Yunhao Tang, Krzysztof Choromanski, Alp Kucukelbir

A How Much Variance Reduction is Possible?

Recall in the main paper we consider a one-step MDP with action a € R?. The reward function is a” a for some
a € R4, Consider a Gaussian policy with mean parameter u and fixed covariance matrix ¥ = o321. The action is
sampled as a ~ N (i, ¥). ES convolves the reward objective with a Gaussian with covariance matrix o7l. Let

6§1)7 @ N (0,I),1 <i < N be N independent reparameterized noise, we can derive the vanilla ES estimator
1 (1) (1) ey
~ES ALS T
q: Nil = E T (p+ orel” + oges)0_2

The orthogonal estimator is constructed by N perturbations eél;zm such that (eglrt, egj ()m> =0 for ¢ # j, and each

eéi) is still marginally d-dimensional Gaussian. The orthogonal estimator is

N (1)
€Or
= = o)

Finally, we consider the ES gradient estimator with control variate. In particular, we have the reparameterized
gradient as

()
. 1
Gy =W Eﬁ al ,u+aleg)+cr 6(21)) p

u
Mz

The general gradient estimator with control variate is

AEQ)

9. =9, +n0 (3" — g,

where 7 € R%. Since 1 can be indepdently chosen across dimensions, the maximal variance reduction is achieved

by setting 7; = *7@?%}_’]“) where here X = g, Y = gi® — g,

Recall that for a vector g of dimension d, its variance is defined as the sum of the variance of its components
Vig] = Z?Zl Vlg;]. For simplicity, let p = 22. We derive the variance for each estimator below.

Vanilla ES. For the vanilla ES gradient estimator, the variance is

. d+1
VI = = a3

Orthogonal ES. For the orthogonal ES gradient estimator, the variance is

(14 p?)d+2—N
N llellz

Vgl =

ES with Control Variate. For the ES gradient estimator with control variate, recall the above notation
X =g°Y = gi* — grs. We first compute p(X,,Y,)? = % for each component p. Let X,,;,Y,; be the
pth component of gi%; and g% — g% respectively. We will detail how to compute cov(Xp,Yy), V[V}] in the next
section. With these components in hand, we have the final variance upper bound

L+ p*)[d((1 +p?) — 4]
(14 p)d+ 12+ 9% + 52)

Viga'] < Vg {1 - }-

B Derivation Details

Recall that for a vector g of dimensioon d, we define its variance as V[g] = E?:1 Vlg;] For simplicity, recall that
p= G

Variance Reduction for Evolutionary Strategies via Structured Control Variates

B.1 Variance of Orthogonal ES

We derive the variance of orthogonal ES based on the formula in the Appendix of (Choromanski et al. 2018). In
particular, we can easily compute the i sample estimate for the pth component of X; , = [°"F

p,i]P
E[X7,] = (14 p?)llel3 + o)
Hence the variance can be calculated as
(1+p*)d+2—-N
N

Vg = V[X] = 3

B.2 Variance of Vanilla ES

When we account for the cross product terms as in (Choromanski et al. 2018), we can easily derive

vig) = vix] = LT

i llae]13.
We can also easily derive the variance per component V[X,] = % ((1 + p)?||al3 + o2).

B.3 Variance of ES with Control Variate

Recall the definition X, = XTe,, Y, = Y e, where e, is a one-hot vector with [e,]; = &;,. For simplicity, we fix p
and denote Ty = vai, Y = Xp,i — Ypﬂ'.

Step 1: Calculate cov(X,,Y,). The notation produces the covariance

1. 1
cov(X,,Y,) = COV(N Zl’i, N Z(ﬂﬁz —¥i))
i=1

i=1

1
= W]E[Z Tilj — l‘iyj}.
2¥)

We identify some necessary components. Let i # j, then
€
Efo?] = El(0” (7161 + 022) 12)?)
1
=E[(@”e1)’, + (o' e2)?p?]

= (L+p) a3 + 207

2
P

Elziy:] = E[(QT(UIQ + 02€2)

E[ziz,]

Elziy;] = a
2€1,p€2,p
0102

T T _ 9.2
E[2a” e;a” eze1 pea p] = 20,

We can hence derive

N
1
cov(Xp, Yp) = W[Z Ele} — ziyi] + Y Elziz; — 2y
i=1 i
1
= =1+ p*)lall} - 207)

N

Step 2: Calculate V[Y,]. We only need to derive E[Y,};] = E[(aT (o161 + 0262)(2—’1” - 6;—2”)2] After expanding
all the terms, we can calculate

€1,p

€2, 1
E[(a” (o161 + 02ea)(—F — —2)%| = 2+ p° + ﬁ)llallé

g1 02

Yunhao Tang, Krzysztof Choromanski, Alp Kucukelbir

Step 3: Combine all components. We finally combine all the previous elements into the main result on
variance reduction. Assuming that the scaling factor of the control variate 7 is optimally set, the maximum
variance reduction leads to the following resulting variance of component p. Using the above notations

. cov?(X,,Y,)
VG = Vi) - R
P
_ At pPllald+ap 1 [(1+p)?[leflf — 205]*
N N (2+p7+ 5)llel3

We can lower bound the right hand side and sum over d dimensions,

Acv ZV Acv [X]—

d (1+p) laf2 + 4 1+ p?
N2+p2+ L 2T Notp2t L

Finally, we plug in V[X] and calculate the variance ratio with respect to the vanilla ES

<

9, Pl — 4
] = a1)

<

As a comparison, we can calculate the variance ratio of the orthogonal ES

Vgl _ (1+p%d+2-N
V[ges] (1+p*)d+1

When does the control variate achieve lower variance? We set the inequality V[go'*] > V[g(¥] and
calculate the following condition

p=po= d (12)

\/N+3—d+ V(@ =N —=3)2+4(N —1)d
The expression looks formidable. To simplify the expression, consider the limit N — oo while maintaining
N ¢ 10,1]. Taking this limit allows us to drop certain constant terms on the right hand side, which produces

pOZ\/%-

C Additional Experiment Details

C.1 Updating Discount Factor ~

The discount factor v is updated using ES methods. Specifically, at each iteration ¢, we maintain a current ;.
The aim is to update 7; such that the empirical estimate of V[gg"] is minimized. For each value of v we can
calculate a g5V (7y), here we explicitly note its dependency on +y. For this iteration, we setup a blackbox function
as F(y) = ijl[gng)]f where d is the dimension of parameter §. Then the ES update for v is vi41 = 1 — @y G-,
where

N
p 1 = F(y + oq6)
b= D e ~ N0, 1), (13)
7 =1
As mentioned in the paper, to ensure v € (0,1] we parameterize v = 1 — exp(¢) in our implementation. We
optimize ¢ using the same ES scheme but in practice we set g, 04, Ng. Here we have ay € {107%,1075,1075},

04 = 0.02 and Ny = 10. Sometimes we find it effective to just set y to be the initial constant, because the control
variate scalar 7 is also adjusted to minimize the variance.

Variance Reduction for Evolutionary Strategies via Structured Control Variates

C.2 Normalizing the gradients

Vanilla stochastic gradient updates are sensitive to the scaling of the objective function, which in our case are the

reward functions. Recall the vanilla ES estimator gg* = % Zfil %el where J(mp) is the return estimate

under policy mg. To ensure that the gradent is properly normalized, the common practice (Salimans et al.

|2017|; |Mania et al.L |2018F |Choromanski et a1.|7 |2018 is to normalize the returns .J < %, where J, o (J) are the

mean/std of the estimated returns of the batch of N samples. The normalized returns J are used in place of the
original returns in calculating the gradient estimators. In fact, we can interpret the normalization as subtracting
a moving average baseline (for variance reduction) and dividing by a rough estimate of the local Lipchitz constant
of the objective landscape. These techniques tend to make the algorithms more stable under reward functions
with very different scales.

The same technique can be applied to the control variate. We divide the original control variate by o(J) to
properly scale the estimators.

Details on policy gradient methods. PG methods are implemented following the general algorithmic
procedure as follows: collect data using a previous policy 7y, ,, construct loss function and update the policy
parameter using gradient descent 6; <— to arrive at mg,, then iterate. We consider three baselines: vanilla PG,
TRPO and PPO. In our implementation, these three algorithms differ in the construction of the loss function.

For vanilla PG, the loss function is L = —I[Cswa[w(a|s)A(s7 a)] where A(s,a) is the advantage estimtion and
old

Oo1a is the prior policy iterate. For PPO, the loss function is L = —Es’a[clip{%(ds), 1—¢€1+€}A(s,a)]
where clip{x, a, b} is to clip z between a and b and € = 0.2. In practice, we go one step further and implement
the action dependent clipping strategy as in (Schulman et al., 2017). For TRPO, we implement the dual
optimization objective of the original formulation (Schulman et al) [2015b) and set the loss function L =
—E, o[22 (q5) A(s, a)] + 1B [KL[mg(-|s) |70, (-|s)]] where we select 7 € {0.1,1.0}.

TOo1d

When collecting data, we collect 2V full episodic trajectories as with the ES baselines. This is different from
a typical implementation (Dhariwal et al) [2017)), where PG algorithms collect a fixed number of samples per
iteration. Also, we take only one gradient descent on the surrogate objective per iteration, as opposed to multiple
updates. This reduces the policy optimization procedure to a fully on-line fashion as with the ES methods.

D Additional Experiments

D.1 Additional Baseline Comparison

Due to space limit, we omit the baseline comparison result on four control tasks from the main paper. We show
their results in Figure[3] The setup is exactly the same as in the main paper.

1000 300
80 10
250
800 8
60) 200 '1 *‘r
o 6 '
600 © 150
. 4 :
2 100 | | !
i 2
50
ol

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
Timesteps X107 Timesteps X107 Timesteps x107 Timesteps X107

400
20

2001 © 0

(a) Balance (DM) (b) Pendulum (DM) (c) HopperHop (DM) (d) AntWalk(DM)

Figure 3: Training performance on Continuous Control Benchmarks: Swimmer, HalfCheetah, CartPole +
{Swingup, TwoPoles, Balance}, Pendulum Swingup, Cheetah Run and Hopper. Tasks with DM stickers are from the
DeepMind Control Suites. We compare five alternatives: baseline ES (orange), CV (blue, ours), ORTHO (marron), GCMC
(green) and QMC (yellow). Each task is trained for 2 - 107 time steps (LQR is trained for 4 - 10° steps) and the training
curves show the mean + std cumulative rewards across 5 random seeds.

Yunhao Tang, Krzysztof Choromanski, Alp Kucukelbir

D.2 Discussion on Policy Gradient Methods

Instability of PG. It has been observed that the vanilla PG estimators are not stable. Even when the discount
factor 7 < 1 is introduced to reduce the variance, vanilla PG estimators can still have large variance due to the
long horizon. As a result in practice, the original form of the PG is rarely used. Instead, prior works and
practical implementations tend to introduce bias into the estimators in exchange for lower variance: e.g. average
across states intsead of trajectories (Dhariwal et all 2017)), clipping based trust region (Schulman et al., [2017))
and biased advantage estimation (Schulman et all 2016]). These techniques stabilize the estimator and lead to
state-of-the-art performance, however, their theoretical property is less clear (due to their bias). We leave the
study of combining such biased estimators with ES as future work.

D.3 Additional Results with TRPO/PPO and Deterministic Policies

We provide additional comparison results against TRPO/PPO and deterministic policies in Table [3]| We see
that generally TRPO/PPO achieve better performance, yet are still under-performed by CV. On the other hand,
though deterministic policies tend to outperform stochastic policies when combined with the ES baselines, they
are not as good as stochastic policies with CV.

Comparison of implementation variations of PG algorithms. Note that for fair comparison, we remove
certain functionalities of a full fledged PG implementation as in (Dhariwal et all 2017). We identify important
differences between our baseline and the full fledged implementation and evaluate their effects on the performance
in Table[d Our analysis focuses on PPO. These important implementation differences are

e S: Normalization of observations.
e A: Normalization of advantages.

e M: Multiple gradient updates (in particular, 10 gradient updates), instead of 1 for our baseline.

To understand results in Table [d] we start with the notations of variations of PPO implementations. The PPO
denotes our baseline for comparison; the PPO+S denotes our baseline with observation normalization. Similarly,
we have PPO+A and PPO-+M. Notations such as PPO+S+A denote the composition of these implementation
techniques. We evaluate these implementation variations on a subset of tasks and compare their performance in
Table [l

We make several observations: (1) Multiple updates bring the most significant for PG. While conventional ES
implementations only consider one gradient update per iteration (Salimans et al., [2017)), it is likely that they
coudl also benefit from this modification; (2) Even when considering these improvements, our proposed CV
method still outperforms PG baselines on a number of tasks.

E Discussion on Scalability

ES easily scale to a large distributed architecture for the trajectory collection (Salimans et al., 2017; Mania et al.,
2018)). Indeed, the bottleneck of most ES applications seem to be the sample collection, which can be conveniently
distributed across multiple cores (machines). Fortunately, many open source implementations have provided
high-quality packages via efficient inter-process communications and various techniques to reduce overheads
(Salimans et al.| [2017; Mania et al., 2018).

On the other hand, distributing PG requires more complicated software design. Indeed, distributed PG involve
both distributed sample collection and gradient computations. The challenge lies in how to construct gradients
via multiple processes and combine them into a single update, without introducing costly overheads. Open source
implementations such as (Dhariwal et all 2017) have achieved synchronized distributed gradient computations
via MPI.

To scale CV, we need to combine both distributed sample collection from ES and distributed gradient computation
from PG. Since both of the above two components have been implemented with high quality via open source
packages, we expect it not to be a big issue to scale CV, in particular to combine scalable gradient computation

Variance Reduction for Evolutionary Strategies via Structured Control Variates

Table 3: Final performance on benchmark tasks. The policy is trained for a fixed number of steps on each task.
The result is mean =+ std across 5 random seeds. The best results are highlighted in bold font. We highlight
multiple methods if their results cannot be separated (mean =+ std overlap). CV (ours) achieves consistent gains
over the baseline and other variance reduction methods. We also include a PG baseline.

Tasks PPO TRPO Det CV (Ours) PG

SWIMMER 11+7 11+7 191 £+ 100 237 + 33 —132+5
HALFCHEETAH —175+£ 20 —174 £ 16 1645 £ 1298 1897 4+ 232 —180 £ 4

WALKER 657 £ 291 657 £ 292 1588 £ 744 1476 £ 112 282 £ 25

Ponc(R) —-171+£04 —15.0£ 2.6 —104£54 -3.0+£0.3 —17+£0.2
HaLFCHEETAH(R) 14 £2 13+3 502 £ 199 709 + 16 12+0
BIPEDALWALKER —66 &£ 39 —66 £ 38 1+2 105 £+ 40 —82+12
CHEETAH(DM) 20 £+ 20 36 + 32 241 £+ 47 296 +15 25+6
PenpurLuM(DM) 0.6 £0.5 7.5+4.8 40 + 16 43+1 3+1
TwoPoLes(DM) 264 + 46 42 £ 52 190 + 58 245 + 29 14+1
BALANCE(DM) 264 £ 46 515 4 42 692 £ 250 847 £ 71 401 £+ 12
HoppErRHoOP(DM) 0.2 4+ 0.2 0.0 £0.0 4.6 £6.2 6.5+1.5 0.1 +£0.0
ANTWALK(DM) 96 + 36 180 £ 41 192 + 20 239+10 100 + 11
ANTEscare(DM) 6+3 10+1 13+8 51+2 6+1

Table 4: Evaluation of implementation variations of PG methods, with comparison to the CV. Below show the
final performances on benchmark tasks. The policy is trained for a fixed number of steps on each task. The result
below shows the mean performance averaged across 3 random seeds. The best results are highlighted in bold font.
Notice below the table is transposed due to space.

Tasks SWIMMER HALFCHEETAH PENDULUM BALANCE HopPPER ANTWALK
PPO 11 —175 0.6 264 0.2 96
PPO+S 30 126 2 308 0.5 80
PPO+A 33 67 26 278 0.4 117
PPO+S+A 31 192 1 386 0.6 106
PPO+S+M 110 1579 36 652 0.3 180
PPO+A+M 51 2414 223 771 46 173
PPO+S+A+M 106 1528 17 750 46.4 144
CV (Ours) 237 1897 43 847 6.5 239

with ES. However, this requires additional efforts - as these two parts have never been organically combined
before and there is so far little (open source) engineering effort into this domain. We leave this as future work.

	How Much Variance Reduction is Possible?
	Derivation Details
	Variance of Orthogonal ES
	Variance of Vanilla ES
	Variance of ES with Control Variate

	Additional Experiment Details
	Updating Discount Factor
	Normalizing the gradients

	Additional Experiments
	Additional Baseline Comparison
	Discussion on Policy Gradient Methods
	Additional Results with TRPO/PPO and Deterministic Policies

	Discussion on Scalability

