
A Appendix

A.1 Proofs

Proof of Proposition 1. First, we use a property of elliptically contoured distributions [Cambanis et al., 1981,
Corollary 5] to obtain

E
[
C>X | B>X

]
= a+ Cov

(
C>X,B>X

)
Var−1

(
B>X

) [
B>X − E

(
B>X

)]
= a+C>Var (X)B

(
B>Var (X)B

)−1
B> (X − EX)

for some constant a. From condition (1) and the law of total covariance,
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Thus, we have Cov
(
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)
= 0 if B>Var (X)C = 0 which implies that the columns of C lie in the

nullspace of Var (X)B.

Proof of Theorem 1. We first show that the basis (8) of the classifier hypothesis RKHS is orthonormal,
and then compute the canonical angles using the basis (8) and an orthonormal basis of F . Denote by
ξi := (γi − ρiσi)QMΛ−1/2Ui + ρiATΩ−1/2Vi the i-th basis function in (8), we have
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where the first equality follows from the orthonormal basis (7). This shows that (8) is an orthonormal basis.

Using the orthonormal basis
{
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−1/2
i

}r

i=1
of F , we can use the SVD to compute the canonical

angles (see e.g., Algorithm 6.4.3 in [Golub and Van Loan, 2013]) as
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>

[ψ1, · · · , ψr] = diag (γi − ρiσi)U> + diag (ρi) ΣU> = Iddiag (γi)U
>. (1)

Here, diag (di) denotes the diagonal matrix with diagonal elements di. Note that the last term in (1) is the
(thin) SVD, and the singular values γi are the canonical angles between M and F . Finally, we relate the
canonical angles to the operator norm in (9). Recall that the orthogonal projector can be expressed as the
tensor product PF =

∑r
i=1 ψi ⊗ ψi, and PFh =

∑r
i=1 〈h, ψi〉ψi. We have
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where F andM represent respectively the orthogonal complements of F andM. It can be shown that PFPM
and PFPM have the same nonzero singular values which are the sines of the principal angles between F
and M (see e.g., p.249 of Stewart, 2001). From (1), these principal angles are arccos (γi). Thus, we obtain
‖PF − PM‖ =

√
1−mini γ2i . To obtain (10), one can simply apply the trigonometric identity of sines

yielding
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where we denote by γmin := mini γi.
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A.2 Implementation

Algorithm 1 gives the Matlab-style pseudo-code for our approach which can handle multiple protected
attributes. This algorithm use the SDR procedure described in Algorithm 2 to compute the desired model
representation with a specified trade-off ε.

Algorithm 1: E = MBasis (K,y,S,m, d, ε) — Compute the basis φE for M
[1] Initialize W = [ ], n with the number of rows of K, as well as indices pos = (y == 1) and

neg = (y 6= 1).
[2] foreach column s of S do
[3] if EqualizedOdds or EqualityOfOpportunity then
[4] Set B = 0n×m and update B (pos :) = SDR (K (pos, pos) , s,m).
[5] Append basis B to W : W = [W B].
[6] if EqualizedOdds then
[7] Set B = 0n×m, then B (neg, :) = SDR (K (neg, neg) , s,m).
[8] Let W = [W B].

end

else
[9] Compute B = SDR (K, s,m), and update W = [W B].

end

end
[10] Predictive Subspace: Compute the predictive subspace as the SDR subspace A = SDR (K,y, d).

[11] Fair Subspace: Obtain K ′ by subtracting the mean of each column of K. Let K̃ = K ′>K ′, and

use QR decomposition to compute Q as the nullspace basis of the column space of K̃W .
[12] Perform the eigenvalue decompositions to obtain Equation (7), and then use Theorem 1 to compute

E.

Algorithm 2: W = SDR (K, s,m) — Compute the SDR subspace φW

[1] Sort s such that s (idx) is non-decreasing. Let invIdx be the inverse of idx satisfying
idx (invIdx) = 1 : n, where n is the number of rows of K.

[2] Slice s approximately evenly as described in § 3.1 such that entries with the same value are in the
same partition. Denote by ni the size of partition i.

[3] Initialize η = 10−4, i.e., a small constant. Let K ′ := K (idx, idx), and solve
ΓnK

′Ai = τi [diag (Γni)K
′ + nηIn]Ai for A.

[4] Return W = A (invIdx, :).
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