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Abstract

We study convex empirical risk minimization
for high-dimensional inference in binary mod-
els. Our first result sharply predicts the statis-
tical performance of such estimators in the lin-
ear asymptotic regime under isotropic Gaus-
sian features. Importantly, the predictions
hold for a wide class of convex loss functions,
which we exploit in order to prove a bound
on the best achievable performance among
them. Notably, we show that the proposed
bound is tight for popular binary models (such
as Signed, Logistic or Probit), by construct-
ing appropriate loss functions that achieve it.
More interestingly, for binary linear classifica-
tion under the Logistic and Probit models, we
prove that the performance of least-squares
is no worse than 0.997 and 0.98 times the
optimal one. Numerical simulations corrobo-
rate our theoretical findings and suggest they
are accurate even for relatively small problem
dimensions.

1 INTRODUCTION

1.1 Motivation

Classical estimation theory studies problems in which
the number of unknown parameters n is small compared
to the number of observations m. In contrast, modern
inference problems are typically high-dimensional, that
is n can be of the same order as m. Examples are
abundant in a wide range of signal processing and
machine learning applications such as medical imaging,
wireless communications, recommendation systems and
so on. Classical tools and theories are not applicable
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in these modern inference problems. As such, over the
last two decades or so, the study of high-dimensional
estimation problems has received significant attention.

Several recent works focus on the linear asymptotic
regime and derive sharp results on the inference per-
formance of appropriate convex optimization methods,
e.g., [Donoho, 2006, Stojnic, 2009, Chandrasekaran
et al., 2012, Donoho et al., 2011, Tropp, 2014, Bayati
and Montanari, 2012, Oymak and Tropp, 2017, Stojnic,
2013, Oymak et al., 2013, Karoui, 2013, Bean et al.,
2013, Thrampoulidis et al., 2015b, Donoho and Mon-
tanari, 2016, Thrampoulidis et al., 2018a, Advani and
Ganguli, 2016, Weng et al., 2018, Thrampoulidis et al.,
2018b, Miolane and Montanari, 2018, Bu et al., 2019,
Xu et al., 2019, Celentano and Montanari, 2019]. These
works show that, albeit challenging, sharp results are
advantageous over loose order-wise bounds. Not only
do they allow for accurate comparisons between differ-
ent choices of the optimization parameters, but they
also form the basis for establishing optimal such choices
as well as fundamental performance limitations.

This paper takes this recent line of work a step further
by demonstrating that results of this nature can be
achieved in binary observation models. While we depart
from the previously studied linear regression model, we
remain faithful to the requirement and promise of sharp
results. Binary models are popularly applicable in a
wide range of signal-processing (e.g., highly quantized
measurements) and machine learning (e.g., binary clas-
sification) problems. We derive sharp asymptotics for
a rich class of convex optimization estimators, which
includes least-squares, logistic regression and hinge-loss
as special cases. Perhaps more interestingly, we use
these results to derive fundamental performance limi-
tations and design optimal loss functions that provably
outperform existing choices.

In Section 1.2 we formally introduce the problem setup.
The paper’s main contributions and organization are
presented in Section 1.3. A detailed discussion of prior
art follows in Section 1.4.

Notation. The symbols P(·), E [·] and Var[·] denote
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probability, expectation and variance. We use
boldface notation for vectors. ‖v‖2 denotes the
Euclidean norm of a vector v. We write i ∈ [m] for
i = 1, 2, . . . ,m. When writing x∗ = arg minx f(x), we
let the operator arg min return any one of the possible
minimizers of f . For all x ∈ R, Φ(x) is the cumu-
lative distribution function of standard normal and
Gaussian Q-function at x is defined as Q(x) = 1−Φ(x).

1.2 Problem Statement

Consider the problem of recovering x0 ∈ Rn from ob-
servations yi = f(aTi x0), i ∈ [m], where f : R→ {±1}
is a (possibly random) binary function. We study
the performance of empirical-risk minimization (ERM)
estimators x̂` that solve the following optimization
problem for some convex loss function ` : R→ R

x̂` := arg min
x

1

m

m∑
i=1

`(yia
T
i x). (1)

Model. The binary observations yi, i ∈ [m] are deter-
mined by a label function f : R→ {−1, 1} as follows:

yi = f(aTi x0), i ∈ [m], (2)

where ai’s are known measurement vectors with i.i.d.
Gaussian entries; and x0 ∈ Rn is an unknown vector
of coefficients. Some popular examples for the label
function f include the following:

• (Noisy) Signed : yi =

{
sign(aTi x0) ,w.p. 1− ε,
−sign(aTi x0) ,w.p. ε,

where ε ∈ [0, 1/2].

• Logistic: yi =

{
+1 ,w.p. 1

1+exp(−aTi x0)
,

−1 ,w.p. 1− 1
1+exp(−aTi x0)

.

• Probit : yi =

{
+1 ,w.p. Φ(aTi x0),

−1 ,w.p. 1− Φ(aTi x0).

Loss function. We study the recovery performance
of estimates x̂` of x0 that are obtained by solving (1)
for proper convex loss functions ` : R→ R. Different
choices for ` lead to popular specific estimators
including the following:

• Least Squares (LS): `(t) = 1
2 (t− 1)2,

• Least-Absolute Deviations (LAD): `(t) = |t− 1|,

• Logistic Loss: `(t) = log(1 + exp(−t)),

• Exponential Loss: `(t) = exp(−t),

• Hinge Loss: `(t) = max{1− t , 0}.

Performance measure. We measure performance of
the estimator x̂` by the value of its correlation to x0,
i.e.,

corr ( x̂` ; x0 ) :=
〈x̂`,x0〉
‖x̂`‖2‖x0‖2

∈ [−1, 1]. (3)

Obviously, we seek estimates that maximize correlation.
While correlation is the measure of primal interest,
our results extend rather naturally to other parameter
estimation metrics, such as square error, as well as
prediction metrics, such as classification error.

Model assumptions. All our results are valid under
the assumption that the measurement vectors have i.i.d.
Gaussian entries.
Assumption 1 (Gaussian feature vectors). The vec-
tors ai ∈ Rn, i ∈ [m] have entries i.i.d. standard nor-
mal.

We further assume that ‖x0‖2= 1. This assumption
is without loss of generality since the norm of x0 can
always be absorbed in the link function. Indeed, letting
‖x0‖2= r, we can always write the measurements as
f(aTx0) = f̃(aT x̃0), where x̃0 = x0/r (hence, ‖x̃0‖2=

1) and f̃(t) = f(rt). We make no further assumptions
on the distribution of the true vector x0.

1.3 Contributions and Organization

This paper’s main contributions are summarized below.

• Sharp asymptotics: We show that the absolute
value of correlation of x̂` to the true vector x0 is sharply
predicted by

√
1/(1 + σ2

` ) where the "effective noise"
parameter σ` can be explicitly computed by solving a
system of three non-linear equations in three unknowns.
We find that the system of equations (and thus, the
value of σ`) depends on the loss function ` through
its Moreau envelope function. Our prediction holds in
the linear asymptotic regime in which m,n→∞ and
m/n→ δ > 1. See Section 2.

• Fundamental limits: We establish fundamental
limits on the performance of convex optimization-based
estimators by computing an upper bound on the best
possible correlation performance among all convex loss
functions. We compute the upper bound by solving a
certain nonlinear equation and we show that such a
solution exists for all δ > 1. See Section 3.1.

• Optimal performance: For certain models includ-
ing Signed and Logistic, we find the loss functions that
achieve the optimal performance, i.e., they attain the
previously derived upper bound. See Section 3.2.

• Optimality of LS: For binary logistic and sigmoid
models, we prove that the correlation performance of



Hossein Taheri, Ramtin Pedarsani, Christos Thrampoulidis

1 2 3 4 5 6 7 8 9
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4

6

8

10

12

14

16

(b)

Figure 1: Left: Comparison between analytical (solid lines) and empirical (markers) performance for least-squares (LS)
and least-absolute deviations (LAD), along with optimal performance (dashed line) as predicted by the upper bound of
Theorem 3.1 for the Signed model(ε = 0). The red markers depict the empirical performance of the optimal loss function
that attains the upper bound. Right: Illustrations of optimal loss functions for the Signed model for different values of δ
according to Theorem 3.2.

Table 1: Analytical predictions and empirical performance of the optimal loss function for Signed model. Empirical results
are averaged over 20 independent experiments for n = 128.

δ 2 3 4 5 6 7 8 9
Predicted Performance 0.8168 0.9101 0.9457 0.9645 0.9748 0.9813 0.9855 0.9885
Empirical Performance 0.8213 0.9045 0.9504 0.9669 0.9734 0.9801 0.9834 0.9873

least-squares (LS) is at least as good as 0.9972 and
0.9804 times the optimal performance. See Section 4.1.

• Numerical simulations: We specialize our results
on general models and loss functions to popular in-
stances, for which we provide simulation results that
demonstrate the accuracy of the theoretical predictions.
See Section 5.

Figure 1 contains a pictorial preview of our results
described above for the special case of Signed mea-
surements. First, Figure 1a depicts the correlation
performance of LS and LAD estimators as a function
of the aspect ratio δ. Both theoretical predictions and
numerical results are shown; note the close match
for even small dimensions. Second, the dashed line
on the same figure shows the upper bound derived
in this paper – there is no convex loss function that
results in correlation exceeding this line. Third, we
show that the upper bound can be achieved by the
loss functions depicted in Figure 1b for several values
of δ. We solve (1) for this choice of loss functions
using gradient descent and numerically evaluate the
achieved correlation performance. The recorded values
are compared in Table 1 to the corresponding values
of the upper bound; again, note the close agreement
between the values as predicted by the findings of
this paper. We present corresponding results for the

Logistic model in Section 5 and for the Noisy-signed
model in Appendix E.

1.4 Related Work

Over the past two decades there has been a long list
of works that derive statistical guarantees for high-
dimensional estimation problems. Many of these are
concerned with convex optimization-based inference
methods. Our work is most closely related to the
following three lines of research.

(a) Sharp asymptotics for linear measurements. Most of
the results in the literature of high-dimensional statis-
tics are order-wise in nature. Sharp asymptotic predic-
tions have only more recently appeared in the literature
for the case of noisy linear measurements with Gaussian
measurement vectors. There are by now three different
approaches that have been used towards asymptotic
analysis of convex regularized estimators:
i) the one that is based on the approximate message
passing (AMP) algorithm and its state-evolution anal-
ysis, e.g., [Donoho et al., 2009, 2011, Bayati and Mon-
tanari, 2011, 2012, Donoho and Montanari, 2016, Bu
et al., 2019, Mousavi et al., 2018].
ii) the one that is based on Gaussian process (GP)
inequalities, specifically the convex Gaussian min-max



Sharp Asymptotics and Optimal Performance for Inference in Binary Models

Theorem (CGMT) e.g., [Stojnic, 2013, Oymak et al.,
2013, Thrampoulidis et al., 2015b, 2018a,b, Miolane
and Montanari, 2018].

Our results in Theorems 3.1 and 3.2 for achieving the
best performance across all loss functions is complemen-
tary to [Bean et al., 2013, Theorem 1] and [Advani and
Ganguli, 2016] in which the authors also proposed a
method for deriving optimal loss function and measur-
ing its performance, albeit for linear models. Instead,
we study binary models. The optimality of regular-
ization for linear measurements, is recently studied in
[Celentano and Montanari, 2019].

In terms of analysis, we follow the GP approach and
build upon the CGMT. Since the previous works are
concerned with linear measurements, they consider
estimators that solve minimization problems of the
form

x̂ := arg min
x

m∑
i=1

˜̀(yi − aTi x) + rR(x) (4)

Specifically, the loss function ˜̀penalizes the residual.
In this paper, we show that the CGMT is applicable to
optimization problems in the form of (1). For our case
of binary observations, (1) is more general than (4). To
see this, note that for yi ∈ {±1} and popular symmetric
loss functions ˜̀(t) = ˜̀(−t), e.g. least-squares (LS),
(1) results in (4) by choosing `(t) = ˜̀(t − 1) in the
former. Moreover, (1) includes several other popular
loss functions such as the logistic loss and the hinge-loss
which cannot be expressed by (4).

Similar to the generality of our paper, [Genzel, 2017]
also studies the high-dimensional performance of gen-
eral loss functions. However, in contrast to our results,
their performance bounds are loose (order-wise); as
such, they are not informative about the question of
optimal performance which we also address here.

(b)Classification in high-dimensions. In [Candès and
Sur, 2018, Sur and Candès, 2019] the authors study the
high-dimensional performance of maximum-likelihood
(ML) estimation for the logistic model. The ML esti-
mator is a special case of (1) and we consider general
binary models. Also, their analysis is based on the
AMP. The asymptotics of logistic loss under different
classification models has also been recently studied in
[Mai et al., 2019]. In yet another closely related recent
work [Salehi et al., 2019], the authors extend the results
of [Sur and Candès, 2019] to regularized ML by using
the CGMT. Instead, we present results for general loss
functions and for general measurement models. Impor-
tantly, we also study performance bounds and optimal
loss functions. A preliminary version of the results of
this paper was published in [Taheri et al., 2019].

2 SHARP PERFORMANCE
GUARANTEES

Moreau envelopes. Before stating the first result we
need a definition. We write

M` (x;λ) := min
v

1

2λ
(x− v)2 + `(v),

for the Moreau envelope function of the loss ` : R→ R
at x with parameter λ > 0. The minimizer (which is
unique by strong convexity) is known as the proximal
operator of ` at x with parameter λ and we denote it as
prox` (x;λ). A useful property of the Moreau envelope
function is that it is continuously differentiable with
respect to both x and λ [Rockafellar and Wets, 2009].
We denote these derivatives as follows

M′`,1 (x;λ) :=
∂M` (x;λ)

∂x
,

M′`,2 (x;λ) :=
∂M` (x;λ)

∂λ
.

A system of equations. As we show shortly, the
asymptotic performance of the optimization in (1) is
tightly connected to the solution of a certain system of
nonlinear equations, which we introduce here. Specifi-
cally, define random variables G,S and Y as follows:

G,S
i.i.d.∼ N (0, 1) and Y = f(S), (5)

and consider the following system of non-linear equa-
tions in three unknowns (µ, α ≥ 0, λ ≥ 0):

E
[
Y S · M′`,1 (αG+ µSY ;λ)

]
= 0, (6a)

λ2 δ E
[ (
M′`,1 (αG+ µSY ;λ)

)2 ]
= α2, (6b)

λ δ E
[
G · M′`,1 (αG+ µSY ;λ)

]
= α. (6c)

The expectations are with respect to the randomness
of the random variables G, S and Y . We remark that
the equations are well defined even if the loss function
` is not differentiable. In Section A we summarize
some well-known properties of the Moreau Envelope
function and use them to simplify (6) for differentiable
loss functions.

2.1 Asymptotic Prediction

We are now ready to state our first main result.

Theorem 2.1 (Sharp asymptotics). Let Assumption 1
hold and assume δ > 1 such that the set of minimizers
in (1) is bounded and the system of equations (6) has
a unique solution (µ, α ≥ 0, λ ≥ 0), such that µ 6= 0.
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Let x̂` be as in (1). Then, in the limit of m,n→ +∞,
m/n→ δ, it holds with probability one that

lim
n→∞

corr ( x̂` ; x0 ) =
µ√

µ2 + α2
. (7)

Moreover,

lim
n→∞

∥∥∥∥x̂` − µ · x0

‖x0‖2

∥∥∥∥2
2

= α2. (8)

Theorem 2.1 holds for general loss functions. In Section
4 we specialize the result to specific popular choices
and also present numerical simulations that confirm
the validity of the predictions (see Figures. 1a–2a and
6a–6b). Before that, we include a few remarks on
the conditions, interpretation and implications of the
theorem. The proof is deferred to Appendix B and
uses the convex Gaussian min-max theorem (CGMT)
[Thrampoulidis et al., 2015b, 2018a].
Remark 1 (The role of µ and α). According to (7), the
prediction for the limiting behavior of the correlation
value is given in terms of an effective noise parameter
σ` := α/µ, where µ and α are unique solutions of (6).
The smaller the value of σ` is, the larger becomes the
correlation value. While the correlation value is fully
determined by the ratio of α and µ, their individual
role is clarified in (8). Specifically, according to (8), x̂`
is a biased estimate of the true x0 and µ represents
exactly that bias term. In other words, solving (1)
returns an estimator that is close to a µ–scaled version
of x0. When x0 and x̂` are scaled appropriately, the
`2-norm of their difference converges to α.
Remark 2 (Why δ > 1). The theorem requires that
δ > 1 (equivalently, m > n). Here, we show that this
condition is necessary for the equations (6) to have a
bounded solution. To see this, take squares in both
sides of (6c) and divide by (6b), to find that

δ =

E
[(
M′`,1 (αG+ µSY ;λ)

)2 ]
(
E
[
G · M′`,1 (αG+ µSY ;λ)

])2 ≥ 1.

The inequality follows by applying Cauchy-Schwarz
and using the fact that E[G2] = 1.
Remark 3 (On the existence of a solution to (6)). While
δ > 1 is a necessary condition for the equations in (6)
to have a solution, it is not sufficient in general. This
depends on the specific choice of the loss function.
For example, in Section 4.1, we show that for the
squared loss `(t) = (t−1)2, the equations have a unique
solution iff δ > 1. On the other hand, for logistic-loss
and hinge-loss, it is argued in Section 4.2 that there
exists a threshold value δ?f > 2 such that the set of

minimizers in (1) is unbounded if δ < δ?f . In this case,
Theorem 2.1 does not hold. We conjecture that for
these choices of loss, the equations (6) are solvable iff
δ > δ?f . Justifying this conjecture and further studying
more general sufficient and necessary conditions under
which the equations (6) admit a solution is left to future
work. However, in what follows, given such a solution,
we prove that it is unique for a wide class of convex-loss
functions of interest.
Remark 4 (On the uniqueness of solution to (6)). We
show that if the system of equations in (6) has a solu-
tion, then it is unique provided that ` is strictly convex,
continuously differentiable and its derivative satisfies
`′(0) 6= 0. For instance, this class includes the square,
the logistic and the exponential losses. However, it
excludes non-differentiable functions such as the LAD
and hinge-loss. We believe that the differentiability
assumption can be relaxed without major modification
in our proof, but we leave this for future work. Our
result is summarized in Proposition 2.1 below.

Proposition 2.1. Assume that the loss function ` : R→
R has the following properties: (i) it is proper strictly
convex; (ii) it is continuously differentiable and its
derivative `′ is such that `′(0) 6= 0. Further assume
that the (possibly random) link function f is such that
SY = Sf(S), S ∼ N (0, 1) has strictly positive density
on the real line. The following statement is true. For
any δ > 1, if the system of equations in (6) has a
bounded solution, then it is unique.

The detailed proof of Proposition 2.1 is deferred to
the extended version of the paper [Taheri et al., 2020,
Appendix B.5]. Here, we highlight some key ideas. The
CGMT relates –in a rather natural way– the original
ERM optimization (1) to the following deterministic
min-max optimization on four variables

min
α>0,µ,τ>0

max
γ>0

F (α, µ, τ, γ) :=

γτ

2
− αγ√

δ
+ E

[
M`

(
αG+ µY S;

τ

γ

)]
. (9)

In [Taheri et al., 2020, Appendix B.4], we show that
the optimization above is convex-concave for any lower
semi-continuous, proper, convex function ` : R → R.
Moreover, it is shown that one arrives at the system
of equations in (6) by simplifying the first-order op-
timality conditions of the min-max optimization in
(9). This connection is key to the proof of Proposition
2.1. Indeed, we prove uniqueness of solution (if such
a solution exists) to (6), by proving instead that the
function F (α, µ, τ, γ) above is (jointly) strictly convex
in (α, µ, τ) and strictly concave in γ, provided that `
satisfies the conditions of the proposition. Next, let
us briefly discuss how strict convex-concavity of (9)
can be shown. For concreteness, we only discuss strict
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convexity here; the ideas are similar for strict concavity.
At the heart of the proof of strict convexity of F is
understanding the properties of the expected Moreau
envelope function Ω : R+ × R× R+ × R+ → R defined
as follows:

Ω(α, µ, τ, γ) := E
[
M`

(
αG+ µY S;

τ

γ

)]
.

Specifically, we prove in [Taheri et al., 2020, Proposition
A.7] that if ` is strictly convex, differentiable and does
not attain its minimum at 0, then Ω is strictly convex
in (α, µ, τ) and strictly concave in γ. It is worth noting
that the Moreau envelope function M` (αg + µys; τ)
for fixed g, s and y = f(s) is not necessarily strictly con-
vex. Interestingly, we show that the expected Moreau
envelope has this desired feature. We refer the reader
to [Taheri et al., 2020, Appendices A.6 and B.5] for
more details.

3 ON OPTIMAL PERFORMANCE

3.1 Fundamental Limitations

In this section, we establish fundamental limits on the
performance of (1) by deriving an upper bound on the
absolute value of correlation corr ( x̂` ; x0 ) that holds
for all choices of loss functions satisfying Theorem 2.1.
The result builds on the prediction of Theorem 2.1. In
view of (7) upper bounding correlation is equivalent to
lower bounding the effective noise parameter σ` = α/µ.
Theorem 3.1 below derives such a lower bound. The
proof is deferred to Appendix C.

For a random variable H with density pH(h) that has
a derivative p′H(h),∀h ∈ R, we denote its score func-
tion ξH(h) := ∂

∂h log pH(h) =
p′H(h)
pH(h) . Then, the Fisher

information of H is defined as follows (e.g. [Barron,
1984, Sec. 2]):

I(H) := E
[

(ξH(H))2
]
.

Theorem 3.1 (Best achievable performance). Let the
assumptions and notation of Theorem 2.1 hold and
recall the definition of random variables G,S and Y
in (5). For σ > 0, define a new random variable
Wσ := σG + SY, and the function κ : (0,∞] → [0, 1]
as follows,

κ(σ) :=
σ2
(
σ2I(Wσ) + I(Wσ)− 1

)
1 + σ2 (σ2I(Wσ)− 1)

.

Further define σopt as follows,

σopt := min

{
σ ≥ 0 : κ(σ) =

1

δ

}
. (10)

Then, for σ` := α
µ it holds that σ` ≥ σopt.

The theorem above establishes an upper bound on the
best possible correlation performance among all convex
loss functions. In Section 3.2, we show that this bound
is often tight, i.e. there exists a loss function that
achieves the specified best possible performance.
Remark 5. Theorem 3.1 complements the results of
[Bean et al., 2013], [Donoho and Montanari, 2016,
Lem. 3.4] and [Thrampoulidis et al., 2018a, Rem. 5.3.3]
in which they consider only linear measurements. In
particular, Theorem 3.1 shows that it is possible to
achieve results of this nature for the more challenging
setting of binary observations considered here.

A useful closed-form bound on the best achiev-
able performance: In general, determining σopt re-
quires computing the Fisher information of the random
variable σG+SY for σ > 0. If the probability distribu-
tion of SY is continuously differentiable (e.g., logistic
model; see Section C.3), then we obtain the following
simplified bound. The proof is deferred to Appendix
C.4.

Corollary 3.1 (Closed-form lower bound on σopt). Let
pSY : R→ R be the probability distribution of SY . If
pSY (x) is differentiable for all x ∈ R, then,

σ2
opt ≥

1

(δ − 1)(I(SY )− 1)
. (11)

The proof of the corollary reveals that (11) holds with
equality when SY is Gaussian. In Section C.3, we
compute pSY for the Logistic and the Probit models
and numerically show that it is close to the density
of a Gaussian random variable. Consequently, the
lower bound of Corollary 3.1 is almost exact when
measurements are obtained according to the Logistic
and Probit models; see Figure 4 in the appendix.

3.2 On the Optimal Loss Function

It is natural to ask whether there exists a loss function
that attains the bound of Theorem 3.1. If such a loss
function exists, then we say it is optimal in the sense
that it maximizes the correlation performance among
all convex loss functions in (1).

Our next theorem derives a candidate for the optimal
loss function, which we denote `opt.The proof is deferred
to Appendix D

Theorem 3.2 (Optimal loss function). Recall the def-
inition of σopt in (10). Define the random variable
Wopt := σoptG+ SY and let pWopt

denote its density.
Consider the following loss function `opt : R→ R

`opt(w) = −Mα1q+α2 log(pWopt )
(w; 1) , (12)
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where q(x) = x2/2 and

α1 =
1− σ2

optI(Wopt)

δ(σ2
optI(Wopt) + I(Wopt)− 1)

,

α2 =
1

δ(σ2
optI(Wopt) + I(Wopt)− 1)

.

(13)

If `opt defined as in (12) is convex and the equation
κ(σ) = 1/δ has a unique solution, then σ`opt

= σopt.

In general, there is no guarantee that the function
`opt(·) as defined in (12) is convex. However, if this
is the case, the theorem above guarantees that it is
optimal 1. A sufficient condition for `opt(w) to be
convex, is provided in Appendix D.2. Importantly, in
Appendix D.2.1 we show that this condition holds for
observations following the Signed model. Thus, for this
case the resulting function is convex. Although we do
not prove the convexity of optimal loss function for the
Logistic and Probit models, our numerical results (e.g.,
see Figure 2b) suggest that this is the case. Concretely,
we conjecture that the loss function `opt is convex for
Logistic and Probit models, and therefore by Theorem
3.2 its performance is optimal.

4 SPECIAL CASES

4.1 Least-Squares

For this choice of loss function, we can solve the equa-
tions in (6) in closed form. Furthermore, the equations
have a unique and bounded solution for any δ > 1 pro-
vided that E[SY ] > 0. The final result is summarized
in the corollary below. See Section F.1 for the proof.
Corollary 4.1 (Least-squares). Let Assumption 1 hold
and δ > 1. For the label function assume that E[SY ] >
0 in the notation of (5). Let x̂` be as in (1) for `(t) =
(t − 1)2. Then, in the limit of m,n → +∞, m/n →
δ > 1, Equations (7) and (8) hold with probability one
with α and µ given as follows:

µ = E[SY ], (14)

α =

√
1− (E[SY ])

2 ·
√

1

δ − 1
. (15)

On the Optimality of LS. On the one hand, Corol-
lary 4.1 derives an explicit formula for the effective
noise variance σLS = α/µ of LS in terms of E[Y S]
and δ. On the other hand, Corollary 3.1 provides an
explicit lower bound on the optimal value σopt in terms
of I(SY ) and δ. Combining the two, we conclude that

σ2
LS

σ2
opt

≤ ξ := (I(SY )− 1)
1− (E[SY ])2

(E[SY ])2
.

1Strictly speaking, the performance is optimal among all
convex loss functions ` for which (6) has a unique solution
as required by Theorem 3.1.

In terms of correlation,

corropt
corrLS

=

√
1 + σ2

LS

1 + σ2
opt

≤ σLS
σopt

≤
√
ξ ,

where the first inequality follows from the fact that
σLS ≥ σopt. Therefore, the performance of LS is at
least as good as 1√

ξ
times the optimal one. In par-

ticular, for Logistic and Probit models (for which
Corollary 3.1 holds), we can explicitly compute 1√

ξ
=

0.9972 and 0.9804, respectively.

4.2 Logistic & Hinge Loss Functions

Theorem 2.1 only holds in regimes for which the set
of minimizers of (1) is bounded. As we show here,
this is not always the case. Specifically, consider non-
negative loss functions `(t) ≥ 0 with the property
limt→+∞ `(t) = 0. For example, the hinge, exponential
and logistic loss functions all satisfy this property. Now,
we show that for such loss functions the set of minimiz-
ers is unbounded if δ < δ?f for some appropriate δ?f > 2.
First, note that the set of minimizers is unbounded if
the following condition holds:

∃ xs 6= 0 such that yia
T
i xs ≥ 0, ∀ i ∈ [m]. (16)

Indeed, if (16) holds then x = c · xs with c → +∞,
attains zero cost in (1); thus, it is optimal and the set
of minimizers is unbounded. To proceed, we rely on
a recent result by Candes and Sur [Candès and Sur,
2018] who prove that (16) holds iff

δ ≤ δ?f :=

(
min
c∈R

E
[
(G+ c S Y )

2
−

])−1
, (17)

where G,S and Y are random variables as in (5) and
(t)− := min{0, t}. We highlight that Logistic and Hinge
losses give unbounded solutions in the Noisy-Signed
model with ε = 0, since the condition (16) holds for
xs = x0. However their performances are comparable
to the optimal performance in the Logistic model(see
Figure 2a).

5 NUMERICAL EXPERIMENTS

In this section, we present numerical simulations that
validate the predictions of Theorems 2.1, 3.1 and 3.2.
We use Signed and Logistic models as our case study.
The experiments on Probit model are presented in the
extended version of this paper [Taheri et al., 2020].
We generate random measurements according to (2)
and Assumption 1. Without loss of generality (due
to rotational invariance of the Gaussian measure)
we set x0 = [1, 0, ..., 0]T . We then obtain estimates
x̂` of x0 by numerically solving (1) and measure
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performance by the correlation value corr ( x̂` ; x0 ).
Throughout the experiments, we set n = 128 and
the recorded values of correlation are averages over
25 independent realizations. For each label function
we first provide plots that compare results of Monte
Carlo simulations to the asymptotic predictions for
loss functions discussed in Section 4, as well as, to the
optimal performance of Theorem 3.1. We next present
numerical results on optimal loss functions. In order
to empirically derive the correlation of optimal loss
function, we run gradient descent-based optimization
with 1000 iterations. As a general comment, we
note that despite being asymptotic, our predictions
appear accurate even for relatively small problem
dimensions. For the analytical predictions we apply
Theorem 2.1. In particular for solving the system of
non-linear equations in (1), we empirically observe
that if a solution exists, then it can be efficiently
found by the following fixed-point iteration method.
Let v := [µ, α, λ]T and F : R3 → R3 be such that (1)
is equivalent to v = F(v). With this notation, we
initialize v = v0 and for k ≥ 1 repeat the iterations
vk+1 = F(vk) until convergence.

Logistic model. For the logistic model, comparison
between the predicted values and the numerical results
is illustrated in Figure 2a. Results are shown for LS,
logistic and hinge loss functions. Note that minimizing
the logistic loss corresponds to the maximum-likelihood
estimator (MLE) for logistic model. An interesting
observation in Figure 2a is that in the high-dimensional
setting (finite δ) LS has comparable (if not slightly
better) performance to MLE. Additionally we observe
that in this model, performance of LS is almost
the same as the best possible performance derived
according to Theorem 3.1. This confirms the analytical
conclusion of Section 4.1. The comparison between
the optimal loss function as in Theorem 3.2 and other
loss functions is illustrated in Figure 2b. We note the
obvious similarity between the shapes of optimal loss
functions and LS which further explains the similarity
between their performance.

Optimal loss function. By putting together Theo-
rems 3.1 and 3.2, we obtain a method on deriving the
optimal loss function. This requires the following steps.
1. Find σopt by solving (10).
2. Compute the density of Wopt = σoptG+ SY .
3. Compute `opt according to (12).
Note that computing σopt needs the density function
pW of the random variable W = σG + SY . In prin-
ciple pW can be calculated as the convolution of the
Gaussian density with the pdf pSY of SY . Moreover,
it follows from the recipe above that the optimal loss

function depends on δ in general. This is because σopt
itself depends on δ via (10).
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Figure 2: Top: Comparison between analytical and empir-
ical results for the performance of LS, Logistic loss, Hinge-
loss and optimal loss function for Logistic model. The
vertical dashed line represents δ?f ≈ 2.275, as evaluated by
(17). Bottom: Illustrations of optimal loss functions for
different values of δ, derived according to Theorem 3.2 for
Logistic model. In order to signify the similarity of opti-
mal loss function to the LS loss, the optimal loss functions
(hardly visible) are scaled such that `(1) = 0 and `(2) = 1 .

6 CONCLUSION

This paper derives sharp asymptotic performance guar-
antees for a wide class of convex optimization based es-
timators for recovering a signal from binary observation
models. We further provide a theoretical upper bound
on the best achievable performance among all convex
loss functions. Using this, we develop a procedure for
computing the optimal loss function. Finally, we pro-
vide numerical studies that show tight agreement with
our theoretical results. Interesting future directions
include studying the generalized linear measurement
model beyond binary observations and characterizing
the optimal loss function for such general models.
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APPENDIX

A PROPERTIES OF THE MOREAU-ENVELOPE

A.1 Derivatives

Recall the definition of the Moreau envelopeM` (x;λ) and proximal operator prox` (x;λ) of a function `:

M` (x;λ) = min
y

1

2λ
(x− y)2 + `(y), (18)

and prox` (x;λ) = arg miny
1
2λ (x− y)2 + `(y).

Proposition A.1 (Basic properties of M` and prox`, [Rockafellar and Wets [2009]). Let ` : R → R be lower
semi-continuous (lsc), proper and convex. The following statements hold for any λ > 0.

(a) The proximal operator prox` (x;λ) is unique and continuous. In fact, prox` (x;λ)→ prox` (x′;λ′) whenever
(x, λ)→ (x′, λ′) with λ′ > 0.

(b) The valueM` (x;λ) is finite and depends continuously on (λ, x), withM` (x;λ)→ f(x) for all x as λ→ 0+.

(c) The Moreau envelope function is differentiable with respect to both arguments. Specifically, for all x ∈ R, the
following properties are true:

M′`,1 (x;λ) =
1

λ
(x− prox` (x;λ)), (19)

M′`,2 (x;λ) = − 1

2λ2
(x− prox` (x;λ))2. (20)

If in addition ` is differentiable and `
′
denotes its derivative, then

M′`,1 (x;λ) = `′(prox` (x;λ)), (21)

M′`,2 (x;λ) = −1

2
(`′(prox` (x;λ))2. (22)

A.2 Alternative Representations of (6)

Replacing the above relations for derivative ofM` in (6), we can write the equations in terms of the proximal
operator. If ` is differentiable then the Equations (6) can be equivalently written as follows:

E
[
Y S · `′ (prox` (αG+ µSY ;λ))

]
= 0, (23a)

λ2 δ E
[

(`′ (prox` (αG+ µSY ;λ)))
2
]

= α2, (23b)

λ δ E
[
G · `′ (prox` (αG+ µSY ;λ))

]
= α. (23c)

Finally, if ` is two times differentiable then applying integration by parts in Equation (51c) results in the following
reformulation of (6c):

1 = λ δ E
[

`′′ (prox` (αG+ µSY ;λ))

1 + λ `′′ (prox` (αG+ µSY ;λ))

]
. (24)

A.3 Examples of Proximal Operators

LAD. For `(t) = |t− 1| the proximal operator admits a simple expression, as follows:

prox` (x;λ) = 1 +H (x− 1;λ) , (25)
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where

H (x;λ) =


x− λ, if x > λ,

x+ λ, if x < −λ,
0, otherwise.

is the standard soft-thresholding function.

Hinge-Loss. When `(t) = max{0, 1−t}, the proximal operator can be expressed in terms of the soft-thresholding
function as follows:

prox` (x;λ) = 1 +H
(
x+

λ

2
− 1;

λ

2

)
.

A.4 Fenchel-Legendre Conjugate Representation

For a function h : R→ R, its Fenchel-Legendre conjugate, h? : R→ R is defined as :

h?(x) = max
y

[xy − h(y)] .

The following proposition relates Moreau Envelope of a function to its Fenchel-Legendre conjugate.
Proposition A.2. For λ > 0 and a function h, we have:

Mh (x;λ) =
q(x)

λ
− 1

λ
(q + λh)

?
(x), (26)

where q(x) = x2/2.

Proof.

Mh (x;λ) =
1

2λ
min
y

[
(x− y)2 + 2λh(y)

]
=
x2

2λ
+

1

2λ
min
y

[
y2 − 2xy + 2λh(y)

]
=
x2

2λ
− 1

λ
max
y

[
xy −

(
y2/2 + λh(y)

)]
=
q(x)

λ
− 1

λ
(q + λh)

?
(x).

A.5 Convexity of the Moreau Envelope

Lemma A.1. The function H : R3 → R defined as follows

H(x, v, λ) =
1

2λ
(x− v)2, (27)

is jointly convex in its arguments.

Proof. Note that the function h(x, v) = (x− v)2 is jointly convex in (x, v). Thus its perspective function

λh(x/λ, v/λ) = (x− v)2/λ = 2H(x, v, λ)

is jointly convex in (x, v, λ) [Boyd and Vandenberghe, 2009, Sec. 2.3.3,], which completes the proof.

Proposition A.3. (a) [Prop. 2.22, Rockafellar and Wets [2009]] Let f(x, y) be jointly convex in its arguments.
Then, the function g(x) = miny f(x, y) is convex.

(b) [Sec. 3.2.3, Boyd and Vandenberghe [2009]] Suppose fi : R→ R is a set of concave functions, with i ∈ A an
index set. Then the function f : R→ R defined as f(x) := infi∈A fi(x) is concave.
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Lemma A.2. Let ` : R→ R be a lsc, proper, convex function. Then,M` (x;λ) is jointly convex in (x, λ).

Proof. Recall that

M` (x;λ) = min
v

G(a) :=
1

2λ
(x− v)2 + `(v), (28)

where for compactness, we let a ∈ R3 denote the triplet (x, v, λ). Now, let ai = (xi, vi, λi), i = 1, 2, θ ∈ (0, 1) and
θ := 1− θ. With this notation, we may write

G(θa1 + θa2) = H
(
θx1 + θx2, θλ1 + θλ2, θv1 + θv2

)
+ `(θv1 + θv2)

≤ θH(x1, v1, λ1) + θH(x2, v2, λ2) + θ`(v1) + θ`(v2)

= θG(a1) + θG(a2).

For the first equality above we recalled the definition of H : R3 → R in (27) and the inequality right after follows
from Lemma A.1 and convexity of `. Thus, the function G is jointly convex in its arguments. Using this fact, as
well as (28), and applying Proposition A.3(a) completes the proof.

A.6 Derivative of the Expected Moreau-envelope (EME) Function

The performance of the ERM estimator (1) is governed by the system of equations (6) in which the Moreau
envelope functionM` (x;λ) of the loss function ` plays a central role. More precisely, as already hinted by (6)
and will become clear in Appendix B, what governs the behavior is the function

(α > 0, µ, τ > 0, γ > 0) 7→ E[M` (αG+ µSY ; τ/γ) ], (29)

which we call the expected Moreau envelope (EME). Recall here that Y = f(S). Hence, the EME is the
key summary parameter that captures the role of both the loss function ` : R → R and of the link function
f : R→ {±1} on the statistical performance of (1). In the next proposition we find the derivative of (29) based
on its arguments.

Proposition A.4. Let ` : R→ R be a lsc, proper and convex function. Further let X,Z be independent random
variables with bounded second moments E[X2] <∞, E[Z2] <∞. Then the expected Moreau envelope function
E [M` (cX + Z;λ)], is differentiable with respect to both c and λ and the derivatives are given as follows:

∂

∂c
E
[
M` (cX + Z;λ)

]
= E

[
XM′`,1 (cX + Z;λ)

]
, (30)

∂

∂λ
E
[
M` (cX + Z;λ)

]
= E

[
M′`,2 (cX + Z;λ)

]
. (31)

Proof. The proof is an application of the Dominated Convergence Theorem (DCT). First, by Proposition A.1(b),
for every c ∈ R and any λ > 0 the function E[M` (cX + Z;λ)] takes a finite value. Second, by Proposition A.1(c)
M` (cx+ z;λ) is continuously differentiable with respect to both c and λ:

∂

∂c
M` (cX + Z;λ) = XM′`,1 (cX + Z;λ) = X

1

λ
(cX + Z − prox` (cX + Z;λ) ),

∂

∂λ
M` (cX + Z;λ) =M′`,2 (cX + Z;λ) = − 1

2λ2
(cX + Z − prox` (cX + Z;λ) )

2
.

From this, note that Cauchy-Schwarz inequality gives

E
[ ∂
∂c
M` (cX + Z;λ)

]
≤
(
E[X2])1/2

)(
E
[ 1

λ2
(cX + Z − prox` (cX + Z;λ) )

2︸ ︷︷ ︸
:=A

])1/2
,

Therefore, the remaining condition to check so that DCT can be applied is that the term A/λ2 above is
integrable. To begin with, we can easily bound A as: A ≤ 2(cX + Z)2 + 2(prox` (cX + Z;λ))2. Next, by
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non-expansiveness (Lipschitz property) of the proximal operator [Rockafellar and Wets, 2009, Prop. 12.19] we
have that |prox` (cX + Z;λ) |≤ |cX + Z|+|prox` (0;λ) |. Putting together, we find that

A ≤ 6(cX + Z)2 + 2|prox` (0;λ) |2≤ 12c2X2 + 12Z2 + 2|prox` (0;λ) |2.

We consider two cases. First, for fixed λ > 0 and any compact interval I, we have that

E sup
c∈I

[A] ≤ 12(sup
c∈I

c2)E[X2] + 12E[Z]2 + 2|prox` (0;λ) |2<∞.

Similarly, for fixed c and any compact interval J on the positive real line, we have that

E sup
λ∈J

[A/λ2] ≤ 12 sup
λ∈J

c2E[X2] + E[Z]2

λ2
+ 2 sup

λ∈J

|prox` (0;λ) |2

λ2
<∞,

where we also used boundedness of the proximal operator (cf. Proposition A.1(a)). This completes the proof.

B Proof of Theorem 2.1

In this section we provide a proof sketch of Theorem 2.1. The main technical tool that facilitates our analysis is
the convex Gaussian min-max theorem (CGMT), which is an extension of Gordon’s Gaussian min-max inequality
(GMT). We introduce the necessary background on the CGMT in B.1.

The CGMT has been mostly applied to linear measurements [Stojnic, 2013, Oymak et al., 2013, Thrampoulidis
et al., 2015b, 2018a, Miolane and Montanari, 2018]. The simple, yet central idea, which allows for this extension, is
a certain projection trick inspired by [Plan and Vershynin, 2016]. Here, we apply a similar trick, but in our setting,
we recognize that it suffices to simply rotate x0 to align with the first basis vector. The simple rotation decouples
the measurements yi from the last n − 1 coordinates of the measurement vectors ai (see Section B.2). While
this is sufficient for LS in [Thrampoulidis et al., 2015a], in order to study more general loss functions, we further
need to combine this with a duality argument similar to that in [Thrampoulidis et al., 2015b]. Second, while the
steps that bring the ERM minimization to the form of a PO (see (40)) bear the aforementioned similarities to
[Thrampoulidis et al., 2015a,b], the resulting AO is different from the one studied in previous works. Hence, the
mathematical derivations in Sections B.3 and B.4 are different. This also leads to a different system of equations
characterizing the statistical behavior of ERM.

B.1 Technical Tool: CGMT

B.1.1 Gordon’s Min-Max Theorem (GMT)

The Gordon’s Gaussian comparison inequality [Gordon, 1988] compares the min-max value of two doubly indexed
Gaussian processes based on how their autocorrelation functions compare. The inequality is quite general (see
[Gordon, 1988]), but for our purposes we only need its application to the following two Gaussian processes:

Xw,u := uTGw + ψ(w,u), (32a)

Yw,u := ‖w‖2gTu + ‖u‖2hTw + ψ(w,u), (32b)

where: G ∈ Rm×n, g ∈ Rm, h ∈ Rn, they all have entries iid Gaussian; the sets Sw ⊂ Rn and Su ⊂ Rm are
compact; and, ψ : Rn × Rm → R. For these two processes, define the following (random) min-max optimization
programs, which we refer to as the primary optimization (PO) problem and the auxiliary optimization (AO).

Φ̃(G) = min
w∈Sw

max
u∈Su

Xw,u, (33a)

φ(g,h) = min
w∈Sw

max
u∈Su

Yw,u. (33b)

According to Gordon’s comparison inequality, for any c ∈ R, it holds:

P
(

Φ̃(G) < c
)
≤ 2P (φ(g,h) < c) . (34)

In other words, a high-probability lower bound on the AO is a high-probability lower bound on the PO. The
premise is that it is often much simpler to lower bound the AO rather than the PO. To be precise, (34) is a slight
reformulation of Gordon’s original result proved in [Thrampoulidis et al., 2015b].
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B.1.2 Convex Gaussian Min-Max Theorem (CGMT)

The proof of Theorem 2.1 builds on the CGMT [Thrampoulidis et al., 2015b]. For ease of reference we summarize
here the essential ideas of the framework following the presentation in [Thrampoulidis et al., 2018a]; please see
[Thrampoulidis et al., 2018a, Section 6] for the formal statement of the theorem and further details. The CGMT is
an extension of the GMT and it asserts that the AO in (33b) can be used to tightly infer properties of the original
(PO) in (33a), including the optimal cost and the optimal solution. According to the CGMT [Thrampoulidis
et al., 2018a, Theorem 6.1], if the sets Sw and Su are convex and ψ is continuous convex-concave on Sw × Su,
then, for any ν ∈ R and t > 0, it holds

P
(
|Φ̃(G)− ν| > t

)
≤ 2P

(
|φ(g,h)− ν| > t

)
. (35)

In words, concentration of the optimal cost of the AO problem around µ implies concentration of the optimal
cost of the corresponding PO problem around the same value µ. Moreover, starting from (35) and under strict
convexity conditions, the CGMT shows that concentration of the optimal solution of the AO problem implies
concentration of the optimal solution of the PO to the same value. For example, if minimizers of (33b) satisfy
‖w∗(g,h)‖2 → ζ∗ for some ζ∗ > 0, then, the same holds true for the minimizers of (33a): ‖w∗(G)‖2 → ζ∗

[Thrampoulidis et al., 2018a, Theorem 6.1(iii)]. Thus, one can analyze the AO to infer corresponding properties
of the PO, the premise being of course that the former is simpler to handle than the latter.

B.2 Applying the CGMT to ERM for Binary Classification

In this section, we show how to apply the CGMT to (1). For convenience, we drop the subscript ` from x̂` and
simply write

x̂ = arg min
x

1

m

m∑
i=1

`(yia
T
i x), (36)

where the measurements yi, i ∈ [m] follow (2). By rotational invariance of the Gaussian distribution of the
measurement vectors ai, i ∈ [m], we assume without loss of generality that x0 = [1, 0, ..., 0]T . Denoting yiaTi x by
ui, (36) is equivalent to the following min-max optimization:

min
u,x

max
βββ

1

m

m∑
i=1

`(ui) +
1

m

m∑
i=1

βiui −
1

m

m∑
i=1

βiyia
T
i x. (37)

Now, let us define
ai = [si; ãi], i ∈ [m] and x = [x1; x̃],

such that si and x1 are the first entries of ai and x, respectively. Note that in this new notation (2) becomes:

yi = f(si), (38)

and

corr ( x̂ ; x0 ) =
x̂1√

x̂21 + ‖˜̂x‖22 , (39)

where we have decomposed x̂ = [x̂1; ˜̂x]. Also, (37) is written as

min
u,x

max
βββ

1

m

m∑
i =1

`(ui) +
1

m

m∑
i =1

βiui +
1

m

m∑
i =1

βiyiã
T
i x̃−

1

m

m∑
i =1

βiyisix1,

or, in matrix form:

(40)min
u,x

max
βββ

1

m
βTDyÃx̃ +

1

m
x1βββ

TDys +
1

m
βββTu +

1

m

m∑
i =1

`(ui).
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where Dy := diag(y1, y2, ..., ym) is a diagonal matrix with y1, y2, ...ym on the diagonal, s = [s1, . . . , sm]T and Ã
is an m× (n− 1) matrix with rows ãTi , i ∈ [m].

In (40) we recognize that the first term has the bilinear form required by the GMT in (33a). The rest of the
terms form the function ψ in (33a): they are independent of Ã and convex-concave as desired by the CGMT.
Therefore, we have expressed (36) in the desired form of a PO and for the rest of the proof we will analyze the
probabilistically equivalent AO problem. In view of (33b), this is given as follows,

(41)min
u,x

max
βββ

1

m
‖x̃‖2 g

TDyβββ +
1

m
‖Dyβββ‖2 h

T x̃− 1

m
x1βββ

TDys +
1

m
βββTu +

1

m

m∑
i =1

`(ui) ,

where as in (33b) g ∼ N (0, Im) and h ∼ N (0, In−1).

B.3 Analysis of the Auxiliary Optimization

Here, we show how to analyze the AO in (41). To begin with, note that yi ∈ {±1}, therefore Dyg ∼ N (0, Im)
and ‖Dyβββ‖2 = ‖βββ‖2. Also, let us denote the first entry x1 of x as

µ := x1.

From [Thrampoulidis et al., 2018a, Lem. A.3], instead of the AO in (41), it suffices to analyze the following version

(42)min
u,µ,α ≥0

max
βββ

min
‖x̃‖2=α

1

m
‖x̃‖2 g

TDyβββ +
1

m
‖Dyβββ‖2 h

T x̃− 1

m
µβββTDys +

1

m
βββTu +

1

m

m∑
i=1

`(ui) ,

Note that the “minu,x maxβ” problem in (41) is equivalent to a “minu,µ,α≥0 min‖x̃‖2=α maxβ” problem. Compared
to that, the order of min-max in (42) is now flipped; see the discussion in [Thrampoulidis et al., 2018a, Sec. A.6]2.
Now it is now possible to optimize over the direction of x̃, which leads to the following:

(43)min
α ≥0,µ,u

max
βββ

1

m
αgTβββ − α

m
‖βββ‖2 ‖h‖2 −

1

m
µsTDyβββ +

1

m
βββTu +

1

m

m∑
i =1

`(ui).

Next, let γ :=
‖βββ‖

2√
m

and optimize over the direction of β to yield

(44)min
α ≥0,u,µ

max
γ ≥0

γ√
m
‖αg − µDys + u‖2 −

α√
m
γ ‖h‖2 +

1

m

m∑
i =1

`(ui).

To continue, we utilize the fact that for all x ∈ R, minτ>0
τ
2 + x2

2τm = x√
m
. Hence

γ√
m
‖αg − µDys + u‖2 = min

τ>0

γτ

2
+

γ

2τm
‖−αg + µDys− u‖22 .

With this trick, the optimization over u becomes separable over its coordinates ui, i ∈ [m]. By inserting this in
(44) we have

min
α ≥0,τ>0,u,µ

max
γ ≥0

γτ

2
− α√

m
γ ‖h‖2 +

γ

2τm

m∑
i =1

(−αgi + µyisi − ui)2 +
1

m

m∑
i =1

`(ui),

Now, we show that the objective function above is convex-concave. Clearly, the function is linear (thus, concave
in γ). Moreover, from Lemma A.1, the function 1

2τ (αgi + µyisi − ui)2 is jointly convex in (α, µ, ui, τ). The rest of

2Here we skip certain technical details in this argument regarding boundedness of the constraint sets in (41). While they
are not trivial, they can be handled with the same techniques used in [Thrampoulidis et al., 2018a, Dhifallah et al., 2018].
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the terms are clearly convex and this completes the argument. Hence, with a permissible change in the order of
min-max, we arrive at the following convenient form:

(45)min
µ,α ≥0,τ>0

max
γ ≥0

γτ

2
− α√

m
γ ‖h‖2 +

1

m

m∑
i =1

M`

(
−αgi + µsiyi;

τ

γ

)
,

where recall the definition of the Moreau envelope in (18). As to now, we have reduced the AO into a random
min-max optimization over only four scalar variables in (45). For fixed µ, α, τ, γ, direct application of the weak
law of large numbers, shows that the objective function of (45) converges in probability to the following as
m,n→∞ and m

n = δ:

γ
τ

2
− αγ√

δ
+ E

[
M`

(
αG+ µY S;

τ

γ

)]
,

where G,S ∼ N (0, 1) and Y ∼ f(S) (in view of (38)). Based on that, it can be shown (similar arguments are
developed in [Thrampoulidis et al., 2018a, Dhifallah et al., 2018]) that the random optimizers αn and µn of (45)
converge to the deterministic optimizers α and µ of the following (deterministic) optimization problem (whenever
these are bounded as the statement of the theorem requires):

(46)min
α ≥0,µ,τ>0

max
γ ≥0

γ
τ

2
− αγ√

δ
+ E

[
M`

(
αG+ µY S;

τ

γ

)]
.

At this point, recall that α represents the norm of x̃ and µ the value of x1. Thus, in view of (i) (39), (ii)
the equivalence between the PO and the AO, and, (iii) our derivations thus far we have that with probability
approaching 1,

lim
n→+∞

corr ( x̂ ; x0 ) =
µ√

µ2 + α2
,

where µ and α are the minimizers in (46). The three equations in (6) are derived by the first-order optimality
conditions of the optimization in (46). We show this next.

B.4 Convexity-Concavity and First-order Optimality Conditions

First, we prove that the objective function in (46) is convex-concave. For convenience define the function
F : R4 → R as follows

F (α, µ, τ, γ) :=
γτ

2
− αγ√

δ
+ E

[
M`

(
αG+ µY S;

τ

γ

)]
. (47)

Based on Lemma A.2, it immediately follows that if ` is convex, F is jointly convex in (α, µ, τ). To prove concavity
of F based on γ it suffices to show thatM` (x; 1/γ) is concave in γ for all x ∈ R. To show this we note that

M` (x; 1/γ) = min
u

γ

2
(x− u)2 + `(u),

which is the point-wise minimum of linear functions of γ. Thus, using Proposition A.3(b), we conclude that
M` (x; 1/γ) is concave in γ. This completes the proof of convex-concavity of the function F in (47) when `
is convex. By direct differentiation and applying Proposition A.4, the first order optimality conditions of the
min-max optimization in (46) are as follows:

E
[
SY · M′`,1

(
αG+ µSY ;

τ

γ

)]
= 0, (48a)

E
[
G · M′`,1

(
αG+ µSY ;

τ

γ

)]
=

γ√
δ
, (48b)

γ

2
+

1

γ
E
[
M′`,2

(
αG+ µSY ;

τ

γ

)]
= 0, (48c)

− α√
δ
− τ

γ2
E
[
M′`,2

(
αG+ µSY ;

τ

γ

)]
+
τ

2
= 0. (48d)
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Next, we show how these equations simplify to the following system of equations (same as (6):

E
[
Y S · M′`,1 (αG+ µSY ;λ)

]
= 0, (49a)

λ2 δ E
[ (
M′`,1 (αG+ µSY ;λ)

)2 ]
= α2, (49b)

λ δ E
[
G · M′`,1 (αG+ µSY ;λ)

]
= α. (49c)

Let λ := τ
γ . First, (49a) is immediate from equation (48a). Second, substituting γ from (48c) in (48d) yields

τ = α√
δ
or γ = α

λ
√
δ
, which together with (48b) leads to (49c). Finally, (49b) can be obtained by substituting

γ = α
λ
√
δ
in (48c) and using the fact that (see Proposition A.1):

M′`,2 (αG+ µSY ;λ) = −1

2
(M′`,1 (αG+ µSY ;λ))2.

C On Theorem 3.1

C.1 Proof of Theorem 3.1

Fix a loss function ` and let (µ 6= 0, α > 0, λ ≥ 0) be a solution to (6), which by assumptions of Theorem 2.1
is unique. The first important observation is that the error of a loss function is unique up to a multiplicative
constant. To see this, consider an arbitrary loss function `(t) and let x̂` be a minimizer in (1). Now consider (1)
with the following loss function instead, for some arbitrary constants C1 > 0, C2 6= 0:

̂̀(t) :=
1

C1
`(C2t). (50)

It is not hard to see that 1
C2

x̂` is the minimizer for ̂̀. Clearly, 1
C2

x̂` has the same correlation value with x0 as
x̂`, showing that the two loss functions ` and ̂̀perform the same. With this observation in mind, consider the
function ̂̀ : R→ R such that ̂̀(t) = λ

µ2 `(µ t). Then, notice that

M′`,1 (x;λ) =
µ

λ
M′̂̀,1 (x/µ; 1) .

Using this relation in (6) and setting σ := σ` = α/µ, the system of equations in (6) can be equivalently rewritten
in the following convenient form,

E
[
Y S · M′̂̀,1 (Wσ; 1)

]
= 0, (51a)

E
[ (
M′̂̀,1 (Wσ; 1)

)2 ]
= σ2/δ , (51b)

E
[
G · M′̂̀,1 (Wσ; 1)

]
= σ/δ . (51c)

Next, we show how to use (51) to derive an equivalent system of equations based on Wσ. Starting with (51c) we
have

E
[
G · M′̂̀,1 (Wσ; 1)

]
=

1

σ

∫∫
uM′̂̀,1 (u+ z; 1)φσ(u)pSY (z)dudz, (52)

where φσ(u) := pσG(u) = 1
σ
√
2π
e−

u2

2σ2 . Since it holds that φσ(u) = −σ2

u φ′σ(u), using (52) it follows that

E
[
G · M′̂̀,1 (Wσ; 1)

]
= −σ

∫∫
M′̂̀,1 (u+ z; 1)φ′σ(u)pSY (z)dudz

= −σ
∫∫
M′̂̀,1 (w; 1)φ′σ(u)pSY (w − u)dudw = −σ

∫
M′̂̀,1 (w; 1) p′Wσ

(w)dw,

(53)
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where in the last step we used

p′Wσ
(w) =

∫
φ′σ(u)pSY (w − u) du.

Therefore we have by (53) that

E
[
G · M′̂̀,1 (Wσ; 1)

]
= −σ E

[
M′̂̀,1 (Wσ; 1) ξWσ (Wσ)

]
. (54)

This combined with (51c) gives E
[
M′̂̀,1 (Wσ; 1) ξWσ

(Wσ)
]

= −1/δ. Second, multiplying (51c) with σ2 and adding
it to (51a) yields that,

E
[
Wσ · M′̂̀,1 (Wσ; 1)

]
= σ2/δ, (55)

Putting these together we conclude with the following system of equations which is equivalent to (51),

E
[
Wσ · M′̂̀,1 (Wσ; 1)

]
= σ2/δ , (56a)

E
[ (
M′̂̀,1 (Wσ; 1)

)2 ]
= σ2/δ , (56b)

E
[
M′̂̀,1 (Wσ; 1) ξWσ

(Wσ)

]
= −1/δ . (56c)

Note that for σ > 0, ξWσ
= p′Wσ

/pWσ
exists everywhere. This is because for all w ∈ R: pWσ

(w) > 0 and
pWσ

(·) is continuously differentiable. Combining (56a) and (56c) we derive the following equation which holds for
α1, α2 ∈ R,

E
[
(α1Wσ + α2ξWσ (Wσ)) · M′̂̀,1 (Wσ; 1)

]
= α1σ

2/δ − α2/δ.

By Cauchy-Schwartz inequality we have that(
E
[
(α1Wσ + α2ξWσ

(Wσ)) · M′̂̀,1 (Wσ; 1)
])2
≤ E

[
(α1Wσ + α2ξWσ

(Wσ))2
]
E
[(
M′̂̀,1 (Wσ; 1)

)2 ]
. (57)

Using the fact that E[WσξWσ
(Wσ)] = −1 (by integration by parts), E[(ξWσ

(Wσ))2] = I(Wσ), E[W 2
σ ] = σ2 + 1

and (56b), the right hand side of (57) is equal to(
α2
1(σ2 + 1) + α2

2 I(Wσ)− 2α1α2

)
σ2/δ.

Therefore, we have concluded with the following inequality for σ,

δσ2
(
α2
1(σ2 + 1) + α2

2 I(Wσ)− 2α1α2

)
≥ (α1σ

2 − α2)2, (58)

which holds for all α1, α2 ∈ R. In particular, (58) holds for the following choice of values for α1 and α2:

α1 =
1− σ2I(Wσ)

δ(σ2I(Wσ) + I(Wσ)− 1)
, α2 =

1

δ(σ2I(Wσ) + I(Wσ)− 1)
.

(The choice above is motivated by the result of Section 3.2; see Theorem 3.2). Rewriting (58) with the chosen
values of α1 and α2 yields the following inequality,

1

δ
≤ σ2(σ2I(Wσ) + I(Wσ)− 1)

1 + σ2(σ2I(Wσ)− 1)
= κ(σ), (59)

where in the right-hand side above, we recognize the function κ defined in the theorem.

Next, we use (59) to show that σopt defined in (10) yields a lower bound on the achievable value of σ. For the
sake of contradiction, assume that σ < σopt. By the above, 1/δ ≤ κ(σ). Moreover, by the definition of σopt we
must have that 1/δ < κ(σ). Since κ(0) = 0 and κ(·) is a continuous function we conclude that for some σ1 ∈ (0, σ)
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Figure 3: The value of κ(σ) as in Theorem 3.1 for various measurement models. Since κ(σ) is a monotonic function of σ,
the solution to κ(σ) = 1/δ determines the minimum possible value of σ.

it holds that κ(σ1) = 1/δ. Therefore for σ1 < σopt we have κ(σ1) = 1/δ, which contradicts the definition of σopt.
This proves that σ ≥ σopt, as desired.

In order to complete the proof, it remains to show that the equation κ(σ) = 1/δ admits a solution for all δ > 1. For
this purpose, we use the continuous mapping theorem and the fact that fisher information is a continuous function
[Costa, 1985]. Recall that for two independent and non-constant random variables it holds that I(X +Y ) < I(X)
[Barron, 1984, Eq. 2.18]. Since G and SY are independent random variables we find that I(σG+ SY ) < I(SY )
which implies that I(σG+ SY ) takes finite values for all values of σ. Therefore,

lim
σ→0

κ(σ) = lim
σ→0

σ2
(
σ2I(Wσ) + I(Wσ)− 1

)
1 + σ2 (σ2I(Wσ)− 1)

= 0.

Furthermore σ2I(σG+ SY ) = I(G+ 1
σSY )→ I(G) = 1 when σ →∞. Hence,

lim
σ→∞

κ(σ) = lim
σ→∞

σ2
(
σ2I(Wσ) + I(Wσ)− 1

)
1 + σ2 (σ2I(Wσ)− 1)

= 1.

Note that σ2I(σG+ SY ) < σ2I(σG) = 1, which further yields that κ(σ) < 1 for all σ ≥ 0. Finally since I(·) is a
continuous function, we deduce that range of κ : R+ ∪ 0→ R is [0, 1), implying the existence of a solution to (10)
for all δ > 1. This completes the proof of the theorem.

C.2 On the Uniqueness of Solutions to the Equation κ(σ) = 1
δ

The existence of a solution to the equation κ(σ) = 1
δ was proved in the previous section. However it is not clear if

the solution to this equation is unique i.e., for any δ > 1 there exists only one σopt > 0 such that κ(σopt) = 1
δ . If

this is the case then the Equation (10) in Theorem 3.1 can be equivantly written as

σopt = σ, s.t. κ(σ) =
1

δ
.

Although we do not prove this claim, our numerical experiments in Figure 3 show that κ(·) is a monotonic
function for Noisy-signed (see Section E for the definition), Logistic and Probit measurements, implying the
uniqueness of solution to the equation κ(σ) = 1

δ for all δ > 1.

C.3 Distribution of SY in Special Cases

We derive the following densities for SY for the special cases :
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• Signed : pSY (w) =
√

2
π exp(−w2/2)1{w≥0}.

• Logistic: pSY (w) =
√

2
π

exp(−w2/2)
1+exp(−w) .

• Probit : pSY (w) =
√

2
π Φ(w) exp(−w2/2).

In particular we numerically observe that for Logistic and Probit models, the resulting densities are similar to the
density of a gaussian distribution derived according to N (E[SY ],Var[SY ]). Figure 4 illustrates this similarity for
these two models. As it was discussed in Corollary 3.1 this similarity results in the tightness of the lower bound
achieved for σopt in Equation (11).

C.4 Proof of Corollary 3.1

Based on Theorem 3.1, the following equation holds for σ = σopt

1

δ
= κ(σ),

or equivalently, by rewriting the right-hand side,
1

δ
= 1− 1

1
1−σ2I(Wσ)

− σ2
. (60)

Define the following function

h(x) := 1− 1
1

1−σ2x − σ2
.

The function h is increasing in the region Rσ = {z : z > σ−2 − σ−4}. According to Stam’s inequality [Blachman,
1965], for two independent random variables X and Y with continuously differentiable pX and pY it holds that

I(X + Y ) ≤ I(X) · I(Y )

I(X) + I(Y )
,

where equality is achieved if and only if X and Y are independent Gaussian random variables. Therefore since by
assumption pSY is differentiable on the real line, Stam’s inequality yields

I(Wσ) = I(σG+ SY ) ≤ I(σG) · I(SY )

I(σG) + I(SY )
. (61)

Next we prove that for all σ > 0, both sides of (61) are in the region Rσ. First, we prove that I(Wσ) ∈ Rσ. By
Cramer-Rao bound (e.g. see [Barron, 1984, Eq. 2.15]) for Fisher information of a random variable X, we have
that I(X) ≥ 1/(Var [X]). Also for the random variable Wσ, we know that Var [Wσ] = 1 + σ2 − (E[SY ])2, thus

I(Wσ) ≥ 1

1 + σ2 − (E[SY ])2
. (62)

Using the relation (E[SY ])2 ≤ E[S2]E[Y 2] = 1, one can check that the following inequality holds :
1

1 + σ2 − (E[SY ])2
≥ σ−2 − σ−4. (63)

Therefore from (62) and (63) we derive that I(Wσ) ∈ Rσ for all σ > 0. Furthermore by the inequality in (61)
and the definition of Rσ it directly follows that for all σ > 0

I(σG) I(SY )

I(σG) + I(SY )
∈ Rσ .

Finally noting that h(·) is increasing in Rσ, combined with (61) we have

1

δ
= h (I(Wσ)) ≤ h

(
I(σG) · I(SY )

I(σG) + I(SY )

)
,

which after using the relation I(σG) = σ−2 and further simplification yields the inequality in the statement of
the corollary.
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Figure 4: Probability distribution function of SY for the Logistic and Probit models compared with the probability distri-
bution function of the Gaussian random variable (dashed lines) with the same mean and variance i.e., N (E[SY ],Var[SY ]).

D On Theorem 3.2

The following proposition gives a recipe to invert Moreau envelope functions and is used in the proof of Theorem
3.2.

Proposition D.1 (Inverse of the Moreau envelope). [Advani and Ganguli, 2016, appendix, Result 23] For λ > 0
and f a convex, lower semi-continuous function such that g(·) =Mf (·;λ), the Moreau envelope can be inverted
so that f(·) = −M−g (·;λ) .

D.1 Proof of Theorem 3.2

We will show that the triplet (µ = 1, α = σopt, λ = 1) is a solution to the equations (6) for ` chosen as in (12).
Using Proposition A.2 we rewrite `opt using the Fenchel-Legendre conjugate as follows :

`opt(w) =
(
q + α1q + α2 log pWopt

)?
(w)− q(w), (64)

where q(w) = w2/2, and for a function f , its Fenchel-Legendre conjugate is defined as:

f?(x) = max
y

xy − f(y).

Next we use the fact that for any proper, closed and convex function f it holds that, (f?)? = f [Rockafellar, 1970,
theorem 12.2]. Therefore noting that q + α1q + α2 log pWopt is a convex function (see the proof of Lemma D.1 in
the appendix), combined with (64) yields that

(`opt + q)? = q + α1q + α2 log pWopt
. (65)

Additionally using Proposition A.2 we find thatM`opt (w; 1) = q(w)− (q + `opt)
?(w), which by (65) reduces to :

M`opt
(w; 1) = −α1q(w)− α2 log pWopt

(w).

Thus, by differentiation, we find that

M′`opt,1 (w; 1) = −α1w − α2 · ξWopt
(w). (66)
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Next, we establish the desired by directly substituting (66) into the system of equations in (56). First, using the
values of α1 and α2 in (13), as well as, the fact that κ(σopt) = 1/δ, we have the following chain of equations:

E
[ (
M′`opt,1 (Wopt; 1)

)2 ]
= E

[
(α1Wopt + α2 ξWopt(Wopt))

2

]
= α2

1 (σ2
opt + 1) + α2

2 I(Wopt) + 2α1α2 E
[
Wopt · ξWopt

(Wopt)
]

=
1 + σ2

opt

(
σ2
opt I(Wopt)− 1

)
δ2
(
σ2
opt I(Wopt) + I(Wopt)− 1

) =
σ2
opt

δ2 κ(σopt)

= σ2
opt/δ. (67)

This shows (6b). Second, using again the specified values of α1 and α2, a similar calculation yields

E
[
M′`opt,1 (Wopt; 1) ξWopt(Wopt)

]
= −E

[(
α1Wopt + α2 ξWopt(Wopt)

)
ξWopt(Wopt)

]
= α1 − α2 I(Wopt)

= −1/δ. (68)

Recall from (54) that E
[
G · M′`opt,1

(Wopt; 1)

]
= −σopt E

[
M′`opt,1 (Wopt; 1) ξWopt

(Wopt)
]
. This combined with

(68) yields (6c). Finally, we use again (66) and the specified values of α1 and α2 to find that

E
[
Wopt · M′`opt,1 (Wopt; 1)

]
= E

[
Wopt · (−α1Wopt − α2 ξWopt(Wopt))

]
= −α1 E

[
W 2

opt

]
− α2 E

[
Wopt ξWopt

(Wopt)
]

= −α1(σ2
opt + 1)− α2

∫ ∞
−∞

w p′Wopt
(w) dw = −α1(σ2

opt + 1) + α2

= σ2
opt/δ. (69)

But, using (54) it holds that

E
[
Wopt · M′`opt,1 (Wopt; 1)

]
= −σ2

opt E
[
M′`opt,1 (Wopt; 1) ξWopt

(Wopt)

]
+ E

[
Y S · M′`opt,1 (Wopt;λ)

]
.

This combined with (69) and (68) shows that E
[
Y S · M′`opt,1 (Wopt;λ)

]
= 0, as desired to satisfy (6a). This

completes the proof of the theorem.

D.2 On the Convexity of Optimal Loss Function

Here we provide a sufficient condition for `opt(w) to be convex.

Lemma D.1. The optimal loss function as defined in Theorem 3.2 is convex if

(log(pWσ
))′′(w) ≤ − 1

σ2 + 1
, for all w ∈ R and σ ≥ 0.

Proof. Using (26) optimal loss function is written in the following form

`opt(w) =
(
q + α1q + α2 log(pWopt

)
)?

(w)− q(w). (70)

Next we prove that q + α1q + α2 log(pWopt
) is a convex function. We first show that both α1 and α2 are

positive numbers for all values of σopt. We first note that since G and SY are independent random variables
σ2
optI(Wopt) < σ2

optI(σoptG) = 1. Therefore

1− σ2
optI(Wopt) > 0. (71)
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Additionally following Cramer-Rao bound [Barron, 1984] for fisher information, it yields that :

I(Wopt) >
1

E [(Wopt − E[Wopt])2]

=
1

1 + σ2
opt − (E[SY ])2

.

Using this inequality for I(Wopt) we derive that

σ2
optI(Wopt) + I(Wopt)− 1 > 0. (72)

From (71) and (72) it follows that α1, α2 > 0.
Based on the definition of the random variable Wopt:

log pWopt
(w) = −w2/(2σ2

opt) + log

∫ ∞
−∞

exp
(
(2wz − z2)/2σ2

opt

)
pSY (z) dz + c,

where c is a constant independent of w. By differentiating twice we see that

log

∫ ∞
−∞

exp
(
(2wz − z2)/2σ2

opt

)
pSY (z) dz

is a convex function of w. Therefore for proving that q + α1q + α2 log(pWopt
) is a convex function it is sufficient

to prove that (1 + α1 − α2/σ
2
opt)q is a convex function or equivalently 1 + α1 − α2/σ

2
opt ≥ 0. By replacing values

of α1, α2 and recalling the equation for σopt it yields that

1 + α1 − α2/σ
2
opt = 0,

which implies the convexity of q + α1q + α2 log(pWopt). For obtaining the derivative of `opt, we use the result in
[Rockafellar, 1970, Cor. 23.5.1] which states that for a convex function f

(f?)′ = (f ′)−1.

Therefore following (70)

`′opt(w) = (q′ + α1q
′ + α2(log(pWopt

))′)−1(w)− w. (73)

By differentiating again and using the properties of inverse function it yields that

`′′opt(w) =
1

1 + α1 + α2(log(pWopt
))′′(g(w))

− 1, (74)

where
g(w) := (q′ + α1q

′ + α2(log(pWopt
))′)−1(w).

Note that denominator of (74) is nonnegative since it is second derivative of a convex function. Therefore it is
evident from (74) that a sufficient condition for the convexity of `opt is that

α1 + α2(log(pWopt
))′′(w) ≤ 0, for all w ∈ R,

or
1− σ2

optI(Wopt) + (log(pWopt
))′′(w) ≤ 0.

This condition is satisfied if the statement of the lemma holds for σ = σopt :

1− σ2
optI(Wopt) + (log(pWopt

))′′(w) ≤ 1− σ2
optI(Wopt)−

1

1 + σ2
opt

< 0,

where we used (72) in the last inequality. This concludes the proof.
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Figure 5: The value of the threshold δ?fε in (75) as a function of probability of error ε ∈ [0, 1/2]. For Logistic and
Hinge-loss, the set of minimizers in (1) is bounded (as required by Theorem 2.1) iff δ > δ?fε .

D.2.1 Optimal Loss Function for the Signed Model

In the case of Signed model, it can be proved that the conditions of Lemma D.1 is satisfied. Since Wσ = σG+SY ,
we derive the probability density of Wσ as follows :

pWσ
(w) = p

σG
(w) ∗ pSY (w) =

exp(−w2/(2 + 2σ2))√
2π(1 + σ2)

· f(w),

where
f(w) = 2− 2Q(w/(σ

√
2 + 2σ2)).

Direct calculation shows that f is a log-concave function for all w ∈ R. Therefore

(log(pWσ
))′′(w) = − 1

σ2 + 1
+ (log(f))′′(w)

≤ − 1

σ2 + 1
.

This completes the proof of the convexity of optimal loss function derived according to Theorem 3.2 when
measurements follow the Signed model.

E Noisy Signed Measurement Model

Consider a noisy-signed label function as follows:

yi = fε(a
T
i x0) =

{
sign(aTi x0) ,w.p. 1− ε,
−sign(aTi x0) ,w.p. ε,

where ε ∈ [0, 1/2]. In the case of signed measurements i.e., yi = sign(aT
i x0), it can be observed that for all possible

values of δ, the condition (16) in Section 4.2 holds for xs = x0. This implies the separability of data and therefore
the solution to the optimization problem (1) is unbounded for all δ. However in the case of noisy signed label
function, boundedness or unboundedness of solutions to (1) depends on δ. As it was discussed in Section 4.2, the
minimum value of δ for bounded solutions is derived from the following:

δ?fε(ε) :=

(
min
c∈R

E
[
(G+ c S Y )

2
−

])−1
, (75)

where Y = fε(S). It can be checked analytically that δ?fε is a decreasing function of ε with δ?fε(0
+) = +∞ and

δ?fε(1/2) = 2.
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Figure 6: Comparisons between analytical and empirical results for the least-squares (LS), least-absolute deviations and
Hinge loss functions along with the upper bound on performance and the empirical performance of optimal loss function as
in Theorem 3.2, for Noisy-signed measurement model with ε = 0.1 (left) and ε = 0.25 (right). The vertical dashed lines are
evaluated by (75) and represent δ?fε ≈ 3 and 2.25 for ε = 0.1 and 0.25, respectively.

In Figure 5, we have numerically evaluated the threshold value δ?fε as a function of the probability of error ε. For
δ < δ?fε , the set of minimizers of the (1) with logistic or hinge loss is unbounded.
The performances of LS, LAD and Hinge loss functions for Noisy-signed measurement model with ε = 0.1 and
ε = 0.25 are demonstrated in Figures 6a and 6b, respectively. Comparing performances of Least-Squares and
Hinge-loss functions suggest that hinge-loss is robust to measurement corruptions, as for moderate to large values
of δ it outperforms the LS estimator. Theorem 2.1 opens the way to analytically confirm such conclusions, which
is an interesting future direction.

F Proofs and Discussion on LS Performance

F.1 Proof of Corollary 4.1

In order to get the values of α and µ as in the statement of the corollary, we show how to simplify Equations (6)
for `(t) = (t− 1)2. In this case, the proximal operator admits a simple expression:

prox` (x;λ) = (x+ 2λ)
/

(1 + 2λ).

Also, `′(t) = 2(t− 1). Substituting these in (51a) gives the formula for µ as follows:

0 = E [Y S(αG+ µSY − 1)] = µE[S2]− E[Y S]

=⇒ µ = E[Y S],

where we have also used from (5) that E[S2] = 1 and G is independent of S. Also, since `′′(t) = 2, direct
application of (24) gives

1 = λδ
2

1 + 2λ
=⇒ λ =

1

2(δ − 1)
.
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Finally, substituting the value of λ in (51b) we obtain the desired value for α as follows :

α2 = 4λ2δ E
[
(prox` (αG+ µSY ;λ)− 1)2

]
=

4λ2

(1 + 2λ)2
δ E
[
(αG+ µSY − 1)2

]
=

4λ2δ

(1 + 2λ)2
(α2 + µ2 + 1− 2µE[SY ])

=
1

δ
(α2 + 1− (E[SY ])

2
)

=⇒ α =

√
1− (E[SY ])

2 ·
√

1

δ − 1
.

F.2 Discussion

Linear vs binary. On the one hand, Corollary 4.1 shows that least-squares performance for binary measure-
ments satisfies

lim
n→∞

∥∥∥x̂− µ

‖x0‖2
· x0

∥∥∥2
2

= τ2 · 1

δ − 1
, (76)

where µ is as in (14) and τ2 := 1 − (E[SY ])2. On the other hand, it is well-known (e.g., see references in
[Thrampoulidis et al., 2018a, Sec. 5.1]) that least-squares for (scaled) linear measurements with additive Gaussian
noise (i.e. yi = ρaTi x0 + σzi, zi ∼ N (0, 1)) leads to an estimator that satisfies

lim
n→∞

‖x̂− ρ · x0‖22 = σ2 · 1

δ − 1
. (77)

Direct comparison of (76) to (77) suggests that least-squares with binary measurements performs the same as if
measurements were linear with scaling factor ρ = µ/‖x0‖2 and noise variance σ2 = τ2 = α2(δ − 1). This worth-
mentioning conclusion is not new as it was proved in [Brillinger, 1982, Plan and Vershynin, 2016, Thrampoulidis
et al., 2015a, Genzel and Jung, 2017]. We include a short discussion on the relation to this prior work in the
following paragraph. We highlight that all these existing results are limited to a least-squares loss unlike our
general analysis.

Prior work. There is a lot of recent work on the use of least-squares-type estimators for recovering signals from
nonlinear measurements of the form yi = h(aTi x0) with Gaussian vectors ai. The original work that suggests
least-squares as a reasonable estimator in this setting is due to Brillinger [Brillinger, 1982]. In his 1982 paper,
Brillinger studied the problem in the classical statistics regime (aka n is fixed not scaling with m→ +∞) and he
proved for the least-squares solution satisfies

lim
m→+∞

1

m

∥∥∥∥x̂− µ

‖x0‖2
· x0

∥∥∥∥2
2

= τ2,

where

µ = E[SY ], S ∼ N (0, 1),

τ2 = E[(Y − µS)2]. (78)

and the expectations are with respect to S and possible randomness of f . Evaluating (78) for Y = fε(S) leads
to the same values for µ and τ2 in (76). In other works, (76) for δ → +∞ indeed recovers Brillinger’s result.
The extension of Brillinger’s original work to the high-dimensional setting (both m,n large) was first studied
by Plan and Vershynin [Plan and Vershynin, 2016], who derived (non-sharp) non-asymptotic upper bounds on
the performance of constrained least-squares (such as the Lasso). Shortly after, [Thrampoulidis et al., 2015a]
extended this result to sharp asymtpotic predictions and to regularized least-squares. In particular, Corollary 4.1
is a special case of the main theorem in [Thrampoulidis et al., 2015a]. Several other interesting extensions of the
result by Plan and Vershynin have recently appeared in the literature, e.g., [Genzel, 2017, Goldstein et al., 2018,
Genzel and Jung, 2017, Thrampoulidis and Rawat, 2018]. However, [Thrampoulidis et al., 2015a] is the only
one to give results that are sharp in the flavor of this paper. Our work, extends the result of [Thrampoulidis
et al., 2015a] to general loss functions beyond least-squares. The techniques of [Thrampoulidis et al., 2015a] that
have guided the use of the CGMT in our context have also been recently applied in [Dhifallah et al., 2018] in the
context of phase-retrieval.


