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A Supplementary Results

A.1 Proof of Lemma 1
Proof. Note that

R(P)=E|(I = P)k(-, X)|3; = E((I = P)k(-, X), (I = P)k(-, X))y ,
which in turn is equivalent to

E((I = P)k(-, X), k(- X))y = E((I = P), k(-, X) @2 k(- X)) 22349

where we used (Bf,g)y = (B, f @y g) 23 and (I — P)? = (I — P) in the above equivalence. Since k is
bounded, it follows that

E((I - P), k(,X) On k('=X)>£2(H) = <(I - P)7E[k('7X) Qn k('7X)]>£2(7-L) :

The result follows by using the above in R(P) and noting that

(I = P),C) pazy = tr (I = P)C) =t (01/2(1 P)(I — P)01/2) - H I-P 01/2(

c2(w)’

where we have used the invariance of trace under cyclic permutations. O
Lemma A.1. For § > 0, suppose 97” log 2 <t < A1. Then the following hold:

(i) P {2 < (€ + D) YV2(Co+ 1) 72 gy SVB} 216
(i1) P {|[(C + D)2 (Co + 1) 2y <13} 2155

(iii) P" {;\g+t < %(/\H-t)} >1-4.

(i) ]P”{)\ngtS?(XgnLt)}zlfd

Proof. (i) The result is quoted from Lemma 3.6 of (Rudi et al., 2013) with @ = 3.

(79) This is a slight variation of (i) and the proof idea follows that of Lemma 3.6 of (Rudi et al., 2013) with
o= % Note that

H(C +tH)~YV2(C, + tI)l/QH = H(O +tI)"Y2(C,, + tI)(C + D) WH
L£°(H) L£oo(H)

By defining B,, = (C +tI)~'/2(C — C,,)(C + tI)~'/2, we have
I =B, = (C+th)V2(C+tl)—C+Cp)(CHtI) V2= (CHtI)"V*(C, +tI)(C +tI)~1/?
and therefore

(C+tI)~Y2(C, + tI)/? = I - Bo| 2 1+ ||B,| 12 (18)
n £ (M) n Loo(’}.[) nll Lo (H) .

It follow from the proof of Lemma 3.6 of (Rudi et al., 2013) that for 2% log % < ¢,

1
P { 1Bl < 5} 216 (19)

Combining (18) and (19) completes the proof.
(iii) Since /2 < [|(C+tD)Y>(Co+ 1) 7| e 5

Lemmas B.2 and 3.5)) to Cy, +tI < 3(C+tI). This implies (see Gohberg et al., 2003) that e+t < S(\e+t)
for all k > 1. (iv) follows similarly. O

as obtained in (i), it is equivalent (see (Rudi et al., 2013,
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Lemma A.2 (Rudi et al. (2015), Lemma 6). Suppose Assumption 1 holds, and suppose for some m < n,
the set {X }1Ly is drawn uniformly from the set of all partitions of size m of the training data, {X;}i_,.

Fort >0 and any 6 > 0 such that m > (67 V 5N¢ o (t))log 32, we have
2
P”{H(Ipm)(c+t1)1/2u §3t} >1-4,
L£2°(H)

where P, is the orthogonal projector onto H,, = span{k(-, X;)|j € [m]}.

Lemma A.3 (Rudi et al. (2015), Lemma 7). Suppose Assumption 1 holds. Let (I;(s))™_, be the collection
of approximate leverage scores. Letting N := {1,...,n}, for t > 0 define p; as the distribution over N with
probabilities p(i) = Zz(ﬂ/Z?ﬂ 1;(t). Let T,, = {i1,....,im} C N be a collection of indices independently
sampled from py with replacement. Let P, be the orthogonal projector onto H,, = span{k(~,Xj)\j €In}
Additionally, for any 6 > 0, suppose the following hold:

1. There exists T > 1 and to > 0 such that for any s > to, (I;(s))"_, are T—approzimate leverage scores
with confidence 6,

2. n > 1655k + 223k log %’“
3. to\/lg—“log@ <t< Ay,
4. m > 3341log 3 v 78T N (t) log 2

Then ,
P”{H(I—Pm)(C’—HI)l/2H <3t} >1-25.
L£o°(H
B Technical Results

Proposition B.1. Suppose Ai~* < \; < Ai~® for a > 1 and A, A € (0,00). The following holds:
Ne(t) Stte,

Proof. We have

Ne(t) = tr ((C+tI)~ Z

—Oé

Ai~
Z o4t AZW

Ai i>1

Let u=tVeA Vo — 4o =tA 2% and dz = t~/2A*qu. Therefore,

o0 —a o0 1 ANV o g
R A w1 Ly G
—a+tA o T +tA o 1+4tA lza t o 1+ue

Since 1+u"‘ is decreasing in a on u € (0, 00), we have
1 1
— < —— if a>2
T+ue ~1+u2 & %7
So for a > 2,

ANYY ©
= / dustfl/a/ du =t~/ [tanfl(u)|8°] = Etfl/o‘,
t , ltue o L+u2 2

implying No(t) <71/ For 1 < a < 2, we obtain

oo

© 1
-1/« -1/ 1/
t /O e <t Zl+ka*t <1+Zka>.

k=1

Since 1+ 377, /& converges for o > 1, we obtain N¢(t) <t~/ O
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Proposition B.2. Suppose Be™™" < \; < Be™ ™ for 7 > 0 and B, B € (0,00). Let { = Llogn?, § > 0.
Then

Ne(t) < Tog (1) |

Proof. We have

i Be™ T B 1
-1

Ne(®) =t ((CH+i)TC) =Y o S g =5 2 T o
i>1 7 - — >1 -

e 1 1 o
< ——————dr=|z—-1o tB_le”—i—lM .
N/o 14+tB ter® { T g (1B ) 0
Since
T — 1 log (tB™'e™ +1) = 1 (log(e™) —log (1B~ e™ + 1)) = 1 log t’lBL
7B UE T 2 7 P11
evaluating

Liog (1B )|
T og( eT“ertlB) 0

yields the result. O



