A Supplementary Results

A.1 Proof of Lemma 1

Proof. Note that

$$R(P) = \mathbb{E} \left\| (I - P)k(\cdot, X) \right\|_{\mathcal{H}}^{2} = \mathbb{E} \left\langle (I - P)k(\cdot, X), (I - P)k(\cdot, X) \right\rangle_{\mathcal{H}},$$

which in turn is equivalent to

$$\mathbb{E} \langle (I-P)k(\cdot,X),k(\cdot,X)\rangle_{\mathcal{H}} = \mathbb{E} \langle (I-P),k(\cdot,X)\otimes_{\mathcal{H}} k(\cdot,X)\rangle_{\mathcal{L}^{2}(\mathcal{H})},$$

where we used $\langle Bf, g \rangle_{\mathcal{H}} = \langle B, f \otimes_{\mathcal{H}} g \rangle_{\mathcal{L}^2(\mathcal{H})}$ and $(I - P)^2 = (I - P)$ in the above equivalence. Since k is bounded, it follows that

$$\mathbb{E}\left\langle (I-P), k(\cdot, X) \otimes_{\mathcal{H}} k(\cdot, X) \right\rangle_{\mathcal{L}^{2}(\mathcal{H})} = \left\langle (I-P), \mathbb{E}[k(\cdot, X) \otimes_{\mathcal{H}} k(\cdot, X)] \right\rangle_{\mathcal{L}^{2}(\mathcal{H})}.$$

The result follows by using the above in R(P) and noting that

$$\langle (I-P), C \rangle_{\mathcal{L}^2(\mathcal{H})} = \operatorname{tr} ((I-P)C) = \operatorname{tr} \left(C^{1/2} (I-P)(I-P)C^{1/2} \right) = \left\| (I-P)C^{1/2} \right\|_{\mathcal{L}^2(\mathcal{H})}^2,$$

where we have used the invariance of trace under cyclic permutations.

Lemma A.1. For $\delta > 0$, suppose $\frac{9\kappa}{n} \log \frac{n}{\delta} \le t \le \lambda_1$. Then the following hold:

(i)
$$\mathbb{P}^n \left\{ \sqrt{\frac{2}{3}} \le \left\| (C + tI)^{1/2} (C_n + tI)^{-1/2} \right\|_{\mathcal{L}^{\infty}(\mathcal{H})} \le \sqrt{2} \right\} \ge 1 - \delta;$$

(ii)
$$\mathbb{P}^n \left\{ \left\| (C+tI)^{-1/2} (C_n + tI)^{1/2} \right\|_{\mathcal{L}^{\infty}(\mathcal{H})} \le \sqrt{\frac{3}{2}} \right\} \ge 1 - \delta;$$

(iii)
$$\mathbb{P}^n \left\{ \hat{\lambda}_{\ell} + t \le \frac{3}{2} (\lambda_{\ell} + t) \right\} \ge 1 - \delta.$$

(iv)
$$\mathbb{P}^n \left\{ \lambda_{\ell} + t \le 2(\widehat{\lambda}_{\ell} + t) \right\} \ge 1 - \delta.$$

Proof. (i) The result is quoted from Lemma 3.6 of (Rudi et al., 2013) with $\alpha = \frac{1}{2}$.

(ii) This is a slight variation of (i) and the proof idea follows that of Lemma 3.6 of (Rudi et al., 2013) with $\alpha = \frac{1}{2}$. Note that

$$\left\| (C+tI)^{-1/2} (C_n+tI)^{1/2} \right\|_{\mathcal{L}^{\infty}(\mathcal{H})} = \left\| (C+tI)^{-1/2} (C_n+tI) (C+tI)^{-1/2} \right\|_{\mathcal{L}^{\infty}(\mathcal{H})}^{1/2}.$$

By defining $B_n = (C + tI)^{-1/2}(C - C_n)(C + tI)^{-1/2}$, we have

$$I - B_n = (C + tI)^{-1/2} ((C + tI) - C + C_n) (C + tI)^{-1/2} = (C + tI)^{-1/2} (C_n + tI)(C + tI)^{-1/2}$$

and therefore

$$\left\| (C+tI)^{-1/2} (C_n + tI)^{1/2} \right\|_{\mathcal{L}^{\infty}(\mathcal{H})} = \|I - B_n\|_{\mathcal{L}^{\infty}(\mathcal{H})}^{1/2} \le \left(1 + \|B_n\|_{\mathcal{L}^{\infty}(\mathcal{H})} \right)^{1/2}.$$
 (18)

It follow from the proof of Lemma 3.6 of (Rudi et al., 2013) that for $\frac{9\kappa}{n}\log\frac{n}{\delta} \leq t$,

$$\mathbb{P}^n \left\{ \|B_n\|_{\mathcal{L}^{\infty}(\mathcal{H})} \le \frac{1}{2} \right\} \ge 1 - \delta. \tag{19}$$

Combining (18) and (19) completes the proof.

(iii) Since $\sqrt{\frac{2}{3}} \leq \|(C+tI)^{1/2}(C_n+tI)^{-1/2}\|_{\mathcal{L}^{\infty}(\mathcal{H})}$ as obtained in (i), it is equivalent (see (Rudi et al., 2013, Lemmas B.2 and 3.5)) to $C_n+tI \leq \frac{3}{2}(C+tI)$. This implies (see Gohberg et al., 2003) that $\widehat{\lambda}_k+t \leq \frac{3}{2}(\lambda_k+t)$ for all $k \geq 1$. (iv) follows similarly.

Lemma A.2 (Rudi et al. (2015), Lemma 6). Suppose Assumption 1 holds, and suppose for some m < n, the set $\{\tilde{X}_j\}_{j=1}^m$ is drawn uniformly from the set of all partitions of size m of the training data, $\{X_i\}_{i=1}^n$. For t > 0 and any $\delta > 0$ such that $m \ge (67 \vee 5\mathcal{N}_{C,\infty}(t)) \log \frac{4\kappa}{t\delta}$, we have

$$\mathbb{P}^n \left\{ \left\| (I - P_m)(C + tI)^{1/2} \right\|_{\mathcal{L}^{\infty}(\mathcal{H})}^2 \le 3t \right\} \ge 1 - \delta,$$

where P_m is the orthogonal projector onto $\mathcal{H}_m = \operatorname{span}\{k(\cdot, \tilde{X}_j)|j \in [m]\}.$

Lemma A.3 (Rudi et al. (2015), Lemma 7). Suppose Assumption 1 holds. Let $(\hat{l}_i(s))_{i=1}^n$ be the collection of approximate leverage scores. Letting $N := \{1, ..., n\}$, for t > 0 define p_t as the distribution over N with probabilities $p_t(i) = \hat{l}_i(t) / \sum_{j=1}^n \hat{l}_j(t)$. Let $\mathcal{I}_m = \{i_1, ..., i_m\} \subset N$ be a collection of indices independently sampled from p_t with replacement. Let P_m be the orthogonal projector onto $\mathcal{H}_m = \text{span}\{k(\cdot, \tilde{X}_j) | j \in \mathcal{I}_m\}$. Additionally, for any $\delta > 0$, suppose the following hold:

- 1. There exists $T \ge 1$ and $t_0 > 0$ such that for any $s \ge t_0$, $(\hat{l}_i(s))_{i=1}^n$ are T-approximate leverage scores with confidence δ ,
- 2. $n \ge 1655\kappa + 223\kappa \log \frac{2\kappa}{\delta}$,
- 3. $t_0 \vee \frac{19\kappa}{n} \log \frac{2n}{\delta} \leq t \leq \lambda_1$,
- 4. $m \geq 334 \log \frac{8n}{\delta} \vee 78T^2 \mathcal{N}_C(t) \log \frac{8n}{\delta}$

Then

$$\mathbb{P}^n \left\{ \left\| (I - P_m)(C + tI)^{1/2} \right\|_{\mathcal{L}^{\infty}(\mathcal{H})}^2 \le 3t \right\} \ge 1 - 2\delta.$$

B Technical Results

Proposition B.1. Suppose $\underline{A}i^{-\alpha} \leq \lambda_i \leq \bar{A}i^{-\alpha}$ for $\alpha > 1$ and $\underline{A}, \bar{A} \in (0, \infty)$. The following holds:

$$\mathcal{N}_C(t) \leq t^{-1/\alpha}$$
.

Proof. We have

$$\mathcal{N}_C(t) = \operatorname{tr}\left((C+tI)^{-1}C\right) = \sum_{i \ge 1} \frac{\lambda_i}{\lambda_i + t} \le \sum_{i \ge 1} \frac{\bar{A}i^{-\alpha}}{\underline{A}i^{-\alpha} + t} = \frac{\bar{A}}{\underline{A}} \sum_{i \ge 1} \frac{i^{-\alpha}}{i^{-\alpha} + t\underline{A}^{-1}}.$$

Let $u=t^{1/\alpha}\underline{\mathbf{A}}^{-1/\alpha}x \implies u^{\alpha}=t\underline{\mathbf{A}}^{-1}x^{\alpha}$ and $dx=t^{-1/\alpha}\underline{\mathbf{A}}^{1/\alpha}du$. Therefore,

$$\sum_{i \ge 1} \frac{i^{-\alpha}}{i^{-\alpha} + t\underline{\mathbf{A}}^{-1}} \le \int_0^\infty \frac{x^{-\alpha}}{x^{-\alpha} + t\underline{\mathbf{A}}^{-1}} \, dx = \int_0^\infty \frac{1}{1 + t\underline{\mathbf{A}}^{-1} x^{\alpha}} dx = \left(\frac{\underline{\mathbf{A}}}{t}\right)^{1/\alpha} \int_0^\infty \frac{1}{1 + u^{\alpha}} du.$$

Since $\frac{1}{1+u^{\alpha}}$ is decreasing in α on $u \in (0, \infty)$, we have

$$\frac{1}{1+u^{\alpha}} \le \frac{1}{1+u^2}, \quad \text{if} \quad \alpha \ge 2.$$

So for $\alpha \geq 2$,

$$\left(\frac{\underline{A}}{t}\right)^{1/\alpha} \int_0^\infty \frac{1}{1+u^{\alpha}} du \stackrel{<}{\sim} t^{-1/\alpha} \int_0^\infty \frac{1}{1+u^2} du = t^{-1/\alpha} \left[\tan^{-1}(u) |_0^\infty \right] = \frac{\pi}{2} t^{-1/\alpha},$$

implying $\mathcal{N}_C(t) \lesssim t^{-1/\alpha}$. For $1 < \alpha < 2$, we obtain

$$t^{-1/\alpha} \int_0^\infty \frac{1}{1 + u^\alpha} du \le t^{-1/\alpha} \sum_{k=0}^\infty \frac{1}{1 + k^\alpha} \le t^{-1/\alpha} \left(1 + \sum_{k=1}^\infty \frac{1}{k^\alpha} \right).$$

Since $1 + \sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ converges for $\alpha > 1$, we obtain $\mathcal{N}_C(t) \lesssim t^{-1/\alpha}$.

Proposition B.2. Suppose $\underline{B}e^{-\tau i} \leq \lambda_i \leq \overline{B}e^{-\tau i}$ for $\tau > 0$ and $\underline{B}, \overline{B} \in (0, \infty)$. Let $\ell = \frac{1}{\tau} \log n^{\theta}$, $\theta > 0$. Then

$$\mathcal{N}_C(t) \lesssim \log\left(\frac{1}{t}\right).$$

Proof. We have

$$\mathcal{N}_{C}(t) = \operatorname{tr}\left((C+tI)^{-1}C\right) = \sum_{i \geq 1} \frac{\lambda_{i}}{\lambda_{i}+t} \leq \frac{\bar{B}e^{-\tau i}}{\underline{B}e^{-\tau i}+t} = \frac{\bar{B}}{\underline{B}} \sum_{i \geq 1} \frac{1}{1+t\underline{B}^{-1}e^{\tau i}}$$
$$\lesssim \int_{0}^{\infty} \frac{1}{1+tB^{-1}e^{\tau x}} dx = \left[x - \frac{1}{\tau}\log\left(t\underline{B}^{-1}e^{\tau x} + 1\right)\right]\Big|_{0}^{\infty}.$$

Since

$$x - \frac{1}{\tau} \log \left(t \underline{\mathbf{B}}^{-1} e^{\tau x} + 1 \right) = \frac{1}{\tau} \left(\log(e^{\tau x}) - \log \left(t \underline{\mathbf{B}}^{-1} e^{\tau x} + 1 \right) \right) = \frac{1}{\tau} \log \left(t^{-1} \underline{\mathbf{B}} \frac{e^{\tau x}}{e^{\tau x} + t^{-1} \underline{\mathbf{B}}} \right),$$

evaluating

$$\frac{1}{\tau} \log \left(t^{-1} \underline{\mathbf{B}} \frac{e^{\tau x}}{e^{\tau x} + t^{-1} \underline{\mathbf{B}}} \right) \Big|_{0}^{\infty}$$

yields the result.