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Abstract

In this paper, we analyze a Nyström based
approach to efficient large scale kernel prin-
cipal component analysis (PCA). The lat-
ter is a natural nonlinear extension of clas-
sical PCA based on considering a nonlinear
feature map or the corresponding kernel.
Like other kernel approaches, kernel PCA
enjoys good mathematical and statistical
properties but, numerically, it scales poorly
with the sample size. Our analysis shows
that Nyström sampling greatly improves
computational efficiency without incurring
any loss of statistical accuracy. While sim-
ilar effects have been observed in super-
vised learning, this is the first such result
for PCA. Our theoretical findings are based
on a combination of analytic and concen-
tration of measure techniques. Our study
is more broadly motivated by the question
of understanding the interplay between sta-
tistical and computational requirements for
learning.

1 Introduction

Achieving good statistical accuracy under budgeted
computational resources is a central theme in mod-
ern machine learning (Bottou and Bousquet, 2008).
Indeed, the problem of understanding the inter-
play and trade-offs between statistical and compu-
tational requirements has recently received much at-
tention. Nonparametric learning, and in particu-
lar kernel methods, have provided a natural frame-
work to pursue these questions, see e.g., Musco
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and Musco (2017); Rudi et al. (2015); Alaoui and
Mahoney (2014); Bach (2013); Calandriello et al.
(2018); Orabona et al. (2008). On the one hand,
these methods are developed in a sound mathemat-
ical setting and their statistical properties are well
studied. On the other hand, from a numerical point
of view, they scale poorly to large scale problems,
and hence improved computational efficiency is of
particular interest.

While initial studies have mostly focused on approxi-
mating kernel matrices (Drineas and Mahoney, 2005;
Gittens and Mahoney, 2013; Jin et al., 2013; Zhang
et al., 2008), recent results have highlighted the im-
portance of considering downstream learning tasks,
with a focus on the interplay between statistical ac-
curacy and computational complexity. In particular,
results in supervised learning have shown there are
regimes where computational gains can be achieved
with no loss of statistical accuracy (Rudi et al., 2015;
Rudi and Rosasco, 2017). A basic intuition is that
approximate computations provide a form of implicit
regularization, hence memory and time requirements
can be tailored to statistical accuracy allowed by the
data (Rudi et al., 2015). To which extent similar ef-
fects can be proved beyond supervised learning is
largely unexplored. Indeed, the only result we are
aware of in this direction was recently shown for ker-
nel k-means in (Calandriello et al., 2018).

In this paper, we analyze one of the most basic un-
supervised approaches, namely PCA, or rather its
nonlinear version, that is kernel PCA (Schölkopf
et al., 1998) and its approximate version through
Nyström sampling (Williams and Seeger, 2001). The
empirical behavior of approximate kernel PCA us-
ing Nyström sampling is well understood (Zhang
et al., 2008), where it has been shown to lead to
significant performance gains; however, theoretical
results to this end are quite limited. It is well known
that Nyström kernel PCA (NY-KPCA) with m sub-
samples achieves a time complexity of O(nm2 +m3)
and a space complexity of O(m2), in contrast to
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O(n3) and O(n2) time and space complexities of
KPCA, where n is the sample size, implying that the
NY-KPCA has a better computational and memory
requirement when m < n. However, to the best of
our knowledge, no results are known on the statis-
tical behavior of NY-KPCA that answers the ques-
tion of whether the computational gain is achieved
at the expense of statistical efficiency or not. The
main contribution of the paper is a rigorous statis-
tical analysis of NY-KPCA in terms of finite sample
bounds on the error in reconstructing a kernel func-
tion based on its projections onto an `-dimensional
eigenspace associated with a certain covariance oper-
ator (see Theorem 2 and related Corollaries 3 and 4).
In particular, we show that NY-KPCA can achieve
the same error of KPCA with m < n, thereby
demonstrating computational gains at no statisti-
cal loss. Moreover, we show that adaptive sampling
using leverage scores (Alaoui and Mahoney, 2014)
can lead to further gains. More precisely, we show
that the requirement on the number of sub-samples,
m varies between (log n)2 and nθ log n (θ < 1) de-
pending on ` (dimension of the eigenspace), type of
sub-sampling (uniform or adaptive) and the smooth-
ness of the RKHS controlled by the rate of decay of
eigenvalues of the covariance operator.

We note that some recent papers, e.g., (Sriperum-
budur and Sterge, 2018; Ullah et al., 2018), have
focused on approximate kernel PCA using random
features (Rahimi and Recht, 2008). The notion of
reconstruction error considered in these works is
different from that of KPCA (Shawe-Taylor et al.,
2005; Blanchard et al., 2007). The reason for this
are certain technicalities that arise in random fea-
ture approximation (for more details, see the discus-
sion following Corollary 4). As a consequence, these
results are not directly comparable to our current
work and KPCA. In contrast, our results based on
Nyström approximation are directly comparable to
that of KPCA, wherein we show that the proposed
NY-KPCA has similar statistical behavior but bet-
ter computational complexity than KPCA.

Definitions and Notation For a :=
(a1, . . . , ad) ∈ Rd and b := (b1, . . . , bd) ∈ Rd

define ‖a‖2 :=
√∑d

i=1 a
2
i and 〈a,b〉2 :=

∑d
i=1 aibi.

a ⊗2 b := ab> denotes the tensor product of
a and b. In denotes an n × n identity ma-
trix. a ∧ b := min(a, b) and a ∨ b := max(a, b).
[n] := {1, . . . , n} for n ∈ N. For constants a and
b, a . b (resp. a & b) denotes that there exists a
positive constant c (resp. c′) such that a ≤ cb (resp.
a ≥ c′b). For a random variable A with law P and

a constant b, A .p b denotes that for any δ > 0,
there exists a positive constant cδ < ∞ such that
P (A ≤ cδb) ≥ δ.
For x, y ∈ H, a Hilbert space, x ⊗H y is an
element of the tensor product space H ⊗ H which
can also be seen as an operator from H to H as
(x⊗H y)z = x〈y, z〉H for any z ∈ H. α ∈ R is called
an eigenvalue of a bounded self-adjoint operator
S if there exists an x 6= 0 such that Sx = αx and
such an x is called the eigenvector/eigenfunction of
S and α. An eigenvalue is said to be simple if it
has multiplicity one. For an operator S : H → H,
‖S‖L1(H), ‖S‖L2(H) and ‖S‖L∞(H) denote the
trace, Hilbert-Schmidt and operator norms of S,
respectively.

2 Kernel PCA by Nyström Sampling

In this section, we review kernel principal component
analysis (KPCA) (Schölkopf et al., 1998) in popu-
lation and empirical settings and introduce approxi-
mate kernel PCA using Nyström approximation. We
assume the following for the rest of the paper:

Assumption 1. X is a separable topological space
and (H, k) is a separable RKHS of real-valued func-
tions on X with a bounded, continuous, strictly pos-
itive definite kernel k satisfying supx∈X k(x, x) =:
κ <∞.

2.1 KPCA and empirical KPCA

Let X be a zero-mean random variable with law P
defined on X . When X = Rd, classical PCA (Jolliffe,
1986) finds a ∈ Rd such that Var [〈a, X〉2] is maxi-
mized, with the constraint ‖a‖2 = 1. Defining C :=
EX∼P[XX>], the solution is simply the unit eigen-
vector of C corresponding to its largest eigenvalue.
In practice, PCA is computed by replacing C with an
empirical approximation Cn = 1

n

∑n
i=1XiX

>
i based

on a sample X1, . . . , Xn. Kernel PCA extends this
idea to an RKHS, H defined on X , by finding f ∈ H
with unit norm such that Var[f(X)] is maximized.
Since Var[f(X)] = 〈f, Cf〉H assuming E[f(X)] = 0
for all f ∈ H, we have f∗ = arg max{〈f, Cf〉H :
‖f‖H = 1} where C is the (uncentered) covariance
operator on H defined as

C :=

∫
X
k(·, x)⊗H k(·, x) dP(x).

The boundedness of k in Assumption 1 ensures that
C is trace class and thus compact. Since C is posi-
tive and self-adjoint, the spectral theorem (Reed and
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Simon, 1980) gives

C =
∑
i∈I

λiφi ⊗H φi,

where (λi)i∈I ⊂ R+ are the eigenvalues and (φi)i∈I
is the orthonormal system of eigenfunctions that
span R(C) with index set I being either finite or
countable (in this case λi → 0 as i→∞). The solu-
tion to the KPCA problem is thus the eigenfunction
of C corresponding to its largest eigenvalue. We
make the following simplifying assumption for the
ease of presentation.

Assumption 2. The eigenvalues (λi)i∈I of C are
simple, positive, and w.l.o.g. satisfy a decreasing re-
arrangement, i.e., λ1 > λ2 . . ..

Assumption 2 ensures that (φi)i∈I form an orthonor-
mal basis and the eigenspace corresponding to each
λi is one-dimensional. This means the orthogonal
projection operator onto the `-eigenspace of C, i.e.
span{(φi)`i=1}, is given by

P `(C) =
∑̀
i=1

φi ⊗H φi. (1)

The above construction corresponds to population
version of KPCA when the data distribution P is
known. If P is unknown and the knowledge of P is

available only through the training set (Xi)
n
i=1

i.i.d.∼
P, then KPCA cannot be carried out as C depends
on P. Therefore, an approximation to C is used to
perform KPCA. Most commonly, this approxima-
tion is chosen to be the empirical estimator of C
defined as

Cn =
1

n

n∑
i=1

k(·, Xi)⊗H k(·, Xi)

resulting in empirical kernel PCA (EKPCA). Note
that Cn is a finite rank, positive, and self-adjoint op-
erator. Thus the spectral theorem (Reed and Simon,
1980) yields

Cn =

n∑
i=1

λ̂iφ̂i ⊗H φ̂i,

where (λ̂i)
n
i=1 ⊂ R+ and (φ̂i)

n
i=1 ⊂ H are the eigen-

values and eigenfunctions of Cn. Similar to Assump-
tion 2, we assume the following:

Assumption 3. rank(Cn) = n. The eigenvalues

(λ̂i)
n
i=1 of Cn are simple and w.l.o.g. satisfy a de-

creasing rearrangement, i.e., λ̂1 ≥ λ̂2 ≥ . . ..
The eigensystem (λ̂i, φ̂i)

n
i=1 of Cn can be ob-

tained by solving an n-dimensional system involving

the eigendecomposition of the Gram matrix K =
[k(Xi, Xj)]i,j∈[n], which scales as O(n3) (Schölkopf
et al., 1998). In particular, the eigenvalues of K are

related to those of Cn as λi(K) = nλ̂i. Moreover, if
ui is an orthonormal eigenvector of K corresponding
to the eigenvalue λi(K), then it holds for all x ∈ X ,

φi(x) =
1√
nλ̂i

n∑
j=1

k(x, xj)ui,j . (2)

The above result proven in (Schölkopf et al., 2001)
can be seen as a representer theorem (Kimeldorf
and Wahba, 1971) for KPCA. Finally, note that, for
some ` ≤ n, the orthogonal projection operator onto
span{(φ̂i)`i=1} is given by

P `(Cn) =
∑̀
i=1

φ̂i ⊗H φ̂i. (3)

2.2 Approximate kernel PCA using
Nyström method

For large sample sizes, since performing KPCA
is computationally intensive, various approxima-
tion schemes that has been explored in the ker-
nel machine literature can be deployed to speed up
EKPCA. Recently, one such approximation involv-
ing random Fourier features has been studied by
Sriperumbudur and Sterge (2018) and Ullah et al.
(2018) to speed EKPCA while maintaining its statis-
tical performance. In this paper, we explore the pop-
ular Nyström approximation (Williams and Seeger,
2001; Drineas and Mahoney, 2005; Zhang et al.,
2008) to speed up EKPCA and study the trade-offs
between computational gains and statistical accu-
racy. The general idea in Nyström method is to
obtain a low-rank approximation to the Gram ma-
trix K, and replace K by this approximation in ker-
nel algorithms, resulting in computational speedup.
Since K is related to Cn (as discussed in Section 2.1),
Nyström method can also be seen as obtaining a low
rank approximation to Cn, which is what we exploit
in obtaining a Nyström approximate KPCA. It fol-
lows from (2) that the eigenfunctions of Cn lie in the
space

Hn =

{
f ∈ H

∣∣∣ f =

n∑
i=1

αik(·, Xi), α1, ..., αn ∈ R

}
.

Therefore, it can be seen that EKPCA is a solution
to the following problem

arg max {〈f, Cnf〉H : f ∈ Hn, ‖f‖H = 1} ,
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assuming K is invertible1. Extending this rep-
resentation, suppose for fixed m < n points
{X̃1, . . . , X̃m} are sampled uniformly without re-
placement from {X1, . . . , Xn}, yielding the following
low-dimensional subspace of Hn,

Hm =

{
f ∈ H

∣∣∣ f =

m∑
i=1

αik(·, X̃i), α1, ..., αm ∈ R

}
.

We propose Nyström KPCA (NY-KPCA) as a solu-
tion to the following problem:

arg max {〈f, Cnf〉H : f ∈ Hm, ‖f‖H = 1} , (4)

where the maximum is taken over functions in Hm,
or equivalently, over α ∈ Rm. Basically, we are
considering a plain Nyström approximation where
the m centers, {X̃1, . . . , X̃m}, are sampled uniformly
without replacement from the training set; however,
other subsampling methods are possible, see Section
2.2.1. The following result shows that the solution to
(4) is obtained by solving a finite dimensional linear
system, which has better computational complexity
than that of EKPCA. To this end, we first introduce
some notation, Kmm = [k(X̃i, X̃j)]i,j∈[m], Knm =

[k(Xi, X̃j)]i∈[n],j∈[m] ∈ Rn×m,Kmn = K>nm.

Proposition 1. Define the m × m matrix M =

K
−1/2
mm KmnKnmK

−1/2
mm . The solution to (4) is given

by
φ̂1,m = Z̃∗mK−1/2

mm u1,m,

where u1,m is the eigenvector of 1
nM corresponding

to its largest eigenvalue and Z̃∗m : Rm → H, α 7→∑m
i=1 αik(·, X̃i).

Proof. Define the following operators on H
Zn : H → Rn, f 7→ (f(X1), . . . , f(Xn))>, and

Z̃m : H → Rm, f 7→ (f(X̃1), . . . , f(X̃m))>.

The adjoint of Z̃m (Smale and Zhou, 2007) is given
by

Z̃∗m : Rm → H, α 7→
m∑
i=1

αik(·, X̃i).

Thus, any f ∈ Hm may be written as Z̃∗mα,
for some α ∈ Rm and so 〈f, Cnf〉H =
1
n

〈
Z̃∗mα,Z

∗
nZnZ̃

∗
mα
〉
H

= 1
nα
>Z̃mZ

∗
nZnZ̃

∗
mα, where

we used Z∗nZn = 1
nCn. It is easy to verify that

ZnZ̃
∗
m = Knm and Z̃mZ

∗
n = Kmn. Therefore, (4)

can be written as

arg max

{
1

n
α>KmnKnmα : α>Kmmα = 1

}
. (5)

1The existence of K−1 is guaranteed by strict positive
definiteness of k, provided all Xi in the training set are
unique.

Letting u = K
1/2
mmα simplifies the constraint in (5)

to u>u = 1, and we write (5) as

arg max

{
1

n
u>K−1/2

mm KmnKnmK−1/2
mm u : u>u = 1

}
.

The solution to the above problem is the unit

eigenvector of 1
nK
−1/2
mm KmnKnmK

−1/2
mm correspond-

ing to its largest eigenvalue. Denoting this eigen-
vector as u1,m, we obtain a function φ̂1,m ∈ H
solving the NY-KPCA problem in (4) via φ̂1,m =

Z̃∗mK
−1/2
mm u1,m.

The cost of computing M is O(nm2 + m3) and
the cost of computing its eigendecomposition is
O(m3). Thus, for m < n, the cost of NY-
KPCA scales as O(nm2), which is lower than the
O(n3) cost of EKPCA. Define K̃ := KnmK−1

mmKmn,
which is usually called the Nyström approxima-
tion (Williams and Seeger, 2001; Drineas and Ma-
honey, 2005) to the Gram matrix K. It is easy
to verify that M and K̃ have same eigenval-

ues since M = K
−1/2
mm Kmn

(
K
−1/2
mm Kmn

)>
and

K̃ =
(
K
−1/2
mm Kmn

)>
K
−1/2
mm Kmn, and rank(M) =

rank(K̃). Therefore we work with K̃ and make the
following assumption on its eigenvalues.

Assumption 4. rank(K̃) = m. The eigenvalues

(λ̂i,m)mi=1 of 1
nK̃ are simple and w.l.o.g. satisfy a

decreasing rearrangement, i.e., λ̂1,m > λ̂2,m > . . ..

The symmetry of M guarantees orthonormality of
(ui,m)i, and the orthonormality of (φ̂i,m)i follows.
For some ` ≤ m, the orthogonal projector onto
span{φ̂i,m}`i=1 is given by

P `m(Cn) =
∑̀
i=1

φ̂i,m ⊗H φ̂i,m. (6)

One may ask if φ̂i,m are eigenfunctions of some op-
erator on H. Denote Pm as the orthogonal projec-
tor onto Hm. It is simple to verify (Rudi et al.,
2015, Theorem 2) that Pm = Z̃∗mK−1

mmZ̃m and that

(λ̂i,m, φ̂i,m) are the orthonormal eigenfunctions of

PmCnPm, i.e., PmCnPmφ̂i,m = λ̂i,mφ̂i,m for all i ∈
[m]. Therefore, we may think of PmCnPm as a low-
rank approximation to Cn.

2.2.1 Approximate leverage scores

In the above discussion on Nyström KPCA, X̃ :=
{X̃1, . . . , X̃m} is a subset of the training set X :=
{X1, . . . , Xn} with the entries of X̃ being sampled
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uniformly without repetition from X. As an alterna-
tive to uniform sampling, X̃ can be sampled accord-
ing to the leverage score distribution (Alaoui and
Mahoney, 2015; Drineas et al., 2012; Cohen et al.,
2015). For any s > 0, the leverage scores associated
with the training data X are defined as

(li(s))
n
i=1 , li(s) = [K(K + nsIn)−1]ii , i ∈ [n]

with the leverage score distribution being pi(s) =
li(s)∑n
i=1 li(s)

according to which X can be sampled in-

dependently with replacement to achieve X̃. Since
the leverage scores are computationally intensive
to compute, usually, they are approximated and
one such approximation is T -approximate leverage
scores (Rudi et al., 2018; Cohen et al., 2015).

Definition 1. (T -approximate leverage scores) For
a given s > 0, let (li(s))

n
i=1 be the leverage scores

associated with the training data {X1, ..., Xn}. Let

δ > 0, s0 > 0, and T ≥ 1. (l̂i(s))
n
i=1 are T -

approximate leverage scores, with confidence δ, if the
following holds with probability at least 1− δ:

T−1li(s) ≤ l̂i(s) ≤ T li(s), ∀i ∈ [n], s > s0.

Given T -approximate leverage scores for s > s0,
X̃ can be obtained by sampling X with replace-
ment according to the sampling distribution p̂i(s) =

l̂i(s)/
∑n
i=1 l̂i(s). Having obtained X̃, (4) can be

solved exactly as in Proposition 1. We refer to
this method as approximate leverage score (ALS)
Nyström subsampling.

3 Computational vs. Statistical
Trade-Off: Main Results

As shown in the earlier section, Nyström kernel PCA
approximates the solution to empirical kernel PCA
with less computational expense. In this section,
we explore whether this computational saving is ob-
tained at the expense of statistical performance. As
in Sriperumbudur and Sterge (2018), we measure
the statistical performance of KPCA, EKPCA, and
NY-KPCA in terms of reconstruction error. In lin-
ear PCA, the reconstruction error, given by

EX∼P
∥∥(I − P `(C)

)
X
∥∥2

2
, (7)

which is the error involved in reconstructing a
random variable X by projecting it onto the `-
eigenspace (i.e., span of the top-` eigenvectors) as-
sociated with its covariance matrix, C = E[XX>]
through the orthogonal projection operator P `(C).

Clearly, the error is zero when ` = d. The ana-
log of the reconstruction error in KPCA, as well as
EKPCA and NY-KPCA, can be similarly stated in
terms of their projection operators, (1), (3), and (6)
as follows. For any orthogonal projection operator
P : H → H, define the reconstruction error as

R(P ) := EX∼P ‖(I − P ) k(·, X)‖2H .

For the linear kernel, this is exactly the reconstruc-
tion error of PCA. The following lemma, proved
in Section A.1, presents an alternate expression for
R(P ) based on which, we define the reconstruction
error in KPCA, EKPCA and NY-KPCA as

RC,` := R(P `(C)), RCn,` := R(P `(Cn)),

and RnysCn,`
:= R(P `m(Cn)), (8)

respectively.

Lemma 1. R(P ) = ‖(I − P )C1/2‖2L2(H).

The following theorem provides finite-sample
bounds on the reconstruction error associated with
NY-KPCA, under both uniform and approximate
leverage score subsampling, from which convergence
rates may be obtained.

Theorem 2. Suppose Assumptions 1-4 hold. For
any t > 0, define NC(t) = tr((C + tI)−1C)
and NC,∞(t) = supx∈X 〈k(·, x), (C + tI)−1k(·, x)〉H.
Then the following hold:

(i) Suppose n > 3, 0 < δ < 1, 9κ
n log n

δ ≤ t ≤ λ1,
and m ≥ (67 ∨ 5NC,∞(t)) log 4κ

tδ . Then, for plain
Nyström subsampling:

Pn
{

(Xi)
n
i=1 : RnysCn,`

≤ NC(t) (6λ` + 42t)
}
≥ 1− 2δ.

(9)
(ii) For 0 < δ < 1, suppose there exists T ≥ 1 such

that (l̂i(t))
n
i=1 are T−approximate leverage scores

with confidence δ for any 19κ
n log 2n

δ ≤ t ≤ λ1. As-
sume approximate leverage score Nyström subsam-
pling is used with m ≥ (78T 2NC(t) ∨ 334) log 8n

δ ,
and n ≥ 1655κ+ 223κ log 2κ

δ . Then

Pn
{

(Xi)
n
i=1 : RnysCn,`

≤ NC(t) (6λ` + 42t)
}
≥ 1− 3δ.

(10)

Proof. (i) For ease of notation, we will let Cn,t =
Cn + tI, ‖·‖L2(H) = ‖·‖2, and ‖·‖L∞(H) = ‖·‖∞. For
t > 0, we have

RnysCn,`
=
∥∥∥(I − P `m(Cn))C1/2

∥∥∥2

2

=
∥∥∥(I − P `m(Cn))C

1/2
n,t C

−1/2
n,t C1/2

∥∥∥2

2

≤ A ·B,
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where A =
∥∥∥(I − P `m(Cn))C

1/2
n,t

∥∥∥2

∞
and B =∥∥∥C−1/2

n,t C1/2
∥∥∥2

2
. First, we have

B =
∥∥∥C−1/2

n,t C1/2
∥∥∥2

2

=
∥∥∥C−1/2

n,t (C + tI)1/2(C + tI)−1/2C1/2
∥∥∥2

2

≤
∥∥∥C−1/2

n,t (C + tI)1/2
∥∥∥2

∞

∥∥∥(C + tI)−1/2C1/2
∥∥∥2

2

=
∥∥∥C−1/2

n,t (C + tI)1/2
∥∥∥2

∞
NC(t), (11)

where we used the fact
∥∥(C + tI)−1/2C1/2

∥∥2

2
=

tr(C1/2(C+tI)−1C1/2) = tr((C+tI)−1C) =: NC(t).
Next, we have

A =
∥∥∥(I − P `m(Cn))C

1/2
n,t

∥∥∥2

∞
≤ 2

∥∥∥(I − Pm)C
1/2
n,t

∥∥∥2

∞︸ ︷︷ ︸
A1

+2
∥∥∥(Pm − P `m(Cn))C

1/2
n,t

∥∥∥2

∞︸ ︷︷ ︸
A2

, (12)

where Pm = Z∗m(Kmm)−1Zm is the orthogonal pro-
jector ontoHm (see Section 2.2). A1 can be bounded
as

A1 ≤ D1 ·D2, (13)

where D1 =
∥∥(I − Pm)(C + tI)1/2

∥∥2

∞ and D2 =∥∥∥(C + tI)−1/2C
1/2
n,t

∥∥∥2

∞
. A2 is bounded as

A2
(∗)
=
∥∥∥(I − P `m(Cn))PmC

1/2
n,t

∥∥∥2

∞

=
∥∥(I − P `m(Cn))PmCn,tPm(I − P `m(Cn))

∥∥
∞

≤
∥∥(I − P `m(Cn))PmCnPm(I − P `m(Cn))

∥∥
∞

+t
∥∥(I − P `m(Cn))Pm(I − P `m(Cn))

∥∥
∞ ,

(∗∗)
≤ λ̂`+1,m + t, (14)

where we used the facts that R(P `m(Cn)) ⊂ R(Pm)
in (∗) and P `m(Cn) projects onto the `-eigenspace of
PmCnPm in (∗∗). Here R(A) denotes the range of

operator A. λ̂`+1,m can be bounded as

λ̂`+1,m ≤ |λ̂`+1,m − λ̂`+1|+ λ̂`+1

(†)
≤ 1

n

∥∥∥K̃−K
∥∥∥
L∞(Rn)

+ λ̂`, (15)

where (†) follows from the Hoffman-Wiedlandt in-

equality (R. Bhatia, 1994). We may rewrite (15) as

1

n

∥∥∥K̃−K
∥∥∥
L∞(Rn)

=
1

n
‖Zn(I − Pm)Z∗n‖L∞(Rn)

= ‖(I − Pm)Cn(I − Pm)‖∞
=
∥∥∥C1/2

n (I − Pm)C1/2
n

∥∥∥
∞

≤
∥∥∥C1/2

n (C + tI)−1/2
∥∥∥2

∞

∥∥∥(C + tI)1/2(I − Pm)
∥∥∥2

∞

(‡)
≤
∥∥∥C1/2

n,t (C + tI)−1/2
∥∥∥2

∞

∥∥∥(C + tI)1/2(I − Pm)
∥∥∥2

∞
,

(16)
where we used∥∥∥C1/2

n (C + tI)−1/2
∥∥∥2

∞

≤
∥∥∥C1/2

n C
−1/2
n,t

∥∥∥2

∞

∥∥∥C1/2
n,t (C + tI)−1/2

∥∥∥2

∞

and
∥∥∥C1/2

n C
−1/2
n,t

∥∥∥2

∞
≤ 1 in (‡). The result follows

by combining (11)–(16) and employing Lemmas A.1
and A.2.

(ii) The proof follows exactly as in (i); however,

we bound
∥∥(I − Pm)(C + tI)1/2

∥∥2

L∞(H)
with Lemma

A.3 and t = 19κ
n log 2n

δ .

Remark 1. Theorem 2 can be presented in
terms of the empirical effective dimension deff =
tr
(
K(K + ntIn)−1

)
rather than its population

counterpart, NC(t), as in Alaoui and Mahoney
(2015), by noting that NC(t) .Pn deff + 1

nt . How-
ever, it is beneficial to present in terms of NC(t)
as it fosters easy comparison of the empirical and
approximate reconstruction errors to the population
error.

To understand the significance of Theorem 2, we
have to compare it to the behavior of the reconstruc-
tion error associated with EKPCA, i.e., RCn,`. Rudi
et al. (2015, Theorem 3.1) showed that for n > 3,
0 < δ < 1 and 9κ

n log n
δ ≤ t ≤ λ1,

Pn {(Xi)
n
i=1 : RCn,` ≤ 9NC(t) (λ` + t)} ≥ 1− δ.

(17)
Comparing (9) and (10) to (17), it is clear that
NY-KPCA has a statistical behavior similar to that
EKPCA, with the bounds differing only up to con-
stants. However, it is not obvious whether such a
behavior is achieved for m < n, i.e., the order of
dependence of m on n is not clear. To clarify this,
in the following, we present two corollaries to The-
orem 2, which compare the asymptotic convergence
rates of RC,`, RCn,` and RnysCn,`

under an additional
assumption on the decay rate of eigenvalues of C.
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Corollary 3 (Polynomial decay of eigenvalues).
Suppose Ai−α ≤ λi ≤ Āi−α for α > 1 and
A, Ā ∈ (0,∞). Let ` = n

θ
α , θ > 0. Then the

following hold:

(i)

n−θ(1−
1
α ) . RC,` . n−θ(1−

1
α );

(ii)

RCn,` .Pn

n
−θ(1− 1

α ), θ < 1(
logn
n

)1− 1
α

, θ ≥ 1
;

(iii) For plain Nyström subsampling:

RnysCn,`
.Pn

n
−θ(1− 1

α ), θ < 1, m & nθ log n(
logn
n

)1− 1
α

, θ ≥ 1, m & n
logn log n

logn

;

(iv) For approximate leverage score Nyström sub-
sampling:

RnysCn,`
.Pn

n
−θ(1− 1

α ), θ < 1, m & n
θ
α log n(

logn
n

)1− 1
α

, θ ≥ 1, m & n
1
α

(logn)
1
α
−1

.

Proof. (i) From Theorem 2 (i) we have RC,` =∑
i>` λi .

∑
i>` i

−α .
∫∞
`
x−αdx . `1−α =

n−θ(1−
1
α ). Similarly, RC,` =

∑
i>` λi &

∑
i>` i

−α &∫∞
`
x−αdx & `1−α = n−θ(1−

1
α ).

(ii) This is Theorem 3.2 of (Rudi et al., 2015) with

α = 1
2 , r = α, p = 2, and ` = n

θ
α .

(iii) Theorem 2 (iii) and Proposition B.1 yield

RnysCn,`
.Pn t

− 1
αn−θ + t1−

1
α ≤

{
t1−

1
α , t ≥ n−θ

t−
1
αn−θ, t ≤ n−θ

,

where logn
n . t ≤ λ1 and m & NC,∞(t) log 1

t with
NC,∞(t) = supx∈X

〈
k(·, x), (C + tI)−1k(·, x)

〉
H .

1
t .

First, consider the case when t ≥ n−θ. This means

RnysCn,`
. inf

{
t1−

1
α : t &

log n

n
∨ n−θ,m &

1

t
log

1

t

}
.

For θ < 1, we obtain RnysCn,`
.

inf
{
t1−

1
α : t & n−θ,m & 1

t log 1
t

}
≤ n−θ(1− 1

α )

if m & nθ log n. For θ ≥ 1, we obtain RnysCn,`
.

inf
{
t1−

1
α : t & logn

n ,m & 1
t log 1

t

}
≤
(

logn
n

)(1− 1
α )

if m & n
logn log n

logn .

Next, consider the case when
t ≤ n−θ which means RnysCn,`

.

inf
{
t−

1
αn−θ : logn

n . t . n−θ,m & 1
t log 1

t

}
≤

n−θ(1− 1
α ) when θ < 1 and m & nθ log n.

(iv) Theorem 2(iv) and Proposition B.1 yield

RnysCn,`
.Pn t

− 1
αn−θ + t1−

1
α ≤

{
t1−

1
α , t ≥ n−θ

t−
1
αn−θ, t ≤ n−θ

,

where logn
n . t ≤ λ1 and m & NC(t) log n &

t−
1
α log n. The result follows by carrying out the

analysis as in (iii) for θ < 1 and θ ≥ 1.

Remark 2. (i) The above result shows that the
reconstruction errors associated with KPCA and
EKPCA have similar asymptotic behavior as long
as ` does not grow to infinity too fast, i.e., θ < 1.
On the other hand, for θ ≥ 1, the reconstruction
error of EKPCA has slower asymptotic convergence
to zero than that of KPCA. If ` grows to infinity
faster with the rate controlled by θ, then the vari-
ance term dominates the bias resulting in a slower
convergence rate compared to that of KPCA.

(ii) Comparing (ii) and (iii) in the above result,
we note that EKPCA and NY-KPCA have similar
convergence behavior as long as m is large enough
where the size of m is controlled by the growth of
` through θ. For the case of θ ≥ 1 in (iii), we
require m & n

logn log n
logn which means asymptoti-

cally m should be of the same order as n. On the
other hand, the approximate leverage score Nyström
subsampling gives same convergence rates as that
of EKPCA but requiring far fewer samples than
that for NY-KPCA with plain Nyström subsam-
pling. These results show that for the interesting
case of θ < 1 where EKPCA performance matches
with that of KPCA, NY-KPCA also achieves sim-
ilar performance, albeit with lower computational
requirement.

Corollary 4 (Exponential decay of eigenvalues).
Suppose Be−τi ≤ λi ≤ B̄e−τi for τ > 0 and
B, B̄ ∈ (0,∞). Let ` = 1

τ log nθ for θ > 0. Then the
following hold:

(i)
n−θ . RC,` . n−θ;

(ii)

RCn,` .Pn

{
logn
nθ

, θ < 1
(logn)2

n , θ ≥ 1
;

(iii) For plain Nyström subsampling:

RnysCn,`
.Pn

{
logn
nθ

, θ < 1, m & nθ log n
(logn)2

n , θ ≥ 1, m & n
logn log n

logn

;
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(iv) For approximate leverage score Nyström sub-
sampling:

RnysCn,`
.Pn

{
logn
nθ

, θ < 1, m & (log n)2

(logn)2

n , θ ≥ 1, m & log n log n
logn

.

Proof. (i) From Theorem 2 (i) we have RC,` =∑
i>` λi .

∑
i>` e

−τi .
∫∞
`
e−τxdx . e−τ` = n−θ

and RC,` =
∑
i>` λi &

∑
i>` e

−τi &
∫∞
`+1

e−τxdx &

e−τ(`+1) = e−τn−θ.

(ii) Theorem 2 (ii) and Proposition B.2 yield

RCn,` .Pn
(
n−θ + t

)
log

1

t
≤

{
n−θ log 1

t , t ≤ n
−θ

t log 1
t , t ≥ n

−θ ,

where logn
n . t ≤ λ1.

For the case of t ≤ n−θ, we obtain RCn,` .

inf
{
n−θ log 1

t : logn
n . t ≤ n−θ

}
= n−θ log n, where

the constraint is only valid for θ < 1.

On the other hand, for t ≥ n−θ, we obtain RCn,` .

inf
{
t log 1

t : t & logn
n ∨ n−θ

}
= logn

n log
(

n
logn

)
≤

(logn)2

n , which holds for θ ≥ 1.

(iii) Arguing similarly as in (ii), it follows that
for θ < 1 and m & nθ log n, we obtain a rate of
n−θ log n for RnysCn,`

. Similarly for θ ≥ 1 and m ≥
n

logn log
(

n
logn

)
, we obtain a rate of n−1(log n)2.

(iv) Arguing as in (ii) and enforcing the restriction
m & log n log 1

t imposed by Theorem 2 (ii) yields
the result.

Corollary 4 shares similar behavior to that Corol-
lary 3 as discussed in Remark 2 but just that it
yields faster rates since the RKHS is smooth as de-
termined by the rate of decay of eigenvalues. In
addition, the approximate leverage score Nyström
subsampling based KPCA requires only (log n)2 sub-
samples to match the performance of EKPCA re-
sulting in substantial computational savings without
any loss in statistical accuracy.

Comparison to random feature approxima-
tion. Sriperumbudur and Sterge (2018); Ullah
et al. (2018) studied the question of computational
vs. statistical tradeoff in kernel PCA using random
feature approximation (Rahimi and Recht, 2008).
However, our results for Nyström approximation are
not directly comparable to theirs. These works con-
sidered a reconstruction error defined in (8) through
Lemma 1, however, in the L2(P) norm, which is
weaker than the RKHS norm. Using the L2(P) norm

is needed for random feature approximation based
KPCA as the random features in general do not lie
in H, while KPCA and EKPCA generate eigenfunc-
tions in H, which makes comparison infeasible. This
was addressed by embedding all of them in L2(P)
and comparing their behavior in L2(P) norm—for
classical PCA this would correspond to considering
the error E[(X>(I − P `(C))X)2] rather than (7).
On the other hand, the eigenfunctions of NY-KPCA
lie in H making comparison to KPCA and EKPCA
feasible in H norm, which is what did in this work.
For a direct comparison with random features, we
have study the reconstruction errors in (8) in L2(P),
which will be a focus of our future work.

4 Conclusions & Further Work

In this paper, we considered the problem of analyz-
ing the approximation of kernel PCA using Nyström
method. The Nyström approximation avoids some
of the technical difficulties associated with random
features and allows to derive statistical error es-
timates that are directly comparable to those of
KPCA. Our results indicate there are regimes where
computational gains can be achieved while preserv-
ing statistical accuracy. These results parallel recent
findings in supervised learning and extend them to
unsupervised learning.

Our study opens a number of possible questions. For
example, still for KPCA, it would be interesting to
understand the properties of Nyström sampling in
combination with iterative eigensolvers, both batch
(e.g., the power method) and stochastic (e.g., Oja’s
rule). The application of our approach to other spec-
tral methods, such as those used in graph and man-
ifold learning, would be interesting. Beyond PCA
and spectral methods, our study naturally yields the
question of which other learning problems can have
analogous statistical and computational trade-offs,
e.g., independence tests based on covariance and
cross-covariance operators (Gretton et al., 2008), or
mean embeddings (Sriperumbudur et al., 2010).
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