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A Proof of Theorem 1
Proof. From the definition of G(@®) in (24), we have that

01 (k)[yp(s(k +1)) — p(s(k)]o (s(k)) ri(k)e (s(k))
05 (k)[yp(s(k +1)) — p(s(k)]o" (s(k)) ra(k)¢ " (s(k))

G(O(k). &) = : - .
01 (K)r(s(k + 1)) — d(s(hI@T (s() | [rar (K)o (s(k)
= O(k) [1(s(k + 1)) — S(s(k)] " (s(k)) + (k) (s(k)
= O(R)H (&) + (k)¢ (s(k)

where we have used the definitions that (k) = [r1(k) ro(k) --- rar(k)]" and H (&) := o(s(k))[yp " (s(k+1)) —
¢ (s(k))]. Using standard norm inequalties, it follows that

IAGO(K), &k)lp < ||[va(s k+1))*¢(8(k))}¢T( Mg 1AGF)|F +[r&)$T (s(k))||
< [Ive(s(k + D)l + llo(s(k)llr] -9 (s()lr - |ABE)||r + |Ir(K)||r - [ d(s(k))lIF
(1+7)||A@( ME + VMropa
< 2|AGK)|lr + VMrmax (44)

where 1 4+ v < 2 for the discounting factor 0 < v < 1, and the last inequality holds since feature vectors
lo(s)|| < 1, rewards (k) < 7max, and the Frobenious norm of rank-one matrices is equivalent to the ¢5-
norm of vectors. For future reference notice from the above inequality that Amax(H (k) < || H(&)|lr =
[v(s(k+1)) — dp(s(k)] " (s(k))|| < 1+~ <2, for all k € NT.

It follows from (28) that

[ABF +1)[|p < [[WAB()|F + o | AG(O(K))|
< AV +20] [|A®(K) | + aVMriax (45)

where the second inequality is obtained after using (44), and the following inequality [Nedié et al., 2018,
Ma et al., 2019]

IWAS®)|r = HW (1= 417 @(k)H <AV AS®) - (46)

Then applying (45) recursively from iteration k to 0 gives rise to

k-1 '
1A < (MY +20)" |AB0)|F + oV Mrpax Y (A +2a)°
1=0

oV Mrpax

k
< (AY +20)" A0 F + Y 4

— 2«
2V Mrmax

k
< (A +20)"|AO0)||F + - Y

(47)

1/\2

where the last inequality is a consequence of using the fact that 0 < o < % . . This concludes the proof of
Theorem 1. O
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B Proof of Lemma 1

Proof. Recalling the definitions of H (&) (H) and b(&) (b), it is not difficult to verify that in the stationary
distribution 7 of the Markov chain, the expectations of H (§x) and b(&y) obey

Er[H (&)] = (48)
and _
Ex[bg(&k)] = bg. (49)
Thus,
Ee | 176700, 01|70 = B [H(€)0(0) + b (60| F(1)] = HOG) + b (50)
and its variance satisfies
_ 2 _ _
E. [ —GT(O(K) &)1 — g(0(0))| \f(k)} Ex [||(H (&) = HDO(K) + bg (&) — bg || F (k)]
<E.[2||(H (&) - H)Ok)|” + 2||bg (&) — b||”| (k)]
< 26%)|0(k) — 6" + 0*H2 + 87 hax
< 45%)|0(k) — 07| + 45%)|0"||* + 8170 (51)
where 3 denotes the largest absolute value of eigenvalues of H(¢;) — H, for any k € NT. O

C Proof of Theorem 2

Proof. Clearly, it holds that

Ex[l16(k + 1) - 6|12| F(k)] = Ex |0(k) -

0 + aﬁcT(@,ganQ]f(k)]
< 1606) - 0°1? + 20 (8(6) - 0" . [, GO0, &) 1|7(0)] )
2 1 2)
7 Ex || 7 G(Ok), 6071 - g(0(k)) 9(0
< 00k) — 67|1° + 20 (8(k) — 67, g(6(k)) — 5(6))
+202(B2[6]1° + 12,.,) + 202 g(6(k)) — g(67)]?
< 8(k) — 6" + 20 (6(k) — 6*, H(6(k) — 6))
+202(46%10 — 07|12 + 452|607 |2 + 8r2,,,) + 202 H(B(k) - 07)
1+ 2008+ 80262 4 202 (ML )2 16(k) — 67
+ (8026267 |1? + 160%12,,,). (52)

+

)| 17 0]

where )\gax and )\ann are the largest and the smallest eigenvalues of H, respectively. Because H is a negative
definite matrix, then it follows that AZ < AH < 0.
Defining constants ¢; := 1 + Qa)\gax + 8a28% + 2 ()\HHHH)Q, and choosing any constant stepsize o obeying
"
0<a<L —% . W, then we have ¢; < 1 and 1_C1 < _a/\x}ifax Now, taking expectation with respect to
F(k) in (52) gives rise to
E[l§(k +1) — 0"[*] < c1E[[|0(k) — 6**] + (8a°5[|67[|* + 16a%r7,)- (53)

Applying the above recursion from iteration k to iteration 0 yields

_ _ 1— k
E[|0(k) - 6°[1%] < c}10(0) = 6712 + T (80?5267 |* + 1607
— G

max)
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8a23%|6%||* 4 16a2r
_a)\H

max

max

< c1]6(0) - 7> +

< c1]6(0) — 0"[* + ac

where ¢y := % and this concludes the proof.

D Proof of Proposition 1

Proof. We have that

E [0 (k) — 6°(|°] = E[||0m (k) — 8(k) + 0(k) — 6"[|°]
< 2E[)|0,n (k) — O(k)||?] + 2E[||6(K) — 6%||?]
< E[|AOK)|2] + 2E[|6(k) — 6%|*]

2
k 20y M1 max - .
<2E[ (A} +2q) |‘A®(0)||F+W + 2¢¥]10(0) — 0| 4 2aucy

804 Mrrn X 0 *
X 1 2¢86(0) — 6% + 2ac,.

2%
<4\ +20) 7 AG(0)||7 + W
2

(55)

where the third inequality follows from using (29) and (54). Letting c3 = max{(A\}" + 2a)2, al, Vo =
2max{4||AO(0)[%, 2[6(0) — 6*||?}, and ¢; = « - (81M;W3c2 4 1o H9j)|\\H+32Tmax, then it is straightforward from

max

(55) that our desired result follows; that is,
E [0 (k) — 67| | < 5Vo + cac

which concludes the proof.

E Proof of Lemma 2

Proof. For notational brevity, let rg(k) := (1/M) 3, o\ rm(k) for each k € N*. It then follows that

1 k+K-1 . e
|73 X EleT@© 617 0) - 96)|

=[[ X E[s0DRots + 1) - o8+ ot 1] - Erlg(@)]|
1 k+K—1
== > 32 (Prlsti) = slF®)] — w(s)) [#(5) (1P (s, )(5) — b)) (B +6") + ra(s)(s)] |
j=k se§
< max | ¢(s) [P (5, 8)(s") = #(s)] (0 +67) + g (s)b(s)|
1 k+K—1
X O 2 |Prls() = sIFR)] — ()
j=k se§
- k+K-1
< (149)(18 = 67|+ 2[6°] + i) x Z vop - 1
(1 +7)rop” ] -
< i (10 =07+ 207 i)

< o(K)(]|60 — 07| +1)

(56)

O
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where o (K) = % x max{2[|0*|| + rmax, 1}, and the second inequality arises from the fact that any finite-

state, irreducible, and aperiodic Markov chains converges geometrically fast (with some initial constant vy > 0
and rate 0 < p < 1) to its unique stationary distribution [Levin and Peres, 2017, Thm. 4.9]. Thus, we conclude
that Lemma 2 holds true with monotonically decreasing function o(K) of K € N as defined above. O

F Proof of Lemma 3

Proof. Recalling the definition of our multi-step Lyapunov function, we obtain that
E[V(k+1) = V(k)|F(k)] =E[|6(k + K) — 6*|* — [|6(k) — 6*|*| F (k)] . (58)

Thus, we should next derive the bound of the right hand side of above equation. Following from iterate (27), we

can write
k+K—1

0(k+K)= + — Z G (©(j),)1. (59)

As a consequence (without particular statement, the expectation in the rest of this proof is taken with respect
to the & to &kt x—1 conditioned on &y to 1),

E[0(k + K) — 0°|12| F (& ] IE[HG 0*+—k§1cﬁ gj)l(ﬁf(k)]

B B 1 k+K-1 B

+2a8] (8(6) — " Kg(O®) + 37 > [GT(O0).6)1-CT(O(1). )1+ G (O &)1] - Ka (b)) |7(h)
=k

|: k+K-1 2

H% > [GT(G(j)agj)l—GT(Q(k),fj)l+GT(®(k)7§j)1}H

Jj=k

= [16(k) — 6> +2aE[(8(k) — 6, Kg(6(k)) — Kg(6")) | F(F)]

the second term

B k+K—1 1
+ 2aIE[<0(k) -0, > i [GT(e(j)@j)l - GT(e(k),fj)1]> }}'(k)}

Jj=k

the third term

T/ k+K—1 1
+ 2aE <0(k)—9*, > MGT( (k), &)1 — Kg(6 >]f }

Jj=k

the fourth term

r k+K-1 2
a4 Y [€T@0).60n - 6Tem g+ 6T em.on]| ] (60)
7z 2

the last term

where the second and the third equality result from adding and subtracting the same terms and the last equality
holds since g(68*) = 0. In the following, we will bound the four terms in the above equality.

1) Bounding the second term. As a direct result of the definition of g(), we have that g(0) —g(6*) =
H (0 — 0*). Therefore, it holds that

2aE [<é(k) ~ 0", Kg(6(k)) — Kg(6")) ]f(k)] = 2aKE [(6(k) — 0") T H(B(k) — 67)|F (k)]
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< 20K\, |6 (k) — 67| (61)

where )\mﬂax is the largest eigenvalue of H. Because H is a negative definite matrix, it holds that NH <.

max

2) Bounding the third term. Defining first p(k, ©(k), K) := Z;H,f 'L [GT( (J ),§j)1—GT(®(k),§j)1},
then it follows that

x

k+K—2

p(k, @(k}),K) =

M

- [GT@0).6)1 - GT(O(k), &)1]

[GT(@k+ K 1), €ric1)1 = GT(Ok), Errre 1)1

2~ 1

1
= p(k, ©(k), K —1) + = [GT(O(k + K — 1), &ric-1)1 — G (O(k), uric—1)1]
=pk,Ok),K-1)+H(k+K—-1)[0(k+ K —1) — 0(k)].
Recalling that 2 is the largest absolute value of eigenvalues of H (k) for any k € N (which clearly exists

and is bounded due to the bounded feature vectors ¢(s) for any s € S), the norm of p(k, ®(k), K) can be
bounded as follows

Ip(k, ©(k), K)|| < |lp(k, ©(k), K — 1| +2[|0(k + K — 1) — 0(k)|
k+K—-2

= Ip(k @) K~ 1) +2a | S - [GT(©0).6)1 - G (@), 6)1]
j=k
k+K—2
+ Z fGT k). €)1 H
k+K-—-2 B
< (14 20)]lp(k, O(), K = 1) +2 3" allH(G)OK) + bl
j=k

kE+K—2 B r
< (1 20)p(k. 0. K~ )] +4a( D 006+ )

4 2
j=k

where the last inequality follows from ||H (5)0(k)| < 2||6(k)|| for any j > 0. Following the above recursion,
we can write

K-1
Ip(k, © (k), K)|| < (14 20)"||p(k, ®(k),0)|| + 4aK|[6(K)|| > (1 +2a) (K —1—j)
7=0
Ko (62)
< da((|0(k)] + —5=) > (14 20) (K — 1)
7=0
where the second inequality because ||p(k, ®(k),0)|| = 0.
For any positive constant x # 1 and K € NT, the following equality holds
K-1 K
. 2t —Ke+ K -1
WK —-1—j)= . 63
> i —1 ) = (63)
7=0
Substituting = = (1 + 2«) into (63) along with plugging the result into (62) yields
(1+20)K —2Ka—1_ -
Ip(k, ©(k), K)|| < K||6(k)]|. (64)

(07

According to the mid-value theorem, there exists some suitable constant § € [0, 1] such that the following
holds true

(14 20)K =1+ 2Ka + %K(K S 1)1+ 8(20)52(20)?2
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1
<1+2Ka+ 517(2(1 +2a)%72(2a)2. (65)
Thus, it is clear that

(1+2a)% —2Ka —1
(0%

< 2aK?(1+2a)K 2 (66)
Upon plugging (66) into (64), it follows that

Ip(k, ©(k), )| < 20K3(1 +20)K~2(|O(k) | + 22)

2
< 2aK%(1+20)%72(||6(k) — 6*[| + (|67 +r"‘%)- (67)
Now, we turn to the third term in (60)
B k+K—1 1
m[ <o<k> -0 3 yleTewen- GT<@<k>,§j>1}> ]f(k)}
j=k

=2aE [(6(k) — 6*,p(k,©(k >|]-" (k)]

< 2aE [||0(k) — 67| - ||p(k, @ K[| F (k)]

=2a[|0(k) — 0*|| - E [||p(k, ©(k), K)|[| F (k)]

<4’ K (14 20) " 72)|0(k) — 9*|| -(l6(k) — %[ + [|6*]| + T“%)

< 4a?K2(1+ 2a)K*2(2||§(k) 0|2 + ina*n? + r“;;"). (68)

where the second inequality is obtained by plugging in (67), and the last one follows from the inequality
a(a+b) < 2a% + (1/4)b%.

3) Bounding the fourth term. It follows that

k+K—1
2an<:[<0‘(k) 0", > %GT(G(k),ﬁj)l —Kg(é(k))> J-'(k)}

=k

B k+K-—1 1

:2a<0(k)—0*,E{ 2_: 17 G(Ok).&)"1 - Kg(0 )f D
) e 1

< 200 - 0" 2] 3 6@ - Koy |F0]|

=k

< 2aKo(K)|0(k) —0[|(|0(k) — 67| +1)
< 2aKo(K) (2\\9(1@ — %2 + i) (69)

4) Bounding the last term. Evidently, we have that

k+K—-1

| X [67©0).6)1 -6 ©®.&)1+ 6T @ (]|
j=k
k+K—-1 1 2
<2|p(k. ©k). K)|* +2|| 3 MGT(@(MJ-)lH
o 2
< 2||p(k, O(k), K) 2 +2 | > HGA® ST 060

< 1602 K*(1 4 2a2)25 4| 6(k )||2+16K||0( )12+ [0 K4 (14 2a)* 4 + 4K]r?

max
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< [32a2K6(1 + 2a)2K 4 4 32K] (116(k) — 6 + [|6%[1*) + [o*K* (1 + 2a)* ™4 + 4K ]|r2 (70)

where the first and the last inequality is the result of || Y7, ;> <n Y7, ||@;||* for any & and n; and the
second is obtained by plugging in (67). Hence, upon taking expectation of both sides of (70) conditioning
on F(k), we arrive at

kK1 2
azE{ % Zk {GT(Q(j),ﬁj)lfGT(G(k),gj)l+GT(®U€),§J‘)1} k)}

< [320'KO(1 + 20)*%~* + 32Ka?] ([|0(k) — 6*))* + [10*]) + o [a? K* (1 + 20)*K % + 4K 72 (71)

max

We have successfully bounded each of the four terms in (60). Putting now together the bounds in (61), (68),
(69), and (71) into (60), we finally arrive at

E [||é(k + K) - 6* ||2|f(k)} [1+2aTAE 4 al'i(a, K)]||0(K) — 6* ||2 + aly(a, K) (72)
where
Ty (o, K) = 320 K*(1 + 2a)?5 % + 32K a + 8aK?(1 + 20)5 % + 4Ko(K) (73)
To(a, K) = [3203K* (1 + 20)?K ™% + 32Ka + aK?(1 + 2a)% 2] |67
+ [4P K (1 + 20)2K 1 + aK2(1 +20)5 72 + 4aK |l + %KJ(K) (74)
From the definition of our multi-step Lyapunov function, we obtain that
= 112 = w112
E[V(k+1) = V()| F(R)] =E[[0(k + K) - 6°|"| F(k)| — ||6(k) - 67|
[zmgax + T (o, K)]||0(K) - 6°|]” + al'a(a, K)
[2Kg)‘max + Fl(amaXa Kg)} Hé(k) A ? + aFQ(amaX7 KQ) (75)

where the last inequality is due to the fact that functions I'; (o, Kg) and T'y(«, Kg) are monotonically increasing
in . This concludes the proof. O

G Proof of Lemma 4

Proof. Tt is straightforward to check that

16(k + 1) — 6%||° =

Hé(k Yio1) -0t + %GT(G(IC i 1), 6]

- LG i )1+ GO G
< [|6(k +i—1) = 0"|*] +30®| H(k)(O(k +i — 1) — %)
+3a2HH(kz)0* + M(l)(s(k))rT (k) 1H
< (3+1202))0(k +i— 1) — 0%[|> + 60> [4]|6*||* +r

mdx]

< (34 120%)"|0(k) — 671> + 62 [4]|07]|* + 12,4 Z (3 + 12a2). (76)
7=0
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As as result, V(k) can be bounded as

Kg—1
Vk) = > 100k +i) - o7
i=0
Kg—1 Kg—1i—1
< Y0 (34 1207 0(K) — 0°[7 + Ga2(A16°] + ruum) S D (3 + 1207
i=0 =1 75=0 (77)
3+12a2)Ke —1 .
e O
«
,6(3+12a2)[(3+12a2)Ke~1 —1] —6Kg +6 a6 + ]
(2 + 1202)2 Tinax
Kg—1_4]_
With ¢s % and cg _ SEH2on,) [(3213;;‘:;;9 1] 6K+ (4]16*[|* + r2,.x), we conclude that
V(k) < c5)0(k) — 6%||* + a’cs. (78)

O

H Proof of Theorem 3

Proof. The convergence of E [Ho_(k) — 0*”2] is separately addressed in two phases:

1) The time instant k < k,, with k, = max{k|p* > a}, namely, it holds that ac(K) < o4x(K) < o(K) for any
k < kq;
2) The time instant k > k,, i.e., it holds that oy (K) < ac(K) for any k > k.

Convergence of the first phase

From Lemma 4, we have

_ 1 2
—[18(k) - 672 < ——V (k) + . (79)
Cs Cs
Substituting (79) into (75), and rearanging the terms give the recursion of Lyapunov function as follows
1
E[V(k+1)|Fk)] < {1+ = — [20KGM o + 0T (@, Ko) JE[V(R)|F (k)]
2 _
n a{FQ((L Kg) e [2Kg/\rIr—1[ax + Fl(amax, Kg)] }
< E[V(k)|F(k)] + acs (80)

where ¢7 := 1+ 5 Omax KgAE € (0,1); constant ¢ := Dy(amax; Kg) — O‘“”"“’Kg)\ > 0, and the last

inequality holds true because of (41).

max

Deducing from (80), we obtain that

1— k
E[V(k)] < cEV(0) + acg—
1-— Cr
—_ENA a2 2k 1—cf
= c5¢7]|0(0) — 0% 4+ a“cgery + acs
1-— Cr
< ¢5¢%(16(0) — 67| (81)
_ 2c5¢
k )2 2 _ 2Cs5C8
= 0(0) — 0" + — 82
cock1000) =07 %o — 2 1o (52)
Recalling the definition of Lyapunov function, it is obvious that
_ _ 2
E[|6(k) - 07|[2] < E[V(k)] < esck|0(0) — 07| +a’es — —— (83)

KgAH

max
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which finishes the proof of the first phase.

Convergence of the second phase

Without repeating similar derivation, we directly have that the following holds for o (K) < ac(K):
[y (o, K) == 3203 K*(1 4 20)* = + 32K a + 8aK?*(1 + 20)X 2 + 4K ao(K) (84)
Ty, K) == [320° K*(1 4 20)*5 * + 32K + aK?(1 + 20) 2] (|6

1 1
+ [40PK* (1 + 2a)2K* + §0J(2(1 +20)K 7% + daK |2, + 3 Kao(K). (85)

Subsequently, we have the following recursion of V(k) that is similar to but slightly different from (80).

E[V(k+1)|F(k)] < E[V(K)|F (k)] + o’ch, Yk > kq (86)
Where 0/8 = [16@1211&?([(8(1 + 2amax)2Kg—4 + 32Kg + ZKS(l + 2amaX)Kg_2] ||6*||2 + 4Kgr12nax - %Kg)‘nH_lax -
MKgAgax. It is easy to check that ¢§ > cg due to the fact that amax < 1 in our case.
cs
Repeatedly applying the above recursion from k = k, to any k > k,, yields
k—k 1—cfhe
E[V(k)] < 5 " E[V(ks)] + a%g#
—cr
~ 2c5c 2c50p
<ck7k“<cck“00—9*2+a20— ks )—a o°8
< chhe (eock 1000) 071 + o — 250 ) — g
< c5ck]|6(0) — 072 4 cE R aPcs — (ERe 4 a)% (87)
- ’ ’ KAl
where we have used ¢g < ¢ for simplicity.
Again, using the definition of the Lyapunov function and (87), it follows that
_ _ 2exc!
E[|0(k) —0"|*] < esck[8(0) = 0°[* + ko’ — (F e +a) 5 VE > ke (85)
g max

Combining the results in the above two phases, we conclude that the following bound holds for any k € N*

_ _ 2C5CI8 . k—k 2056/8
E[||0(k) — 0*]]*] < c5ck(6(0) — 0%|]> — &0+ min{l, 77"} x o’eg — = - (89)
KgAifax KgAiiax
O
_ _ 12501 . — lleafl ]
2800 I : === llell -
£ =10001 | == 16sl| 13
2600 E 1 e leall <10
g - 750 3
§ 400 § 5
© o ©
5 £ 500 5 5
g o
g 200 2 250{ ) g
E 8 )
0 0 0
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
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(a) Average parameter norm (b) Local parameters’ norm (¢) Local parameters

Figure 1: Consensus and convergence of decentralized TD(0) learning
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I SIMULATIONS

In order to verify our analytical results, we carried out experiments on a multi-agent networked system. The
details of our experimental setup are as follows: the number of agents M = 30, the state space size |S| = 100
with each state s being a vector of length |s| = 20, the dimension of learning parameter 6 is p = 10, the
reward upper bound r™?* = 10, and the stepsize @ = 0.01. The feature vectors are cosine functions, that is,
¢(s) = cos(As), where A € RP*Isl is a randomly generated matrix. The communication weight matrix W
depicting the neighborhood of the agents including the topology and the weights was generated randomly, with
each agent being associated with 5 neighbors on average. As illustrated in Fig. 1(a), the parameter average
converges to a small neighborhood of the optimum at a linear rate. To demonstrate the consensus among agents,
convergence of the parameter norms ||0,,|| for m = 1, 2, 3, 4 is presented in Fig. 1(b), while that of their first
elements |6,,, 1] is depicted in Fig. 1(c). The simulation results corroborate our theoretical analysis.





