to zero almost-surely by U-statistics consistency (see
e.g. Hoeffding (1961)). Then

P
(
∀j :

∣∣∣∣Dj,n(x|Pn)−Dj(x|P )

∣∣∣∣→ 0

)
= 1

which is equivalent to

P

 J∑
j=1

∣∣∣∣Dj,n(x|Pn)−Dj(x|P )

∣∣∣∣→ 0

 = 1 .

By triangle inequality, for any x ∈ C([0, 1]),∣∣∣∣ J∑
j=1

Dj,n(x|Pn)−Dj(x|P )

∣∣∣∣ ≤ J∑
j=1

∣∣∣∣Dj,n(x|Pn)−Dj(x|P )

∣∣∣∣
≤

J∑
j=1

∣∣∣∣Dj,n(x|Pn)−Dj(x|P )

∣∣∣∣
which leads to the result.
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A.4 Proof of the Theorem 3.2

The result follows from the continuity in P and Theorem 3 in Nagy et al. (2016).

A.5 Counter-examples for the not-satisfied properties

A.5.1 Maximality at the center

We restrict ourselves for simplicity to J = 2 and I = [0, 1]. Let X ∼ P be a distribution such that P (X ≡ y1) =
P (X ≡ y2) = 1

2 with

y1 = (−2t+ 1)1[0,0.25] + (2t)1[0.25,0.5] + (−2t+ 2)1[0.5,0.75] + (2t− 1)1[0.75,1] ,

y2 = −y1 .

The distribution is clearly centrally and halfspace symmetric around θ ≡ 0 but we have

DJ(θ, P ) < DJ(y1, P ) = DJ(y2, P ) .

Since

DJ(0, P ) =
1

2
×
(

1

2
× 3

8
+

1

2
× 3

8

)j=1

+
1

2
×
(

1

2
+

1

4
× 3

8
+

1

4
× 3

8

)j=2

=
17

32
≈ 0.53

and

DJ(y1, P ) =
1

2
×
(

1

2
×+

1

2
× 3

16

)j=1

+
1

2
×
(

1

2
+

1

4
+

1

4
× 3

16

)j=2

=
70

128
≈ 0.546
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Figure 2: Plot of the functions used in the counter example of the maximality at the center property. y1 (blue
curve) and y2 (cyan curve) correspond to the distribution and θ ≡ 0 corresponds to the red curve.

A.5.2 Decreasing w.r.t. the deepest point

We restrict ourselves I to [0, 1] and J = 2 for the sake of comprehension but the example still works on every I.
Let P be the distribution such that

P (X ≡ 0) = P (X ≡ 1) = P (X ≡ −1) =
1

3
.

It is clear from this distribution that 0 ∈ sup
x∈X

D(x, P ) and , if we write z ≡ 0, DJ(z, P ) = 1
4 . We define y ≡ 1.5

and x(t) = 4t1[0,0.5](t) + (−4t+ 4)1[0.5,1](t). We have d(x, z) = 2, d(x, y) = 0.5 and d(y, z) = 1.5. If we compute
the depth of x and y we have :

DJ(y, P ) =
1

2
× 2

9
×
(

4

5
+

2

5
+

2

3

)
=

23

135



and

DJ(x, P ) =
1

2
× 2

9
×
(

4

5
+

1

2
+

8

9

)
=

197

810
.

The result follows. Notice that the result remains true if conv is replaced by the band function.

0.0 0.2 0.4 0.6 0.8 1.0
time

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

va
lu

es

z
y
x

Figure 3: Plots of the functions used in the counter example of the decreasing property. The three red lines come
from the distribution, the thicker red curve corresponds to the maximal depth. The cyan curve corresponds to
x and the blue curve to y.

A.6 Technical requirements

Lemma A.6.1 Let x1, ..., xj, j ∈ {1, ..., J} be fixed curves in C([0, T ]). The function

C([0, T ]) −→ K2

x 7→ Band(x1, ..., xj , x)

is continuous if we equip K2 with the Hausdorff distance dH .

Proof. Let x0 ∈ C([0, T ]) and j be fixed in {1, ..., J}. We want to prove

∀ε > 0,∃δ : ∀x ∈ C([0, T ]) : ||x− x0||∞ < δ ⇒ dH(Band(x1, ..., xj , x), Band(x1, ..., xj , x0)) ≤ ε

Let ε > 0, and write Bx := Band(x1, ..., xj , x) and Bx0 := Band(x1, ..., xj , x0) for the simplicity of notation. We
have :

dH(Bx, B(x0)) = max

(
sup
z∈Bx

d(z,Bx0), sup
z∈Bx0

d(z,Bx)

)
with d being the distance induced by ||.||∞.
It is easy to see that for any z ∈ Bx, inf

y∈Bx0

||z − y||∞ is minimized by the function y∗(t) =

z(t)1(z(t)∈Bx0 )
+max(x1(t), ..., xj(t), x(t))1(z(t)/∈Bx0 )

.

Following this, we have :

d(z,Bx0
) = ||z − y∗||∞

= max( sup
t:z(t)/∈Bx0

,z(t)>Bx0

|z(t)−max(x1(t), ..., xj(t), x(t))|,

sup
t:z(t)/∈Bx0

,z(t)<Bx0

|z(t)−min(x1(t), ..., xj(t), x(t))|)

z ∈ Bx implies that ∀t, min

(
x(t), min

i=1,...,j
Xi(t)

)
≤ z(t) ≤ max

(
x(t), max

i=1,...,j
Xi(t)

)
. If z(t) > Bx0

too,

max( max
i=1,...,j

Xi(t), x0(t)) < z(t) ≤ x(t) and

sup
t:z(t)/∈Bx0 ,z(t)>Bx0

|z(t)−max(x1(t), ..., xj(t), x(t))| = sup
t:z(t)/∈Bx0 ,z(t)>Bx0

|z(t)− x(t)|.
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With the same argument we have :

sup
t:z(t)/∈Bx0 ,z(t)<Bx0

|z(t)−max(x1(t), ..., xj(t), x(t))| = sup
t:z(t)/∈Bx0 ,z(t)<Bx0

|z(t)− x(t)|.

It follows that for every z ∈ Bx , d(z,Bx0) ≤ ||x− x0||∞ ≤ ε (simply by taking δ = ε). We then have

sup
z∈Bx

d(z,Bx0) ≤ ε .

We can prove that

sup
z∈Bx0

d(z,Bx) ≤ ε

with the same argument which lead us to the final result.

B Monte-Carlo approximation of the average version of the empirical ACH
depth.

The procedure given in Section 3.2 can be summarize by the Algorithm 1.

Algorithm 1 Input: S̃n = {X ′1, . . . , X ′n}-dataset, the observed curve x′, K, 1 ≤ J ≤ n and the vector of

weights w = (wj)1≤j≤J such that wj =
(j
n)∑J

m=1 (m
n)

.

1. For k = 1, . . . ,K do:

(i) Select l ∈ {1, . . . , J} according to w.

(ii) Select randomly and uniformly (i1, . . . , il) ∈ {1, . . . , n}.

(iii) s(x′)← s(x′) +
λ2(conv(graph({X′i1 ,...,X

′
il
})))

λ2

(
conv

(
graph

(
{X′i1 ,...,X

′
il
,x′}

))) .

2. Return: DJ,n(x′|S ′n) = 1
K s(x

′).

C Additional Experiences

C.1 Asymptotic variance of the exact and approximate versions

To obtain further insights about the stability of the proposed depth notion, we explore its asymptotic variance.
For this, we compute (exact and approximate) ACHD of xi, i = 1, 2, 3, 4 for different sample sizes. The boxplots
over 100 repeated simulation for data sets (a) and (b) are indicated in Fig. 4 and 5. One observes not only stable
decrease of the variance of ACHD with the sample size, but also the similarity between exact and approximate
versions, which hints on stability and precision of the exact algorithm even when exploring a small portion of
combinations (e.g., when n = 500 only 2% of all pairs are explored for K = 5n).

The dataset Octane, Wine, and EOG used in the Section 4.4 are represented in Figure 7.

C.2 Robustness

Additional results on the robustness experiment are given in Table 1 for the location anomalies with the dataset
(b) and the isolated anomalies for the data set (a).

C.3 Anomaly detection

Additional experiments with location anomalies from the data set (b) and isolated anomalies from data set (a)
are given in Figure 6.
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Figure 4: Boxplot (over 100 repetitions) of the depth score for the observations x0,x1,x2,x3 for the two following
settings on the data set (a): the green boxplots represent the exact computation while the orange boxplots
represent the approximation both with J = 2.

dτ (σ0, σα)(×10−2)
α 0 5 10 15 25 30

ACHD
Location 0 0.7 1.5 2.3 4.2 5.1
Isolated 0 1.3 1.8 1.6 2.4 3.2

FSDO
Location 0 1.5 3.1 5.1 8.8 11
Isolated 0 0.9 1 1.1 1.5 1.6

FT
Location 0 0.6 1.5 3 6.4 8
Isolated 0 1.3 0.8 0.9 1.1 1.5

FIF
Location 0 14 15 15 16 15
Isolated 0 6.9 7.3 7 8.2 8.1

Table 1: Kendall’s tau distances between the rank returned with normal data and contaminated data (over
different size of contamination with location and isolated anomalies) for the area of the convex hull depth
measure and three others state-of-art methods.
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Figure 5: Boxplot (over 100 repetitions) of the depth score for the observations x0,x1,x2,x3 for the two following
settings on the data set (b): the green boxplots represent the exact computation while the orange boxplots
represent the approximation both with J = 2.
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Figure 6: Number of anomalies detected over a grid of parameters for two types of anomalies, location and
isolated anomalies for ACHD and three others state-of-art methods.
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Figure 7: The data sets Octane, Wine, and EOG used in Section 4.5.
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