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Abstract

We study convex empirical risk minimization
for high-dimensional inference in binary mod-
els. Our first result sharply predicts the statis-
tical performance of such estimators in the lin-
ear asymptotic regime under isotropic Gaus-
sian features. Importantly, the predictions
hold for a wide class of convex loss functions,
which we exploit in order to prove a bound
on the best achievable performance among
them. Notably, we show that the proposed
bound is tight for popular binary models (such
as Signed, Logistic or Probit), by construct-
ing appropriate loss functions that achieve it.
More interestingly, for binary linear classifica-
tion under the Logistic and Probit models, we
prove that the performance of least-squares
is no worse than 0.997 and 0.98 times the
optimal one. Numerical simulations corrobo-
rate our theoretical findings and suggest they
are accurate even for relatively small problem
dimensions.

1 INTRODUCTION

1.1 Motivation

Classical estimation theory studies problems in which
the number of unknown parameters n is small compared
to the number of observations m. In contrast, modern
inference problems are typically high-dimensional, that
is n can be of the same order as m. Examples are
abundant in a wide range of signal processing and
machine learning applications such as medical imaging,
wireless communications, recommendation systems and
so on. Classical tools and theories are not applicable
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in these modern inference problems. As such, over the
last two decades or so, the study of high-dimensional
estimation problems has received significant attention.

Several recent works focus on the linear asymptotic
regime and derive sharp results on the inference per-
formance of appropriate convex optimization methods,
e.g., [Donoho, 2006, Stojnic, 2009, Chandrasekaran
et al., 2012, Donoho et al., 2011, Tropp, 2014, Bayati
and Montanari, 2012, Oymak and Tropp, 2017, Stojnic,
2013, Oymak et al., 2013, Karoui, 2013, Bean et al.,
2013, Thrampoulidis et al., 2015b, Donoho and Mon-
tanari, 2016, Thrampoulidis et al., 2018a, Advani and
Ganguli, 2016, Weng et al., 2018, Thrampoulidis et al.,
2018b, Miolane and Montanari, 2018, Bu et al., 2019,
Xu et al., 2019, Celentano and Montanari, 2019]. These
works show that, albeit challenging, sharp results are
advantageous over loose order-wise bounds. Not only
do they allow for accurate comparisons between differ-
ent choices of the optimization parameters, but they
also form the basis for establishing optimal such choices
as well as fundamental performance limitations.

This paper takes this recent line of work a step further
by demonstrating that results of this nature can be
achieved in binary observation models. While we depart
from the previously studied linear regression model, we
remain faithful to the requirement and promise of sharp
results. Binary models are popularly applicable in a
wide range of signal-processing (e.g., highly quantized
measurements) and machine learning (e.g., binary clas-
sification) problems. We derive sharp asymptotics for
a rich class of convex optimization estimators, which
includes least-squares, logistic regression and hinge-loss
as special cases. Perhaps more interestingly, we use
these results to derive fundamental performance limi-
tations and design optimal loss functions that provably
outperform existing choices.

In Section 1.2 we formally introduce the problem setup.
The paper’s main contributions and organization are
presented in Section 1.3. A detailed discussion of prior
art follows in Section 1.4.

Notation. The symbols P(·), E [·] and Var[·] denote
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probability, expectation and variance. We use
boldface notation for vectors. kvk2 denotes the
Euclidean norm of a vector v. We write i 2 [m] for
i = 1, 2, . . . ,m. When writing x⇤ = argminx f(x), we
let the operator argmin return any one of the possible
minimizers of f . For all x 2 R, �(x) is the cumu-
lative distribution function of standard normal and
Gaussian Q-function at x is defined as Q(x) = 1��(x).

1.2 Problem Statement

Consider the problem of recovering x0 2 Rn from ob-
servations yi = f(aT

i
x0), i 2 [m], where f : R ! {±1}

is a (possibly random) binary function. We study
the performance of empirical-risk minimization (ERM)
estimators bx` that solve the following optimization
problem for some convex loss function ` : R ! R

bx` := argmin
x

1

m

mX

i=1

`(yia
T

i
x). (1)

Model. The binary observations yi, i 2 [m] are deter-
mined by a label function f : R ! {�1, 1} as follows:

yi = f(aT
i
x0), i 2 [m], (2)

where ai’s are known measurement vectors with i.i.d.
Gaussian entries; and x0 2 Rn is an unknown vector
of coefficients. Some popular examples for the label
function f include the following:

• (Noisy) Signed : yi =

(
sign(aT

i
x0) ,w.p. 1� ",

�sign(aT
i
x0) ,w.p. ",

where " 2 [0, 1/2].

• Logistic: yi =

(
+1 ,w.p. 1

1+exp(�aT

i
x0)

,

�1 ,w.p. 1� 1
1+exp(�aT

i
x0)

.

• Probit : yi =

(
+1 ,w.p. �(aT

i
x0),

�1 ,w.p. 1� �(aT
i
x0).

Loss function. We study the recovery performance
of estimates bx` of x0 that are obtained by solving (1)
for proper convex loss functions ` : R ! R. Different
choices for ` lead to popular specific estimators
including the following:

• Least Squares (LS): `(t) = 1
2 (t� 1)2,

• Least-Absolute Deviations (LAD): `(t) = |t� 1|,

• Logistic Loss: `(t) = log(1 + exp(�t)),

• Exponential Loss: `(t) = exp(�t),

• Hinge Loss: `(t) = max{1� t , 0}.

Performance measure. We measure performance of
the estimator bx` by the value of its correlation to x0,
i.e.,

corr ( bx` ; x0 ) :=
hbx`,x0i

kbx`k2kx0k2
2 [�1, 1]. (3)

Obviously, we seek estimates that maximize correlation.
While correlation is the measure of primal interest,
our results extend rather naturally to other parameter
estimation metrics, such as square error, as well as
prediction metrics, such as classification error.

Model assumptions. All our results are valid under
the assumption that the measurement vectors have i.i.d.
Gaussian entries.
Assumption 1 (Gaussian feature vectors). The vec-
tors ai 2 Rn

, i 2 [m] have entries i.i.d. standard nor-
mal.

We further assume that kx0k2= 1. This assumption
is without loss of generality since the norm of x0 can
always be absorbed in the link function. Indeed, letting
kx0k2= r, we can always write the measurements as
f(aTx0) = ef(aT ex0), where ex0 = x0/r (hence, kex0k2=

1) and ef(t) = f(rt). We make no further assumptions
on the distribution of the true vector x0.

1.3 Contributions and Organization

This paper’s main contributions are summarized below.

• Sharp asymptotics: We show that the absolute
value of correlation of bx` to the true vector x0 is sharply
predicted by

p
1/(1 + �

2
`
) where the "effective noise"

parameter �` can be explicitly computed by solving a
system of three non-linear equations in three unknowns.
We find that the system of equations (and thus, the
value of �`) depends on the loss function ` through
its Moreau envelope function. Our prediction holds in
the linear asymptotic regime in which m,n ! 1 and
m/n ! � > 1. See Section 2.
• Fundamental limits: We establish fundamental
limits on the performance of convex optimization-based
estimators by computing an upper bound on the best
possible correlation performance among all convex loss
functions. We compute the upper bound by solving a
certain nonlinear equation and we show that such a
solution exists for all � > 1. See Section 3.1.

• Optimal performance: For certain models includ-
ing Signed and Logistic, we find the loss functions that
achieve the optimal performance, i.e., they attain the
previously derived upper bound. See Section 3.2.

• Optimality of LS: For binary logistic and sigmoid
models, we prove that the correlation performance of
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Figure 1: Left: Comparison between analytical (solid lines) and empirical (markers) performance for least-squares (LS)

and least-absolute deviations (LAD), along with optimal performance (dashed line) as predicted by the upper bound of

Theorem 3.1 for the Signed model(" = 0). The red markers depict the empirical performance of the optimal loss function

that attains the upper bound. Right: Illustrations of optimal loss functions for the Signed model for different values of �

according to Theorem 3.2.

Table 1: Analytical predictions and empirical performance of the optimal loss function for Signed model. Empirical results

are averaged over 20 independent experiments for n = 128.

� 2 3 4 5 6 7 8 9
Predicted Performance 0.8168 0.9101 0.9457 0.9645 0.9748 0.9813 0.9855 0.9885
Empirical Performance 0.8213 0.9045 0.9504 0.9669 0.9734 0.9801 0.9834 0.9873

least-squares (LS) is at least as good as 0.9972 and
0.9804 times the optimal performance. See Section 4.1.

• Numerical simulations: We specialize our results
on general models and loss functions to popular in-
stances, for which we provide simulation results that
demonstrate the accuracy of the theoretical predictions.
See Section 5.

Figure 1 contains a pictorial preview of our results
described above for the special case of Signed mea-
surements. First, Figure 1a depicts the correlation
performance of LS and LAD estimators as a function
of the aspect ratio �. Both theoretical predictions and
numerical results are shown; note the close match
for even small dimensions. Second, the dashed line
on the same figure shows the upper bound derived
in this paper – there is no convex loss function that
results in correlation exceeding this line. Third, we
show that the upper bound can be achieved by the
loss functions depicted in Figure 1b for several values
of �. We solve (1) for this choice of loss functions
using gradient descent and numerically evaluate the
achieved correlation performance. The recorded values
are compared in Table 1 to the corresponding values
of the upper bound; again, note the close agreement
between the values as predicted by the findings of
this paper. We present corresponding results for the

Logistic model in Section 5 and for the Noisy-signed
model in Appendix E.

1.4 Related Work

Over the past two decades there has been a long list
of works that derive statistical guarantees for high-
dimensional estimation problems. Many of these are
concerned with convex optimization-based inference
methods. Our work is most closely related to the
following three lines of research.

(a) Sharp asymptotics for linear measurements. Most of
the results in the literature of high-dimensional statis-
tics are order-wise in nature. Sharp asymptotic predic-
tions have only more recently appeared in the literature
for the case of noisy linear measurements with Gaussian
measurement vectors. There are by now three different
approaches that have been used towards asymptotic
analysis of convex regularized estimators:
i) the one that is based on the approximate message
passing (AMP) algorithm and its state-evolution anal-
ysis, e.g., [Donoho et al., 2009, 2011, Bayati and Mon-
tanari, 2011, 2012, Donoho and Montanari, 2016, Bu
et al., 2019, Mousavi et al., 2018].
ii) the one that is based on Gaussian process (GP)
inequalities, specifically the convex Gaussian min-max
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Theorem (CGMT) e.g., [Stojnic, 2013, Oymak et al.,
2013, Thrampoulidis et al., 2015b, 2018a,b, Miolane
and Montanari, 2018].

Our results in Theorems 3.1 and 3.2 for achieving the
best performance across all loss functions is complemen-
tary to [Bean et al., 2013, Theorem 1] and [Advani and
Ganguli, 2016] in which the authors also proposed a
method for deriving optimal loss function and measur-
ing its performance, albeit for linear models. Instead,
we study binary models. The optimality of regular-
ization for linear measurements, is recently studied in
[Celentano and Montanari, 2019].

In terms of analysis, we follow the GP approach and
build upon the CGMT. Since the previous works are
concerned with linear measurements, they consider
estimators that solve minimization problems of the
form

bx := argmin
x

mX

i=1

è(yi � aT
i
x) + rR(x) (4)

Specifically, the loss function èpenalizes the residual.
In this paper, we show that the CGMT is applicable to
optimization problems in the form of (1). For our case
of binary observations, (1) is more general than (4). To
see this, note that for yi 2 {±1} and popular symmetric
loss functions è(t) = è(�t), e.g. least-squares (LS),
(1) results in (4) by choosing `(t) = è(t � 1) in the
former. Moreover, (1) includes several other popular
loss functions such as the logistic loss and the hinge-loss
which cannot be expressed by (4).

Similar to the generality of our paper, [Genzel, 2017]
also studies the high-dimensional performance of gen-
eral loss functions. However, in contrast to our results,
their performance bounds are loose (order-wise); as
such, they are not informative about the question of
optimal performance which we also address here.

(b)Classification in high-dimensions. In [Candès and
Sur, 2018, Sur and Candès, 2019] the authors study the
high-dimensional performance of maximum-likelihood
(ML) estimation for the logistic model. The ML esti-
mator is a special case of (1) and we consider general
binary models. Also, their analysis is based on the
AMP. The asymptotics of logistic loss under different
classification models has also been recently studied in
[Mai et al., 2019]. In yet another closely related recent
work [Salehi et al., 2019], the authors extend the results
of [Sur and Candès, 2019] to regularized ML by using
the CGMT. Instead, we present results for general loss
functions and for general measurement models. Impor-
tantly, we also study performance bounds and optimal
loss functions. A preliminary version of the results of
this paper was published in [Taheri et al., 2019].

2 SHARP PERFORMANCE
GUARANTEES

Moreau envelopes. Before stating the first result we
need a definition. We write

M` (x;�) := min
v

1

2�
(x� v)2 + `(v),

for the Moreau envelope function of the loss ` : R ! R
at x with parameter � > 0. The minimizer (which is
unique by strong convexity) is known as the proximal
operator of ` at x with parameter � and we denote it as
prox

`
(x;�). A useful property of the Moreau envelope

function is that it is continuously differentiable with
respect to both x and � [Rockafellar and Wets, 2009].
We denote these derivatives as follows

M
0
`,1 (x;�) :=

@M` (x;�)

@x
,

M
0
`,2 (x;�) :=

@M` (x;�)

@�
.

A system of equations. As we show shortly, the
asymptotic performance of the optimization in (1) is
tightly connected to the solution of a certain system of
nonlinear equations, which we introduce here. Specifi-
cally, define random variables G,S and Y as follows:

G,S
i.i.d.
⇠ N (0, 1) and Y = f(S), (5)

and consider the following system of non-linear equa-
tions in three unknowns (µ,↵ � 0,� � 0):

E

Y S · M

0
`,1 (↵G+ µSY ;�)

�
= 0, (6a)

�
2
� E

 �
M

0
`,1 (↵G+ µSY ;�)

�2
�
= ↵

2
, (6b)

� � E

G · M

0
`,1 (↵G+ µSY ;�)

�
= ↵. (6c)

The expectations are with respect to the randomness
of the random variables G, S and Y . We remark that
the equations are well defined even if the loss function
` is not differentiable. In Section A we summarize
some well-known properties of the Moreau Envelope
function and use them to simplify (6) for differentiable
loss functions.

2.1 Asymptotic Prediction

We are now ready to state our first main result.
Theorem 2.1 (Sharp asymptotics). Let Assumption 1
hold and assume � > 1 such that the set of minimizers
in (1) is bounded and the system of equations (6) has
a unique solution (µ,↵ � 0,� � 0), such that µ 6= 0.
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Let bx` be as in (1). Then, in the limit of m,n ! +1,
m/n ! �, it holds with probability one that

lim
n!1

corr ( bx` ; x0 ) =
µp

µ2 + ↵2
. (7)

Moreover,

lim
n!1

����bx` � µ ·
x0

kx0k2

����
2

2

= ↵
2
. (8)

Theorem 2.1 holds for general loss functions. In Section
4 we specialize the result to specific popular choices
and also present numerical simulations that confirm
the validity of the predictions (see Figures. 1a–2a and
6a–6b). Before that, we include a few remarks on
the conditions, interpretation and implications of the
theorem. The proof is deferred to Appendix B and
uses the convex Gaussian min-max theorem (CGMT)
[Thrampoulidis et al., 2015b, 2018a].
Remark 1 (The role of µ and ↵). According to (7), the
prediction for the limiting behavior of the correlation
value is given in terms of an effective noise parameter
�` := ↵/µ, where µ and ↵ are unique solutions of (6).
The smaller the value of �` is, the larger becomes the
correlation value. While the correlation value is fully
determined by the ratio of ↵ and µ, their individual
role is clarified in (8). Specifically, according to (8), bx`

is a biased estimate of the true x0 and µ represents
exactly that bias term. In other words, solving (1)
returns an estimator that is close to a µ–scaled version
of x0. When x0 and bx` are scaled appropriately, the
`2-norm of their difference converges to ↵.
Remark 2 (Why � > 1). The theorem requires that
� > 1 (equivalently, m > n). Here, we show that this
condition is necessary for the equations (6) to have a
bounded solution. To see this, take squares in both
sides of (6c) and divide by (6b), to find that

� =

E
⇣

M
0
`,1 (↵G+ µSY ;�)

⌘2
�

⇣
E
h
G · M

0
`,1 (↵G+ µSY ;�)

i⌘2 � 1.

The inequality follows by applying Cauchy-Schwarz
and using the fact that E[G2] = 1.
Remark 3 (On the existence of a solution to (6)). While
� > 1 is a necessary condition for the equations in (6)
to have a solution, it is not sufficient in general. This
depends on the specific choice of the loss function.
For example, in Section 4.1, we show that for the
squared loss `(t) = (t�1)2, the equations have a unique
solution iff � > 1. On the other hand, for logistic-loss
and hinge-loss, it is argued in Section 4.2 that there
exists a threshold value �

?

f
> 2 such that the set of

minimizers in (1) is unbounded if � < �
?

f
. In this case,

Theorem 2.1 does not hold. We conjecture that for
these choices of loss, the equations (6) are solvable iff
� > �

?

f
. Justifying this conjecture and further studying

more general sufficient and necessary conditions under
which the equations (6) admit a solution is left to future
work. However, in what follows, given such a solution,
we prove that it is unique for a wide class of convex-loss
functions of interest.
Remark 4 (On the uniqueness of solution to (6)). We
show that if the system of equations in (6) has a solu-
tion, then it is unique provided that ` is strictly convex,
continuously differentiable and its derivative satisfies
`
0(0) 6= 0. For instance, this class includes the square,

the logistic and the exponential losses. However, it
excludes non-differentiable functions such as the LAD
and hinge-loss. We believe that the differentiability
assumption can be relaxed without major modification
in our proof, but we leave this for future work. Our
result is summarized in Proposition 2.1 below.
Proposition 2.1. Assume that the loss function ` : R !

R has the following properties: (i) it is proper strictly
convex; (ii) it is continuously differentiable and its
derivative `

0 is such that `
0(0) 6= 0. Further assume

that the (possibly random) link function f is such that
SY = Sf(S), S ⇠ N (0, 1) has strictly positive density
on the real line. The following statement is true. For
any � > 1, if the system of equations in (6) has a
bounded solution, then it is unique.

The detailed proof of Proposition 2.1 is deferred to
the extended version of the paper [Taheri et al., 2020,
Appendix B.5]. Here, we highlight some key ideas. The
CGMT relates –in a rather natural way– the original
ERM optimization (1) to the following deterministic
min-max optimization on four variables

min
↵>0,µ,⌧>0

max
�>0

F (↵, µ, ⌧, �) :=

�⌧

2
�

↵�
p
�
+ E


M`

✓
↵G+ µY S;

⌧

�

◆�
. (9)

In [Taheri et al., 2020, Appendix B.4], we show that
the optimization above is convex-concave for any lower
semi-continuous, proper, convex function ` : R ! R.
Moreover, it is shown that one arrives at the system
of equations in (6) by simplifying the first-order op-
timality conditions of the min-max optimization in
(9). This connection is key to the proof of Proposition
2.1. Indeed, we prove uniqueness of solution (if such
a solution exists) to (6), by proving instead that the
function F (↵, µ, ⌧, �) above is (jointly) strictly convex
in (↵, µ, ⌧) and strictly concave in �, provided that `

satisfies the conditions of the proposition. Next, let
us briefly discuss how strict convex-concavity of (9)
can be shown. For concreteness, we only discuss strict
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convexity here; the ideas are similar for strict concavity.
At the heart of the proof of strict convexity of F is
understanding the properties of the expected Moreau
envelope function ⌦ : R+ ⇥ R⇥ R+ ⇥ R+ ! R defined
as follows:

⌦(↵, µ, ⌧, �) := E

M`

✓
↵G+ µY S;

⌧

�

◆�
.

Specifically, we prove in [Taheri et al., 2020, Proposition
A.7] that if ` is strictly convex, differentiable and does
not attain its minimum at 0, then ⌦ is strictly convex
in (↵, µ, ⌧) and strictly concave in �. It is worth noting
that the Moreau envelope function M` (↵g + µys; ⌧)
for fixed g, s and y = f(s) is not necessarily strictly con-
vex. Interestingly, we show that the expected Moreau
envelope has this desired feature. We refer the reader
to [Taheri et al., 2020, Appendices A.6 and B.5] for
more details.

3 ON OPTIMAL PERFORMANCE

3.1 Fundamental Limitations

In this section, we establish fundamental limits on the
performance of (1) by deriving an upper bound on the
absolute value of correlation corr ( bx` ; x0 ) that holds
for all choices of loss functions satisfying Theorem 2.1.
The result builds on the prediction of Theorem 2.1. In
view of (7) upper bounding correlation is equivalent to
lower bounding the effective noise parameter �` = ↵/µ.
Theorem 3.1 below derives such a lower bound. The
proof is deferred to Appendix C.

For a random variable H with density pH(h) that has
a derivative p

0
H
(h), 8h 2 R, we denote its score func-

tion ⇠H(h) := @

@h
log pH(h) = p

0
H
(h)

pH(h) . Then, the Fisher
information of H is defined as follows (e.g. [Barron,
1984, Sec. 2]):

I(H) := E
h
(⇠H(H))2

i
.

Theorem 3.1 (Best achievable performance). Let the
assumptions and notation of Theorem 2.1 hold and
recall the definition of random variables G,S and Y

in (5). For � > 0, define a new random variable
W� := �G + SY, and the function  : (0,1] ! [0, 1]
as follows,

(�) :=
�
2
�
�
2
I(W�) + I(W�)� 1

�

1 + �2 (�2I(W�)� 1)
.

Further define �opt as follows,

�opt := min

⇢
� � 0 : (�) =

1

�

�
. (10)

Then, for �` :=
↵

µ
it holds that �` � �opt.

The theorem above establishes an upper bound on the
best possible correlation performance among all convex
loss functions. In Section 3.2, we show that this bound
is often tight, i.e. there exists a loss function that
achieves the specified best possible performance.
Remark 5. Theorem 3.1 complements the results of
[Bean et al., 2013], [Donoho and Montanari, 2016,
Lem. 3.4] and [Thrampoulidis et al., 2018a, Rem. 5.3.3]
in which they consider only linear measurements. In
particular, Theorem 3.1 shows that it is possible to
achieve results of this nature for the more challenging
setting of binary observations considered here.

A useful closed-form bound on the best achiev-
able performance: In general, determining �opt re-
quires computing the Fisher information of the random
variable �G+SY for � > 0. If the probability distribu-
tion of SY is continuously differentiable (e.g., logistic
model; see Section C.3), then we obtain the following
simplified bound. The proof is deferred to Appendix
C.4.

Corollary 3.1 (Closed-form lower bound on �opt). Let
pSY : R ! R be the probability distribution of SY . If
pSY (x) is differentiable for all x 2 R, then,

�
2
opt �

1

(� � 1)(I(SY )� 1)
. (11)

The proof of the corollary reveals that (11) holds with
equality when SY is Gaussian. In Section C.3, we
compute pSY for the Logistic and the Probit models
and numerically show that it is close to the density
of a Gaussian random variable. Consequently, the
lower bound of Corollary 3.1 is almost exact when
measurements are obtained according to the Logistic
and Probit models; see Figure 4 in the appendix.

3.2 On the Optimal Loss Function

It is natural to ask whether there exists a loss function
that attains the bound of Theorem 3.1. If such a loss
function exists, then we say it is optimal in the sense
that it maximizes the correlation performance among
all convex loss functions in (1).

Our next theorem derives a candidate for the optimal
loss function, which we denote `opt.The proof is deferred
to Appendix D

Theorem 3.2 (Optimal loss function). Recall the def-
inition of �opt in (10). Define the random variable
Wopt := �opt G+ SY and let pWopt denote its density.
Consider the following loss function `opt : R ! R

`opt(w) = �M↵1q+↵2 log(pWopt )
(w; 1) , (12)
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where q(x) = x
2
/2 and

↵1 =
1� �

2
optI(Wopt)

�(�2
optI(Wopt) + I(Wopt)� 1)

,

↵2 =
1

�(�2
optI(Wopt) + I(Wopt)� 1)

.

(13)

If `opt defined as in (12) is convex and the equation
(�) = 1/� has a unique solution, then �`opt = �opt.

In general, there is no guarantee that the function
`opt(·) as defined in (12) is convex. However, if this
is the case, the theorem above guarantees that it is
optimal 1. A sufficient condition for `opt(w) to be
convex, is provided in Appendix D.2. Importantly, in
Appendix D.2.1 we show that this condition holds for
observations following the Signed model. Thus, for this
case the resulting function is convex. Although we do
not prove the convexity of optimal loss function for the
Logistic and Probit models, our numerical results (e.g.,
see Figure 2b) suggest that this is the case. Concretely,
we conjecture that the loss function `opt is convex for
Logistic and Probit models, and therefore by Theorem
3.2 its performance is optimal.

4 SPECIAL CASES

4.1 Least-Squares

For this choice of loss function, we can solve the equa-
tions in (6) in closed form. Furthermore, the equations
have a unique and bounded solution for any � > 1 pro-
vided that E[SY ] > 0. The final result is summarized
in the corollary below. See Section F.1 for the proof.
Corollary 4.1 (Least-squares). Let Assumption 1 hold
and � > 1. For the label function assume that E[SY ] >
0 in the notation of (5). Let bx` be as in (1) for `(t) =
(t � 1)2. Then, in the limit of m,n ! +1, m/n !

� > 1, Equations (7) and (8) hold with probability one
with ↵ and µ given as follows:

µ = E[SY ], (14)

↵ =
q
1� (E[SY ])2 ·

r
1

� � 1
. (15)

On the Optimality of LS. On the one hand, Corol-
lary 4.1 derives an explicit formula for the effective
noise variance �LS = ↵/µ of LS in terms of E[Y S]
and �. On the other hand, Corollary 3.1 provides an
explicit lower bound on the optimal value �opt in terms
of I(SY ) and �. Combining the two, we conclude that

�
2
LS

�
2
opt

 ⇠ := (I(SY )� 1)
1� (E[SY ])2

(E[SY ])2
.

1
Strictly speaking, the performance is optimal among all

convex loss functions ` for which (6) has a unique solution

as required by Theorem 3.1.

In terms of correlation,

corropt
corrLS

=

s
1 + �

2
LS

1 + �
2
opt


�LS

�opt


p
⇠ ,

where the first inequality follows from the fact that
�LS � �opt. Therefore, the performance of LS is at
least as good as 1p

⇠
times the optimal one. In par-

ticular, for Logistic and Probit models (for which
Corollary 3.1 holds), we can explicitly compute 1p

⇠
=

0.9972 and 0.9804, respectively.

4.2 Logistic & Hinge Loss Functions

Theorem 2.1 only holds in regimes for which the set
of minimizers of (1) is bounded. As we show here,
this is not always the case. Specifically, consider non-
negative loss functions `(t) � 0 with the property
limt!+1 `(t) = 0. For example, the hinge, exponential
and logistic loss functions all satisfy this property. Now,
we show that for such loss functions the set of minimiz-
ers is unbounded if � < �

?

f
for some appropriate �

?

f
> 2.

First, note that the set of minimizers is unbounded if
the following condition holds:

9 xs 6= 0 such that yia
T

i
xs � 0, 8 i 2 [m]. (16)

Indeed, if (16) holds then x = c · xs with c ! +1,
attains zero cost in (1); thus, it is optimal and the set
of minimizers is unbounded. To proceed, we rely on
a recent result by Candes and Sur [Candès and Sur,
2018] who prove that (16) holds iff

�  �
?

f
:=

✓
min
c2R

E
h
(G+ c S Y )2�

i◆�1

, (17)

where G,S and Y are random variables as in (5) and
(t)� := min{0, t}. We highlight that Logistic and Hinge
losses give unbounded solutions in the Noisy-Signed
model with " = 0, since the condition (16) holds for
xs = x0. However their performances are comparable
to the optimal performance in the Logistic model(see
Figure 2a).

5 NUMERICAL EXPERIMENTS

In this section, we present numerical simulations that
validate the predictions of Theorems 2.1, 3.1 and 3.2.
We use Signed and Logistic models as our case study.
The experiments on Probit model are presented in the
extended version of this paper [Taheri et al., 2020].
We generate random measurements according to (2)
and Assumption 1. Without loss of generality (due
to rotational invariance of the Gaussian measure)
we set x0 = [1, 0, ..., 0]T . We then obtain estimates
bx` of x0 by numerically solving (1) and measure
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performance by the correlation value corr ( bx` ; x0 ).
Throughout the experiments, we set n = 128 and
the recorded values of correlation are averages over
25 independent realizations. For each label function
we first provide plots that compare results of Monte
Carlo simulations to the asymptotic predictions for
loss functions discussed in Section 4, as well as, to the
optimal performance of Theorem 3.1. We next present
numerical results on optimal loss functions. In order
to empirically derive the correlation of optimal loss
function, we run gradient descent-based optimization
with 1000 iterations. As a general comment, we
note that despite being asymptotic, our predictions
appear accurate even for relatively small problem
dimensions. For the analytical predictions we apply
Theorem 2.1. In particular for solving the system of
non-linear equations in (1), we empirically observe
that if a solution exists, then it can be efficiently
found by the following fixed-point iteration method.
Let v := [µ,↵,�]T and F : R3

! R3 be such that (1)
is equivalent to v = F(v). With this notation, we
initialize v = v0 and for k � 1 repeat the iterations
vk+1 = F(vk) until convergence.

Logistic model. For the logistic model, comparison
between the predicted values and the numerical results
is illustrated in Figure 2a. Results are shown for LS,
logistic and hinge loss functions. Note that minimizing
the logistic loss corresponds to the maximum-likelihood
estimator (MLE) for logistic model. An interesting
observation in Figure 2a is that in the high-dimensional
setting (finite �) LS has comparable (if not slightly
better) performance to MLE. Additionally we observe
that in this model, performance of LS is almost
the same as the best possible performance derived
according to Theorem 3.1. This confirms the analytical
conclusion of Section 4.1. The comparison between
the optimal loss function as in Theorem 3.2 and other
loss functions is illustrated in Figure 2b. We note the
obvious similarity between the shapes of optimal loss
functions and LS which further explains the similarity
between their performance.

Optimal loss function. By putting together Theo-
rems 3.1 and 3.2, we obtain a method on deriving the
optimal loss function. This requires the following steps.
1. Find �opt by solving (10).
2. Compute the density of Wopt = �optG+ SY .
3. Compute `opt according to (12).
Note that computing �opt needs the density function
pW of the random variable W = �G + SY . In prin-
ciple pW can be calculated as the convolution of the
Gaussian density with the pdf pSY of SY . Moreover,
it follows from the recipe above that the optimal loss

function depends on � in general. This is because �opt

itself depends on � via (10).

1 2 3 4 5 6 7 8 9

0.3

0.4

0.5

0.6

0.7

0.8

(a)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

8

9

10

(b)

Figure 2: Top: Comparison between analytical and empir-

ical results for the performance of LS, Logistic loss, Hinge-

loss and optimal loss function for Logistic model. The

vertical dashed line represents �?f ⇡ 2.275, as evaluated by

(17). Bottom: Illustrations of optimal loss functions for

different values of �, derived according to Theorem 3.2 for

Logistic model. In order to signify the similarity of opti-

mal loss function to the LS loss, the optimal loss functions

(hardly visible) are scaled such that `(1) = 0 and `(2) = 1 .

6 CONCLUSION

This paper derives sharp asymptotic performance guar-
antees for a wide class of convex optimization based es-
timators for recovering a signal from binary observation
models. We further provide a theoretical upper bound
on the best achievable performance among all convex
loss functions. Using this, we develop a procedure for
computing the optimal loss function. Finally, we pro-
vide numerical studies that show tight agreement with
our theoretical results. Interesting future directions
include studying the generalized linear measurement
model beyond binary observations and characterizing
the optimal loss function for such general models.
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