Supplementary materials for "Finite-Sample Analysis of Decentralized Temporal-Difference Learning with Linear Function Approximation"

A Proof of Theorem 1

Proof. From the definition of $G(\Theta)$ in (24), we have that

$$\begin{split} \boldsymbol{G}(\boldsymbol{\Theta}(k), \xi_k) &= \begin{bmatrix} \boldsymbol{\theta}_1^\top(k) [\gamma \boldsymbol{\phi}(s(k+1)) - \boldsymbol{\phi}(s(k))] \boldsymbol{\phi}^\top(s(k)) \\ \boldsymbol{\theta}_2^\top(k) [\gamma \boldsymbol{\phi}(s(k+1)) - \boldsymbol{\phi}(s(k))] \boldsymbol{\phi}^\top(s(k)) \\ \vdots \\ \boldsymbol{\theta}_M^\top(k) [\gamma \boldsymbol{\phi}(s(k+1)) - \boldsymbol{\phi}(s(k))] \boldsymbol{\phi}^\top(s(k)) \end{bmatrix} + \begin{bmatrix} r_1(k) \boldsymbol{\phi}^\top(s(k)) \\ r_2(k) \boldsymbol{\phi}^\top(s(k)) \\ \vdots \\ r_M(k) \boldsymbol{\phi}^\top(s(k)) \end{bmatrix} \\ &= \boldsymbol{\Theta}(k) \big[\gamma \boldsymbol{\phi}(s(k+1)) - \boldsymbol{\phi}(s(k)) \big] \boldsymbol{\phi}^\top(s(k)) + \boldsymbol{r}(k) \boldsymbol{\phi}^\top(s(k)) \\ &= \boldsymbol{\Theta}(k) \boldsymbol{H}^\top(\xi_k) + \boldsymbol{r}(k) \boldsymbol{\phi}^\top(s(k)) \end{split}$$

where we have used the definitions that $r(k) = [r_1(k) \ r_2(k) \ \cdots \ r_M(k)]^{\top}$ and $\boldsymbol{H}(\xi_k) := \boldsymbol{\phi}(s(k))[\gamma \boldsymbol{\phi}^{\top}(s(k+1)) - \boldsymbol{\phi}^{\top}(s(k))]$. Using standard norm inequalties, it follows that

$$\|\boldsymbol{\Delta}\boldsymbol{G}(\boldsymbol{\Theta}(k),\xi_{k})\|_{F} \leq \|[\gamma\boldsymbol{\phi}(s(k+1)) - \boldsymbol{\phi}(s(k))]\boldsymbol{\phi}^{\top}(s(k))\|_{F} \cdot \|\boldsymbol{\Delta}\boldsymbol{\Theta}(k)\|_{F} + \|\boldsymbol{r}(k)\boldsymbol{\phi}^{\top}(s(k))\|_{F}$$

$$\leq [\|\gamma\boldsymbol{\phi}(s(k+1))\|_{F} + \|\boldsymbol{\phi}(s(k))\|_{F}] \cdot \|\boldsymbol{\phi}^{\top}(s(k))\|_{F} \cdot \|\boldsymbol{\Delta}\boldsymbol{\Theta}(k)\|_{F} + \|\boldsymbol{r}(k)\|_{F} \cdot \|\boldsymbol{\phi}(s(k))\|_{F}$$

$$\leq (1+\gamma)\|\boldsymbol{\Delta}\boldsymbol{\Theta}(k)\|_{F} + \sqrt{M}r_{\text{max}}$$

$$\leq 2\|\boldsymbol{\Delta}\boldsymbol{\Theta}(k)\|_{F} + \sqrt{M}r_{\text{max}}$$

$$(44)$$

where $1 + \gamma \leq 2$ for the discounting factor $0 \leq \gamma < 1$, and the last inequality holds since feature vectors $\|\phi(s)\| \leq 1$, rewards $r(k) \leq r_{\text{max}}$, and the Frobenious norm of rank-one matrices is equivalent to the ℓ_2 -norm of vectors. For future reference, notice from the above inequality that $\lambda_{\text{max}}(\boldsymbol{H}(\xi_k)) \leq \|\boldsymbol{H}(\xi_k)\|_F = \|[\gamma\phi(s(k+1)) - \phi(s(k))]\phi^{\top}(s(k))\| \leq 1 + \gamma \leq 2$, for all $k \in \mathbb{N}^+$.

It follows from (28) that

$$\|\Delta\Theta(k+1)\|_{F} \leq \|W\Delta\Theta(k)\|_{F} + \alpha \|\Delta G(\Theta(k))\|_{F}$$

$$\leq \left[\lambda_{2}^{W} + 2\alpha\right] \|\Delta\Theta(k)\|_{F} + \alpha \sqrt{M}r_{\max}$$
(45)

where the second inequality is obtained after using (44), and the following inequality [Nedić et al., 2018, Ma et al., 2019]

$$\|\boldsymbol{W}\boldsymbol{\Delta}\boldsymbol{\Theta}(k)\|_{F} = \left\|\boldsymbol{W}\left(\boldsymbol{I} - \frac{1}{M}\mathbf{1}\mathbf{1}^{\top}\right)\boldsymbol{\Theta}(k)\right\| \leq \lambda_{2}^{\boldsymbol{W}}\|\boldsymbol{\Delta}\boldsymbol{\Theta}(k)\|_{F}.$$
(46)

Then applying (45) recursively from iteration k to 0 gives rise to

$$\|\boldsymbol{\Delta}\boldsymbol{\Theta}(k)\|_{F} \leq \left(\lambda_{2}^{\boldsymbol{W}} + 2\alpha\right)^{k} \|\boldsymbol{\Delta}\boldsymbol{\Theta}(0)\|_{F} + \alpha\sqrt{M}r_{\max} \sum_{i=0}^{k-1} \left(\lambda_{2}^{\boldsymbol{W}} + 2\alpha\right)^{i}$$

$$\leq \left(\lambda_{2}^{\boldsymbol{W}} + 2\alpha\right)^{k} \|\boldsymbol{\Delta}\boldsymbol{\Theta}(0)\|_{F} + \frac{\alpha\sqrt{M}r_{\max}}{1 - \lambda_{2}^{\boldsymbol{W}} - 2\alpha}$$

$$\leq \left(\lambda_{2}^{\boldsymbol{W}} + 2\alpha\right)^{k} \|\boldsymbol{\Delta}\boldsymbol{\Theta}(0)\|_{F} + \alpha \cdot \frac{2\sqrt{M}r_{\max}}{1 - \lambda_{2}^{\boldsymbol{W}}}$$

$$(47)$$

where the last inequality is a consequence of using the fact that $0 < \alpha < \frac{1}{2} \cdot \frac{1 - \lambda_2^W}{2}$. This concludes the proof of Theorem 1.

B Proof of Lemma 1

Proof. Recalling the definitions of $H(\xi_k)$ (\bar{H}) and $b(\xi_k)$ (\bar{b}), it is not difficult to verify that in the stationary distribution π of the Markov chain, the expectations of $H(\xi_k)$ and $b(\xi_k)$ obey

$$\mathbb{E}_{\pi}[\boldsymbol{H}(\xi_k)] = \bar{\boldsymbol{H}} \tag{48}$$

and

$$\mathbb{E}_{\pi}[\boldsymbol{b}_{\mathcal{G}}(\xi_k)] = \bar{\boldsymbol{b}}_{\mathcal{G}}.\tag{49}$$

Thus.

$$\mathbb{E}_{\pi} \left[\frac{1}{M} \boldsymbol{G}^{\top} (\boldsymbol{\Theta}(k), \xi_{k}) \mathbf{1} \middle| \mathcal{F}(k) \right] = \mathbb{E}_{\pi} \left[\boldsymbol{H}(\xi_{k}) \bar{\boldsymbol{\theta}}(k) + \boldsymbol{b}_{\mathcal{G}}(\xi_{k}) \middle| \mathcal{F}(k) \right] = \bar{\boldsymbol{H}} \bar{\boldsymbol{\theta}}(k) + \bar{\boldsymbol{b}}_{\mathcal{G}}$$
(50)

and its variance satisfies

$$\mathbb{E}_{\pi} \left[\left\| \frac{1}{M} \boldsymbol{G}^{\top} (\boldsymbol{\Theta}(k), \xi_{k}) \mathbf{1} - \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) \right\|^{2} \middle| \mathcal{F}(k) \right] = \mathbb{E}_{\pi} \left[\left\| (\boldsymbol{H}(\xi_{k}) - \bar{\boldsymbol{H}}) \bar{\boldsymbol{\theta}}(k) + \boldsymbol{b}_{\mathcal{G}}(\xi_{k}) - \bar{\boldsymbol{b}}_{\mathcal{G}} \right\|^{2} \middle| \mathcal{F}(k) \right] \\
\leq \mathbb{E}_{\pi} \left[2 \left\| (\boldsymbol{H}(\xi_{k}) - \bar{\boldsymbol{H}}) \bar{\boldsymbol{\theta}}(k) \right\|^{2} + 2 \left\| \boldsymbol{b}_{\mathcal{G}}(\xi_{k}) - \bar{\boldsymbol{b}}_{\mathcal{G}} \right\|^{2} \middle| \mathcal{F}(k) \right] \\
\leq 2\beta^{2} \left\| \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^{*} + \boldsymbol{\theta}^{*} \right\|^{2} + 8r_{\max}^{2} \\
\leq 4\beta^{2} \left\| \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^{*} \right\|^{2} + 4\beta^{2} \left\| \boldsymbol{\theta}^{*} \right\|^{2} + 8r_{\max}^{2} \tag{51}$$

where β denotes the largest absolute value of eigenvalues of $\mathbf{H}(\xi_k) - \bar{\mathbf{H}}$, for any $k \in \mathbb{N}^+$.

C Proof of Theorem 2

Proof. Clearly, it holds that

$$\mathbb{E}_{\pi}[\|\bar{\boldsymbol{\theta}}(k+1) - \boldsymbol{\theta}^*\|^2 | \mathcal{F}(k)] = \mathbb{E}_{\pi}[\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* + \alpha \frac{1}{M} \boldsymbol{G}^{\top}(\boldsymbol{\Theta}, \xi_k) \mathbf{1} \|^2 | \mathcal{F}(k)]$$

$$\leq \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 + 2\alpha \left\langle \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \mathbb{E}_{\pi} \left[\frac{1}{M} \boldsymbol{G}(\boldsymbol{\Theta}(k), \xi_k)^T \mathbf{1} | \mathcal{F}(k) \right] \right\rangle$$

$$+ \alpha^2 \mathbb{E}_{\pi}[\|\frac{1}{M} \boldsymbol{G}(\boldsymbol{\Theta}(k), \xi_k)^T \mathbf{1} - \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) + \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) \|^2 | \mathcal{F}(k)]$$

$$\leq \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 + 2\alpha \left\langle \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) - \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}^*) \right\rangle$$

$$+ 2\alpha^2 (\beta^2 \|\bar{\boldsymbol{\theta}}\|^2 + r_{\max}^2) + 2\alpha^2 \|\bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) - \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}^*) \|^2$$

$$\leq \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 + 2\alpha \left\langle \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \bar{\boldsymbol{H}}(\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*) \right\rangle$$

$$+ 2\alpha^2 (4\beta^2 \|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}^*\|^2 + 4\beta^2 \|\boldsymbol{\theta}^*\|^2 + 8r_{\max}^2) + 2\alpha^2 \|\bar{\boldsymbol{H}}(\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*)\|^2$$

$$\leq \left[1 + 2\alpha\lambda_{\max}^{\bar{\boldsymbol{H}}} + 8\alpha^2\beta^2 + 2\alpha^2(\lambda_{\min}^{\bar{\boldsymbol{H}}})^2 \right] \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2$$

$$+ (8\alpha^2\beta^2 \|\boldsymbol{\theta}^*\|^2 + 16\alpha^2 r_{\max}^2). \tag{52}$$

where $\lambda_{\max}^{\bar{H}}$ and $\lambda_{\min}^{\bar{H}}$ are the largest and the smallest eigenvalues of \bar{H} , respectively. Because \bar{H} is a negative definite matrix, then it follows that $\lambda_{\min}^{\bar{H}} < \lambda_{\max}^{\bar{H}} < 0$.

Defining constants $c_1 := 1 + 2\alpha\lambda_{\max}^{\bar{H}} + 8\alpha^2\beta^2 + 2\alpha^2(\lambda_{\min}^{\bar{H}})^2$, and choosing any constant stepsize α obeying $0 < \alpha \le -\frac{1}{2} \cdot \frac{\lambda_{\max}^{\bar{H}}}{4\beta^2 + (\lambda_{\min}^{\bar{H}})^2}$, then we have $c_1 < 1$ and $\frac{1}{1-c_1} \le -\frac{1}{\alpha\lambda_{\max}^{\bar{H}}}$. Now, taking expectation with respect to $\mathcal{F}(k)$ in (52) gives rise to

$$\mathbb{E}[\|\bar{\boldsymbol{\theta}}(k+1) - \boldsymbol{\theta}^*\|^2] \le c_1 \mathbb{E}[\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2] + (8\alpha^2 \beta^2 \|\boldsymbol{\theta}^*\|^2 + 16\alpha^2 r_{\max}^2).$$
 (53)

Applying the above recursion from iteration k to iteration 0 yields

$$\mathbb{E}\left[\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2\right] \le c_1^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + \frac{1 - c_1^k}{1 - c_1} \left(8\alpha^2 \beta^2 \|\boldsymbol{\theta}^*\|^2 + 16\alpha^2 r_{\max}^2\right)$$

$$\leq c_1^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + \frac{8\alpha^2 \beta^2 \|\boldsymbol{\theta}^*\|^2 + 16\alpha^2 r_{\max}^2}{-\alpha \lambda_{\max}^{\bar{\boldsymbol{H}}}}$$

$$\leq c_1^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + \alpha c_2$$
 (54)

where $c_2 := \frac{8\beta^2 \|\boldsymbol{\theta}^*\|^2 + 16r_{\max}^2}{-\lambda_{\max}^H}$, and this concludes the proof.

D Proof of Proposition 1

Proof. We have that

$$\mathbb{E}[\|\boldsymbol{\theta}_{m}(k) - \boldsymbol{\theta}^{*}\|^{2}] = \mathbb{E}[\|\boldsymbol{\theta}_{m}(k) - \bar{\boldsymbol{\theta}}(k) + \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^{*}\|^{2}] \\
\leq 2\mathbb{E}[\|\boldsymbol{\theta}_{m}(k) - \bar{\boldsymbol{\theta}}(k)\|^{2}] + 2\mathbb{E}[\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^{*}\|^{2}] \\
\leq 2\mathbb{E}[\|\boldsymbol{\Delta}\boldsymbol{\Theta}(k)\|_{F}^{2}] + 2\mathbb{E}[\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^{*}\|^{2}] \\
\leq 2\mathbb{E}\left[\left(\lambda_{2}^{W} + 2\alpha\right)^{k}\|\boldsymbol{\Delta}\boldsymbol{\Theta}(0)\|_{F} + \frac{2\alpha\sqrt{M}r_{\max}}{1 - \lambda_{2}^{W}}\right]^{2} + 2c_{1}^{k}\|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^{*}\|^{2} + 2\alpha c_{2} \\
\leq 4\left(\lambda_{2}^{W} + 2\alpha\right)^{2k}\|\boldsymbol{\Delta}\boldsymbol{\Theta}(0)\|_{F}^{2} + \frac{8\alpha^{2}Mr_{\max}^{2}}{(1 - \lambda_{2}^{W})^{2}} + 2c_{1}^{k}\|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^{*}\|^{2} + 2\alpha c_{2}. \tag{55}$$

where the third inequality follows from using (29) and (54). Letting $c_3 := \max\{\left(\lambda_2^{\boldsymbol{W}} + 2\alpha\right)^2, c_1\}, V_0 := 2\max\{4\|\boldsymbol{\Delta}\boldsymbol{\Theta}(0)\|_F^2, 2\|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2\}$, and $c_4 := \alpha \cdot \frac{8Mr_{\max}^2}{(1-\lambda_2^{\boldsymbol{W}})^2} + \frac{16\beta^2\|\boldsymbol{\theta}^*\|^2 + 32r_{\max}^2}{-\lambda_{\max}^{\boldsymbol{H}}}$, then it is straightforward from (55) that our desired result follows; that is,

$$\mathbb{E}\left[\left\|\boldsymbol{\theta}_{m}(k) - \boldsymbol{\theta}^{*}\right\|^{2}\right] \le c_{3}^{k} V_{0} + c_{4} \alpha \tag{56}$$

which concludes the proof.

E Proof of Lemma 2

Proof. For notational brevity, let $r_{\mathcal{G}}(k) := (1/M) \sum_{m \in \mathcal{M}} r_m(k)$ for each $k \in \mathbb{N}^+$. It then follows that

$$\left\| \frac{1}{KM} \sum_{j=k}^{k+K-1} \mathbb{E} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}, \xi_{j}) \mathbf{1} \middle| \mathcal{F}(k) \right] - \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}) \right\|$$

$$= \left\| \frac{1}{K} \sum_{j=k}^{k+K-1} \mathbb{E} \left[\boldsymbol{\phi}(s(k)) [\gamma \boldsymbol{\phi}(s(k+1)) - \boldsymbol{\phi}(s(k))]^{\top} \bar{\boldsymbol{\theta}} + \frac{1}{M} \boldsymbol{\phi}(s(k)) \boldsymbol{r}^{\top}(k) \mathbf{1} \right] - \mathbb{E}_{\pi} \left[\boldsymbol{g}(\bar{\boldsymbol{\theta}}) \right] \right\|$$

$$= \left\| \frac{1}{K} \sum_{j=k}^{k+K-1} \sum_{s \in \mathcal{S}} \left(\Pr[s(j) = s \middle| \mathcal{F}(k)] - \pi(s) \right) \left[\boldsymbol{\phi}(s) (\gamma P(s, s') \boldsymbol{\phi}(s') - \boldsymbol{\phi}(s))^{\top} (\bar{\boldsymbol{\theta}} + \boldsymbol{\theta}^{*}) + r_{\mathcal{G}}(s) \boldsymbol{\phi}(s) \right] \right\|$$

$$\leq \max_{s, s'} \left\| \boldsymbol{\phi}(s) \left[\gamma P(s, s') \boldsymbol{\phi}(s') - \boldsymbol{\phi}(s) \right]^{\top} (\bar{\boldsymbol{\theta}} + \boldsymbol{\theta}^{*}) + r_{\mathcal{G}}(s) \boldsymbol{\phi}(s) \right\|$$

$$\times \frac{1}{K} \sum_{j=k}^{k+K-1} \sum_{s \in \mathcal{S}} \left| \Pr[s(j) = s \middle| \mathcal{F}(k)] - \pi(s) \right|$$

$$\leq (1 + \gamma) \left(\|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\| + 2 \|\boldsymbol{\theta}^{*}\| + r_{\max} \right) \times \frac{1}{K} \sum_{j=k}^{k+K-1} \nu_{0} \rho^{k} \cdot \rho^{j-k}$$

$$\leq \frac{(1 + \gamma) \nu_{0} \rho^{k}}{(1 - \rho) K} (\|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\| + 2 \|\boldsymbol{\theta}^{*}\| + r_{\max})$$

$$\leq \sigma_{k}(K) (\|\bar{\boldsymbol{\theta}} - \boldsymbol{\theta}^{*}\| + 1)$$
(57)

where $\sigma_k(K) = \frac{(1+\gamma)\nu_0\rho^k}{(1-\rho)K} \times \max\{2\|\boldsymbol{\theta}^*\| + r_{\max}, 1\}$, and the second inequality arises from the fact that any finite-state, irreducible, and aperiodic Markov chains converges geometrically fast (with some initial constant $\nu_0 > 0$ and rate $0 < \rho < 1$) to its unique stationary distribution [Levin and Peres, 2017, Thm. 4.9]. Thus, we conclude that Lemma 2 holds true with monotonically decreasing function $\sigma(K)$ of $K \in \mathbb{N}^+$ as defined above.

F Proof of Lemma 3

Proof. Recalling the definition of our multi-step Lyapunov function, we obtain that

$$\mathbb{E}\big[\mathbb{V}(k+1) - \mathbb{V}(k)\big|\mathcal{F}(k)\big] = \mathbb{E}\big[\|\bar{\boldsymbol{\theta}}(k+K) - \boldsymbol{\theta}^*\|^2 - \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2\big|\mathcal{F}(k)\big]. \tag{58}$$

Thus, we should next derive the bound of the right hand side of above equation. Following from iterate (27), we can write

$$\bar{\boldsymbol{\theta}}(k+K) = \bar{\boldsymbol{\theta}}(k) + \frac{\alpha}{M} \sum_{j=k}^{k+K-1} \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_j) \mathbf{1}.$$
 (59)

As a consequence (without particular statement, the expectation in the rest of this proof is taken with respect to the ξ_k to ξ_{k+K-1} conditioned on ξ_0 to ξ_{k-1}),

$$\mathbb{E}\left[\|\bar{\boldsymbol{\theta}}(k+K) - \boldsymbol{\theta}^*\|^2 \middle| \mathcal{F}(k)\right] = \mathbb{E}\left[\left\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* + \frac{\alpha}{M} \sum_{j=k}^{k+K-1} \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_j) \mathbf{1}\right\|^2 \middle| \mathcal{F}(k)\right] \\
= \mathbb{E}\left[\left\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* + \frac{\alpha}{M} \sum_{j=k}^{k+K-1} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_j) \mathbf{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1} + \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1}\right]\right\|^2 \middle| \mathcal{F}(k)\right] \\
= \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 \\
+ 2\alpha \mathbb{E}\left[\left\langle\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, K\bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) + \frac{1}{M} \sum_{j=k}^{k+K-1} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_j) \mathbf{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1} + \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1}\right] - K\bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k))\right\rangle \middle| \mathcal{F}(k)\right] \\
+ \alpha^2 \mathbb{E}\left[\left\|\frac{1}{M} \sum_{j=k}^{k+K-1} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_j) \mathbf{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1} + \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1}\right]\right\|^2 \middle| \mathcal{F}(k)\right] \\
= \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 + 2\alpha \mathbb{E}\left[\left\langle\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, K\bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) - K\bar{\boldsymbol{g}}(\boldsymbol{\theta}^*)\right\rangle \middle| \mathcal{F}(k)\right] \\
+ 2\alpha \mathbb{E}\left[\left\langle\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \sum_{j=k}^{k+K-1} \frac{1}{M}\left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_j) \mathbf{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1}\right]\right\rangle \middle| \mathcal{F}(k)\right] \\
+ 2\alpha \mathbb{E}\left[\left\langle\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \sum_{j=k}^{k+K-1} \frac{1}{M}\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1} - K\bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}})\right\rangle \middle| \mathcal{F}(k)\right] \\
+ \alpha^2 \mathbb{E}\left[\left\|\frac{1}{M} \sum_{j=k}^{k+K-1} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_j) \mathbf{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1} + \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1}\right]\right\|^2 \middle| \mathcal{F}(k)\right] \right] \right\} (60)$$

where the second and the third equality result from adding and subtracting the same terms and the last equality holds since $\bar{g}(\boldsymbol{\theta}^*) = 0$. In the following, we will bound the four terms in the above equality.

1) Bounding the second term. As a direct result of the definition of $\bar{g}(\theta)$, we have that $\bar{g}(\bar{\theta}) - \bar{g}(\theta^*) = \bar{H}(\bar{\theta} - \theta^*)$. Therefore, it holds that

$$2\alpha \mathbb{E}\left[\left\langle \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, K\bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) - K\bar{\boldsymbol{g}}(\boldsymbol{\theta}^*)\right\rangle \middle| \mathcal{F}(k)\right] = 2\alpha K \mathbb{E}\left[\left(\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\right)^{\top} \bar{\boldsymbol{H}}(\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*) \middle| \mathcal{F}(k)\right]$$

$$\leq 2\alpha K \lambda_{\text{max}}^{\bar{\boldsymbol{H}}} \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 \tag{61}$$

where $\lambda_{\max}^{\bar{H}}$ is the largest eigenvalue of \bar{H} . Because \bar{H} is a negative definite matrix, it holds that $\lambda_{\max}^{\bar{H}} < 0$.

2) Bounding the third term. Defining first $p(k, \Theta(k), K) := \sum_{j=k}^{k+K-1} \frac{1}{M} \left[G^{\top}(\Theta(j), \xi_j) \mathbf{1} - G^{\top}(\Theta(k), \xi_j) \mathbf{1} \right]$, then it follows that

$$\begin{aligned} \boldsymbol{p}(k,\boldsymbol{\Theta}(k),K) &= \sum_{j=k}^{k+K-2} \frac{1}{M} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j),\xi_{j}) \boldsymbol{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k),\xi_{j}) \boldsymbol{1} \right] \\ &+ \frac{1}{M} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k+K-1),\xi_{k+K-1}) \boldsymbol{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k),\xi_{k+K-1}) \boldsymbol{1} \right] \\ &= \boldsymbol{p}(k,\boldsymbol{\Theta}(k),K-1) + \frac{1}{M} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k+K-1),\xi_{k+K-1}) \boldsymbol{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k),\xi_{k+K-1}) \boldsymbol{1} \right] \\ &= \boldsymbol{p}(k,\boldsymbol{\Theta}(k),K-1) + \boldsymbol{H}(k+K-1) [\bar{\boldsymbol{\theta}}(k+K-1) - \bar{\boldsymbol{\theta}}(k)]. \end{aligned}$$

Recalling that 2 is the largest absolute value of eigenvalues of H(k) for any $k \in \mathbb{N}^+$ (which clearly exists and is bounded due to the bounded feature vectors $\phi(s)$ for any $s \in \mathcal{S}$), the norm of $p(k, \Theta(k), K)$ can be bounded as follows

$$\begin{split} \| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K) \| &\leq \| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K - 1 \| + 2 \| \bar{\boldsymbol{\theta}}(k + K - 1) - \bar{\boldsymbol{\theta}}(k) \| \\ &= \| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K - 1) \| + 2\alpha \| \sum_{j=k}^{k+K-2} \frac{1}{M} \Big[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_{j}) \mathbf{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_{j}) \mathbf{1} \Big] \\ &+ \sum_{j=k}^{k+K-2} \frac{1}{M} \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_{j}) \mathbf{1} \| \\ &\leq (1 + 2\alpha) \| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K - 1) \| + 2 \sum_{j=k}^{k+K-2} \alpha \| \boldsymbol{H}(j) \bar{\boldsymbol{\theta}}(k) + b_{\mathcal{G}} \| \\ &\leq (1 + 2\alpha) \| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K - 1) \| + 4\alpha \left(\sum_{j=k}^{k+K-2} \| \bar{\boldsymbol{\theta}}(k) \| + \frac{r_{\max}}{2} \right) \end{split}$$

where the last inequality follows from $\|H(j)\bar{\theta}(k)\| \le 2\|\bar{\theta}(k)\|$ for any $j \ge 0$. Following the above recursion, we can write

$$\|\boldsymbol{p}(k,\boldsymbol{\Theta}(k),K)\| \le (1+2\alpha)^{K} \|\boldsymbol{p}(k,\boldsymbol{\Theta}(k),0)\| + 4\alpha K \|\bar{\boldsymbol{\theta}}(k)\| \sum_{j=0}^{K-1} (1+2\alpha)^{j} (K-1-j)$$

$$\le 4\alpha (\|\bar{\boldsymbol{\theta}}(k)\| + \frac{r_{\max}}{2}) \sum_{j=0}^{K-1} (1+2\alpha)^{j} (K-1-j)$$
(62)

where the second inequality because $\|\boldsymbol{p}(k,\boldsymbol{\Theta}(k),0)\| = 0$.

For any positive constant $x \neq 1$ and $K \in \mathbb{N}^+$, the following equality holds

$$\sum_{j=0}^{K-1} x^j (K-1-j) = \frac{x^K - Kx + K - 1}{(1-x)^2}.$$
 (63)

Substituting $x = (1 + 2\alpha)$ into (63) along with plugging the result into (62) yields

$$\|\boldsymbol{p}(k,\boldsymbol{\Theta}(k),K)\| \le \frac{(1+2\alpha)^K - 2K\alpha - 1}{\alpha} K \|\bar{\boldsymbol{\theta}}(k)\|. \tag{64}$$

According to the mid-value theorem, there exists some suitable constant $\delta \in [0,1]$ such that the following holds true

$$(1+2\alpha)^K = 1 + 2K\alpha + \frac{1}{2}K(K-1)(1+\delta(2\alpha)^{K-2}(2\alpha)^2)$$

$$\leq 1 + 2K\alpha + \frac{1}{2}K^2(1+2\alpha)^{K-2}(2\alpha)^2. \tag{65}$$

Thus, it is clear that

$$\frac{(1+2\alpha)^K - 2K\alpha - 1}{\alpha} \le 2\alpha K^2 (1+2\alpha)^{K-2}.$$
 (66)

Upon plugging (66) into (64), it follows that

$$\|\boldsymbol{p}(k,\boldsymbol{\Theta}(k),K)\| \le 2\alpha K^{2} (1+2\alpha)^{K-2} (\|\bar{\boldsymbol{\theta}}(k)\| + \frac{r_{\max}}{2})$$

$$\le 2\alpha K^{2} (1+2\alpha)^{K-2} (\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^{*}\| + \|\boldsymbol{\theta}^{*}\| + \frac{r_{\max}}{2}). \tag{67}$$

Now, we turn to the third term in (60)

$$2\alpha \mathbb{E}\left[\left\langle \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \sum_{j=k}^{k+K-1} \frac{1}{M} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_j) \mathbf{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1} \right] \right\rangle \Big| \mathcal{F}(k) \right]$$

$$= 2\alpha \mathbb{E}\left[\left\langle \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K) \right\rangle | \mathcal{F}(k) \right]$$

$$\leq 2\alpha \mathbb{E}\left[\left\| \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* \right\| \cdot \left\| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K) \right\| | \mathcal{F}(k) \right]$$

$$= 2\alpha \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* \right\| \cdot \mathbb{E}\left[\left\| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K) \right\| | \mathcal{F}(k) \right]$$

$$\leq 4\alpha^2 K^2 (1 + 2\alpha)^{K-2} \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* \| \cdot (\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* \| + \|\boldsymbol{\theta}^* \| + \frac{r_{\text{max}}}{2})$$

$$\leq 4\alpha^2 K^2 (1 + 2\alpha)^{K-2} \left(2\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* \|^2 + \frac{1}{4}\|\boldsymbol{\theta}^* \|^2 + \frac{r_{\text{max}}}{8} \right). \tag{68}$$

where the second inequality is obtained by plugging in (67), and the last one follows from the inequality $a(a+b) \le 2a^2 + (1/4)b^2$.

3) Bounding the fourth term. It follows that

$$2\alpha \mathbb{E}\left[\left\langle \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \sum_{j=k}^{k+K-1} \frac{1}{M} \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_j) \mathbf{1} - K \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) \right\rangle \middle| \mathcal{F}(k) \right]$$

$$= 2\alpha \left\langle \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*, \mathbb{E}\left[\sum_{j=k}^{k+K-1} \frac{1}{M} \boldsymbol{G}(\boldsymbol{\Theta}(k), \xi_j))^T \mathbf{1} - K \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) \middle| \mathcal{F}(k) \right] \right\rangle$$

$$\leq 2\alpha \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\| \cdot \left\| \mathbb{E}\left[\sum_{j=k}^{k+K-1} \frac{1}{M} \boldsymbol{G}(\boldsymbol{\Theta}(k), \xi_j))^T \mathbf{1} - K \bar{\boldsymbol{g}}(\bar{\boldsymbol{\theta}}(k)) \middle| \mathcal{F}(k) \right] \right\|$$

$$\leq 2\alpha K \sigma(K) \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\| (\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\| + 1)$$

$$\leq 2\alpha K \sigma(K) \left(2\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 + \frac{1}{4}\right). \tag{69}$$

4) Bounding the last term. Evidently, we have that

$$\begin{split} & \left\| \frac{1}{M} \sum_{j=k}^{k+K-1} \left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j), \xi_{j}) \mathbf{1} - \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_{j}) \mathbf{1} + \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_{j}) \mathbf{1} \right] \right\|^{2} \\ & \leq 2 \left\| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K) \right\|^{2} + 2 \left\| \sum_{j=k}^{k+K-1} \frac{1}{M} \boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k), \xi_{j}) \mathbf{1} \right\|^{2} \\ & \leq 2 \left\| \boldsymbol{p}(k, \boldsymbol{\Theta}(k), K) \right\|^{2} + 2 \left\| \sum_{j=k}^{k+K-1} \boldsymbol{H}(j) \bar{\boldsymbol{\theta}}(k) + \frac{1}{M} \boldsymbol{r}^{\top}(j) \mathbf{1} \boldsymbol{\phi}(j) \right\|^{2} \\ & \leq 16\alpha^{2} K^{4} (1 + 2\alpha)^{2K-4} \|\bar{\boldsymbol{\theta}}(k)\|^{2} + 16K \|\bar{\boldsymbol{\theta}}(k)\|^{2} + \left[\alpha^{2} K^{4} (1 + 2\alpha)^{2K-4} + 4K\right] r_{\max}^{2} \end{split}$$

$$\leq \left[32\alpha^{2}K^{6}(1+2\alpha)^{2K-4}+32K\right]\left(\|\bar{\boldsymbol{\theta}}(k)-\boldsymbol{\theta}^{*}\|^{2}+\|\boldsymbol{\theta}^{*}\|^{2}\right)+\left[\alpha^{2}K^{4}(1+2\alpha)^{2K-4}+4K\right]r_{\max}^{2}\tag{70}$$

where the first and the last inequality is the result of $\|\sum_{i=1}^n \boldsymbol{x}_i\|^2 \le n \sum_{i=1}^n \|\boldsymbol{x}_i\|^2$ for any \boldsymbol{x} and n; and the second is obtained by plugging in (67). Hence, upon taking expectation of both sides of (70) conditioning on $\mathcal{F}(k)$, we arrive at

$$\alpha^{2} \mathbb{E}\left[\left\|\frac{1}{M}\sum_{j=k}^{k+K-1}\left[\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(j),\xi_{j})\mathbf{1}-\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k),\xi_{j})\mathbf{1}+\boldsymbol{G}^{\top}(\boldsymbol{\Theta}(k),\xi_{j})\mathbf{1}\right]\right\|^{2}\left|\mathcal{F}(k)\right]\right]$$

$$\leq \left[32\alpha^{4}K^{6}(1+2\alpha)^{2K-4}+32K\alpha^{2}\right]\left(\left\|\bar{\boldsymbol{\theta}}(k)-\boldsymbol{\theta}^{*}\right\|^{2}+\left\|\boldsymbol{\theta}^{*}\right\|^{2}\right)+\alpha^{2}\left[\alpha^{2}K^{4}(1+2\alpha)^{2K-4}+4K\right]r_{\max}^{2}.$$
 (71)

We have successfully bounded each of the four terms in (60). Putting now together the bounds in (61), (68), (69), and (71) into (60), we finally arrive at

$$\mathbb{E}\left[\left\|\bar{\boldsymbol{\theta}}(k+K) - \boldsymbol{\theta}^*\right\|^2 \middle| \mathcal{F}(k)\right] \le \left[1 + 2\alpha T \lambda_{\max}^{\bar{\boldsymbol{H}}} + \alpha \Gamma_1(\alpha, K)\right] \left\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\right\|^2 + \alpha \Gamma_2(\alpha, K)$$
(72)

where

$$\Gamma_{1}(\alpha, K) = 32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + 8\alpha K^{2}(1+2\alpha)^{K-2} + 4K\sigma(K)$$

$$\Gamma_{2}(\alpha, K) = \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

$$+ \left[4\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + \frac{1}{2}\alpha K^{2}(1+2\alpha)^{K-2} + 4\alpha K\right] r_{\max}^{2} + \frac{1}{2}K\sigma(K)$$
(74)

From the definition of our multi-step Lyapunov function, we obtain that

$$\mathbb{E}\left[\mathbb{V}(k+1) - \mathbb{V}(k)\big|\mathcal{F}(k)\right] = \mathbb{E}\left[\left\|\bar{\boldsymbol{\theta}}(k+K) - \boldsymbol{\theta}^*\right\|^2\big|\mathcal{F}(k)\right] - \left\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\right\|^2$$

$$\leq \alpha\left[2K\lambda_{\max}^{\bar{\boldsymbol{H}}} + \Gamma_1(\alpha, K)\right]\left\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\right\|^2 + \alpha\Gamma_2(\alpha, K)$$

$$\leq \alpha\left[2K_{\mathcal{G}}\lambda_{\max}^{\bar{\boldsymbol{H}}} + \Gamma_1(\alpha_{\max}, K_{\mathcal{G}})\right]\left\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\right\|^2 + \alpha\Gamma_2(\alpha_{\max}, K_{\mathcal{G}})$$
(75)

where the last inequality is due to the fact that functions $\Gamma_1(\alpha, K_{\mathcal{G}})$ and $\Gamma_2(\alpha, K_{\mathcal{G}})$ are monotonically increasing in α . This concludes the proof.

G Proof of Lemma 4

Proof. It is straightforward to check that

$$\|\bar{\boldsymbol{\theta}}(k+i) - \boldsymbol{\theta}^*\|^2 = \|\bar{\boldsymbol{\theta}}(k+i-1) - \boldsymbol{\theta}^* + \frac{\alpha}{M} \boldsymbol{G}^{\top} (\boldsymbol{\Theta}(k+i-1), \xi_{k+i-1}) \mathbf{1} - \frac{\alpha}{M} \boldsymbol{G}^{\top} (\mathbf{1}(\boldsymbol{\theta}^*)^{\top}, \xi_{k+i-1}) \mathbf{1} + \frac{\alpha}{M} \boldsymbol{G}^{\top} (\mathbf{1}(\boldsymbol{\theta}^*)^{\top}, \xi_{k+i-1}) \mathbf{1} \|^2$$

$$\leq \|\bar{\boldsymbol{\theta}}(k+i-1) - \boldsymbol{\theta}^*\|^2 + 3\alpha^2 \|\boldsymbol{H}(k)(\bar{\boldsymbol{\theta}}(k+i-1) - \boldsymbol{\theta}^*)\|^2$$

$$+ 3\alpha^2 \|\boldsymbol{H}(k)\boldsymbol{\theta}^* + \frac{1}{M} \boldsymbol{\phi}(s(k)) \boldsymbol{r}^{\top} (k) \mathbf{1} \|^2$$

$$\leq (3+12\alpha^2) \|\bar{\boldsymbol{\theta}}(k+i-1) - \boldsymbol{\theta}^*\|^2 + 6\alpha^2 [4\|\boldsymbol{\theta}^*\|^2 + r_{\max}^2]$$

$$\leq (3+12\alpha^2)^i \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 + 6\alpha^2 [4\|\boldsymbol{\theta}^*\|^2 + r_{\max}^2] \sum_{j=0}^{i-1} (3+12\alpha^2)^j.$$

$$(76)$$

As as result, V(k) can be bounded as

$$\mathbb{V}(k) = \sum_{i=0}^{K_{\mathcal{G}}-1} \|\bar{\boldsymbol{\theta}}(k+i) - \boldsymbol{\theta}^*\|^2 \\
\leq \sum_{i=0}^{K_{\mathcal{G}}-1} (3 + 12\alpha^2)^i \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 + 6\alpha^2 (4\|\boldsymbol{\theta}^*\|^2 + r_{\max}) \sum_{i=1}^{K_{\mathcal{G}}-1} \sum_{j=0}^{i-1} (3 + 12\alpha^2)^j \\
= \frac{(3 + 12\alpha^2)^{K_{\mathcal{G}}} - 1}{2 + 12\alpha^2} \|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 \\
+ \alpha^2 \frac{6(3 + 12\alpha^2)[(3 + 12\alpha^2)^{K_{\mathcal{G}}-1} - 1] - 6K_{\mathcal{G}} + 6}{(2 + 12\alpha^2)^2} [4\|\boldsymbol{\theta}^*\|^2 + r_{\max}^2] \tag{77}$$

With
$$c_5 := \frac{(3+12\alpha_{\max}^2)^{K_{\mathcal{G}}}-1}{2+3\alpha_{\max}^2}$$
 and $c_6 := \frac{6(3+12\alpha_{\max}^2)\left[(3+12\alpha_{\max}^2)^{K_{\mathcal{G}}}-1-1\right]-6K_{\mathcal{G}}+6}{2+12\alpha_{\max}^2}(4\|\boldsymbol{\theta}^*\|^2+r_{\max}^2)$, we conclude that
$$\mathbb{V}(k) \le c_5\|\bar{\boldsymbol{\theta}}(k)-\boldsymbol{\theta}^*\|^2+\alpha^2c_6. \tag{78}$$

H Proof of Theorem 3

Proof. The convergence of $\mathbb{E}\Big[\big\| \bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^* \big\|^2 \Big]$ is separately addressed in two phases:

- 1) The time instant $k < k_{\alpha}$, with $k_{\alpha} = \max\{k | \rho^k \geq \alpha\}$, namely, it holds that $\alpha \sigma(K) \leq \sigma_k(K) \leq \sigma(K)$ for any $k < k_{\alpha}$;
- 2) The time instant $k \geq k_{\alpha}$, i.e., it holds that $\sigma_k(K) \leq \alpha \sigma(K)$ for any $k \geq k_{\alpha}$.

Convergence of the first phase

From Lemma 4, we have

$$-\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2 \le -\frac{1}{c_5} \mathbb{V}(k) + \frac{\alpha^2 c_6}{c_5}.$$
 (79)

Substituting (79) into (75), and rearanging the terms give the recursion of Lyapunov function as follows

$$\mathbb{E}\big[\mathbb{V}(k+1)\big|\mathcal{F}(k)\big] \leq \Big\{1 + \frac{1}{c_5} \big[2\alpha K_{\mathcal{G}}\lambda_{\max}^{\bar{\mathbf{H}}} + \alpha \Gamma_1(\alpha_{\max}, K_{\mathcal{G}})\big]\Big\} \mathbb{E}\big[\mathbb{V}(k)\big|\mathcal{F}(k)\big] \\
+ \alpha \Big\{\Gamma_2(\alpha, K_{\mathcal{G}}) - \frac{\alpha^2 c_6}{c_5} \big[2K_{\mathcal{G}}\lambda_{\max}^{\bar{\mathbf{H}}} + \Gamma_1(\alpha_{\max}, K_{\mathcal{G}})\big]\Big\} \\
\leq c_7 \mathbb{E}\big[\mathbb{V}(k)\big|\mathcal{F}(k)\big] + \alpha c_8 \tag{80}$$

where $c_7 := 1 + \frac{1}{2c_5}\alpha_{\max}K_{\mathcal{G}}\lambda_{\max}^{\mathbf{H}} \in (0,1)$; constant $c_8 := \Gamma_2(\alpha_{\max}, K_{\mathcal{G}}) - \frac{\alpha_{\max}^2 c_6}{c_5}K_{\mathcal{G}}\lambda_{\max}^{\mathbf{H}} > 0$, and the last inequality holds true because of (41).

Deducing from (80), we obtain that

$$\mathbb{E}[\mathbb{V}(k)] \leq c_7^k \mathbb{V}(0) + \alpha c_8 \frac{1 - c_7^k}{1 - c_7}$$

$$= c_5 c_7^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + \alpha^2 c_6 c_7^k + \alpha c_8 \frac{1 - c_7^k}{1 - c_7}$$

$$\leq c_5 c_7^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + \alpha^2 c_6 + \frac{\alpha c_8}{1 - c_7}$$

$$= c_5 c_7^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + \alpha^2 c_6 - \frac{2c_5 c_8}{K_G \lambda_{\text{max}}^{\bar{H}}}$$
(82)

Recalling the definition of Lyapunov function, it is obvious that

$$\mathbb{E}\left[\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2\right] \le \mathbb{E}[\mathbb{V}(k)] \le c_5 c_7^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + \alpha^2 c_6 - \frac{2c_5 c_8}{K_{\mathcal{G}} \lambda_{\max}^{\bar{H}}}$$
(83)

which finishes the proof of the first phase.

Convergence of the second phase

Without repeating similar derivation, we directly have that the following holds for $\sigma_k(K) \leq \alpha \sigma(K)$:

$$\Gamma_{1}(\alpha, K) := 32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + 8\alpha K^{2}(1+2\alpha)^{K-2} + 4K\alpha\sigma(K)$$

$$\Gamma_{2}(\alpha, K) := \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

$$\Gamma_{1}(\alpha, K) := \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

$$\Gamma_{2}(\alpha, K) := \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

$$\Gamma_{2}(\alpha, K) := \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

$$\Gamma_{2}(\alpha, K) := \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

$$\Gamma_{3}(\alpha, K) := \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

$$\Gamma_{3}(\alpha, K) := \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

$$\Gamma_{3}(\alpha, K) := \left[32\alpha^{3}K^{4}(1+2\alpha)^{2K-4} + 32K\alpha + \alpha K^{2}(1+2\alpha)^{K-2}\right] \|\boldsymbol{\theta}^{*}\|^{2}$$

+
$$\left[4\alpha^3 K^4 (1+2\alpha)^{2K-4} + \frac{1}{2}\alpha K^2 (1+2\alpha)^{K-2} + 4\alpha K\right] r_{\text{max}}^2 + \frac{1}{2}K\alpha\sigma(K).$$
 (85)

Subsequently, we have the following recursion of $\mathbb{V}(k)$ that is similar to but slightly different from (80).

$$\mathbb{E}\left[\mathbb{V}(k+1)\big|\mathcal{F}(k)\right] \le c_7 \mathbb{E}\left[\mathbb{V}(k)\big|\mathcal{F}(k)\right] + \alpha^2 c_8', \quad \forall k \ge k_\alpha \tag{86}$$

where $c_8' := \left[16\alpha_{\max}^2 K_{\mathcal{G}}^6 (1 + 2\alpha_{\max})^{2K_{\mathcal{G}} - 4} + 32K_{\mathcal{G}} + 2K_{\mathcal{G}}^3 (1 + 2\alpha_{\max})^{K_{\mathcal{G}} - 2}\right] \|\boldsymbol{\theta}^*\|^2 + 4K_{\mathcal{G}}r_{\max}^2 - \frac{1}{8}K_{\mathcal{G}}\lambda_{\max}^{\bar{\boldsymbol{H}}} - \frac{1}{8}K$ $\frac{\alpha_{\max}c_6}{c_5}K_{\mathcal{G}}\lambda_{\max}^{\bar{H}}$. It is easy to check that $c_8' \geq c_8$ due to the fact that $\alpha_{\max} < 1$ in our case.

Repeatedly applying the above recursion from $k = k_{\alpha}$ to any $k > k_{\alpha}$ yields

$$\mathbb{E}[\mathbb{V}(k)] \leq c_7^{k-k_{\alpha}} \mathbb{E}[\mathbb{V}(k_{\alpha})] + \alpha^2 c_8' \frac{1 - c_7^{k-k_{\alpha}}}{1 - c_7} \\
\leq c_7^{k-k_{\alpha}} \left(c_5 c_7^{k_{\alpha}} \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + \alpha^2 c_6 - \frac{2c_5 c_8}{K_{\mathcal{G}} \lambda_{\max}^{\bar{\boldsymbol{H}}}} \right) - \alpha \frac{2c_5 c_8'}{K_{\mathcal{G}} \lambda_{\max}^{\bar{\boldsymbol{H}}}} \\
\leq c_5 c_7^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + c_7^{k-k_{\alpha}} \alpha^2 c_6 - (c_7^{k-k_{\alpha}} + \alpha) \frac{2c_5 c_8'}{K_{\mathcal{G}} \lambda_{\max}^{\bar{\boldsymbol{H}}}} \tag{87}$$

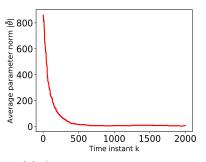
where we have used $c_8 \leq c_8'$ for simplicity.

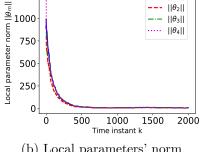
Again, using the definition of the Lyapunov function and (87), it follows that

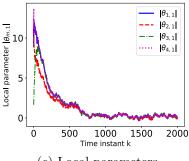
$$\mathbb{E}[\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2] \le c_5 c_7^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 + c_7^{k-k_{\alpha}} \alpha^2 c_6 - (c_7^{k-k_{\alpha}} + \alpha) \frac{2c_5 c_8'}{K_G \lambda_{\text{max}}^{\bar{\boldsymbol{H}}}}, \quad \forall k \ge k_{\alpha}$$
 (88)

Combining the results in the above two phases, we conclude that the following bound holds for any $k \in \mathbb{N}^+$

$$\mathbb{E}\left[\|\bar{\boldsymbol{\theta}}(k) - \boldsymbol{\theta}^*\|^2\right] \le c_5 c_7^k \|\bar{\boldsymbol{\theta}}(0) - \boldsymbol{\theta}^*\|^2 - \frac{2c_5 c_8'}{K_{\mathcal{G}} \lambda_{\max}^{\bar{\boldsymbol{H}}}} \alpha + \min\{1, c_7^{k-k_{\alpha}}\} \times \left(\alpha^2 c_6 - \frac{2c_5 c_8'}{K_{\mathcal{G}} \lambda_{\max}^{\bar{\boldsymbol{H}}}}\right). \tag{89}$$







(a) Average parameter norm

(b) Local parameters' norm

(c) Local parameters

Figure 1: Consensus and convergence of decentralized TD(0) learning

I SIMULATIONS

In order to verify our analytical results, we carried out experiments on a multi-agent networked system. The details of our experimental setup are as follows: the number of agents M=30, the state space size $|\mathcal{S}|=100$ with each state s being a vector of length |s|=20, the dimension of learning parameter $\boldsymbol{\theta}$ is p=10, the reward upper bound $r^{\max}=10$, and the stepsize $\alpha=0.01$. The feature vectors are cosine functions, that is, $\boldsymbol{\phi}(s)=\cos(\boldsymbol{A}s)$, where $\boldsymbol{A}\in\mathcal{R}^{p\times|s|}$ is a randomly generated matrix. The communication weight matrix \boldsymbol{W} depicting the neighborhood of the agents including the topology and the weights was generated randomly, with each agent being associated with 5 neighbors on average. As illustrated in Fig. 1(a), the parameter average $\bar{\boldsymbol{\theta}}$ converges to a small neighborhood of the optimum at a linear rate. To demonstrate the consensus among agents, convergence of the parameter norms $\|\boldsymbol{\theta}_m\|$ for m=1,2,3,4 is presented in Fig. 1(b), while that of their first elements $|\boldsymbol{\theta}_{m,1}|$ is depicted in Fig. 1(c). The simulation results corroborate our theoretical analysis.