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Appendix

Justification of NAG dynamics for GEV

This section justifies why one can simply use the same
NAG flow for eigenvalue problem and only modify R’s
initial condition. It is rigorous when B is positive def-
inite, since its Cholesky decomposition will be used;
otherwise, the justification is formal, and the same
NAG dynamics is still well defined.

First, rewrite (12) as

max
R∈Rn×n

tr(ETRTARE)

s.t. RTBR = In×n.

Cholesky decompose B as B = LTL, let Q = LR and
Â = L−TAL, then the GEV is equivalently

max
Q∈Rn×n

tr(QT ÂQE)

s.t. QTQ = In×n.

One can write down the NAG dynamics for variation-
ally optimizing this problem:

Q̇ = Qξ, ξ̇ = −γ(t)ξ + [QT ÂQ, E ]

Note this is

LṘ = LRξ, ξ̇ = −γξ + [RTLTL−TAL−1LR, E ],

and all L’s can be canceled, leading to (2).

In terms of initial condition, since Q(0)TQ(0) = I,
R(0)TLTLR(0) = R(0)TBR(0) = I. ξ(0) needs to be
skew-symmetric throughout.

Preservation of Lie group structure

(This section explicitly demonstrates several facts of
geometric mechanics; for more information about geo-
metric mechanics less in coordinates, see e.g., Marsden
and Ratiu (2013); Holm et al. (2009).)

For continuous dynamics, we have

Theorem 4.1. Consider Ṙ(t) = R(t)F (t) where R
and F are n-by-n matrices. If R(t0)TBR(t0) = I
and F (t) is skew-symmetric for all t ≥ t0, then
R(t)TBR(t) = I, ∀t ≥ t0.

Proof.

d

dt
(RTBR) = ṘTBR+RTBṘ

= FTRTBR+RTBRF = FT + F = 0.

Corollary 4.1. We thus have Theorem 3.1.

Proof. We only need to show F := ξ(t) remains skew-
symmetric. This is true because

ξ(t) = e−Γ(t)

(
ξ(0) +

∫ t

0

eΓ(s)[R(s)TAR(s), E ]ds

)
,

where Γ(t) :=
∫ t

0
γ(s)ds is a scalar. However, ξ(0)

is skew-symmetric by assumption, and so is the inte-
grand because

[R(s)TAR(s), E ]T = [ET , (R(s)TAR(s))T ]

= [E , R(s)TAR(s)] = −[R(s)TAR(s), E ].

Corollary 4.2. Lie-GD Ṙ = R[RTAR, E ] also main-
tains RTBR = I.

For discrete timesteppings, we have

Theorem 4.2. Define Cayley transformation as
Cayley(ξ) := (I − ξ/2)−1(I + ξ/2). Consider Ṙ(t) =
R(t)F (t) where R and F are n-by-n matrices. If
R(t0)TBR(t0) = I and F (t0) is skew-symmetric, then
the discrete updates given by R̂ = R(t0) exp(F (t0)h)
and R̂ = R(t0)Cayley(F (t0)h) both satisfy R̂TBR̂ = I.

Proof. Consider R̂ = RQ. If QTQ = I, then

R̂TBR̂ = QTRTBRQ = QTQ = I.

Q = exp(Fh) for skew-symmetric F satisfies this con-
dition because

QTQ = exp(FTh) exp(Fh) = exp(−Fh) exp(Fh) = I.

Q = Cayley(Fh) for skew-symmetric F satisfies this
condition because

QTQ = (I + Fh/2)T (I − Fh/2)−T (I − Fh/2)−1(I + Fh/2)

= (I − Fh/2)(I + Fh/2)−1(I − Fh/2)−1(I + Fh/2) = I

the last equality because I − Fh/2 and I + Fh/2
commute.

A brief recap of GHA

(This subsection is not new research but for the self-
containment of the article.)

Oja flow / Sanger’s rule / Generalized Hebbian Algo-
rithm (e.g., Oja (1982); Sanger (1989); Gorrell (2006);
Wei-Yong Yan et al. (1994)) is a celebrated type of
methods based on continuous dynamics for finding
leading eigenvalues of a symmetric matrix. Only for
the reason of a concise presentation, we refer to them
as GHA in this article.

GHA works as follows: given n-by-n symmetric A, to
find the eigenspace associated with its largest l eigen-
values, one denotes by V (t) an n-by-l matrix and uses
the long time limit of dynamics

V̇ = (I − V V T )AV
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as a span of the corresponding orthonormal eigenvec-
tors.

This approach can be extended to GEV (12) by using
GHA dynamics

V̇ = (I −BV V T )AV ; (17)

see e.g., Chen et al. (2019) and references therein.

To implement GHA in practice, the continuous dy-
namics need to be numerically discretized. A 1st-order
discretization is based on Euler scheme, namely

Vi+1 = Vi + h(I −BViV Ti )AVi,

and it is most commonly used. However, if a smaller
deviation from the continuous dynamics is desired, a
higher-order discretization can also be used, e.g., a
4th-order Runge-Kutta given by

k1 =
(
I −BViV

T
i

)
AVi

k2 =

(
I −B

(
Vi +

h

2
k1

)(
Vi +

h

2
k1

)T
)
A

(
Vi +

h

2
k1

)

k3 =

(
I −B

(
Vi +

h

2
k2

)(
Vi +

h

2
k2

)T
)
A

(
Vi +

h

2
k2

)
k4 =

(
I −B (Vi + hk3) (Vi + hk3)T

)
A (Vi + hk3)

Vi+1 = Vi +
h

6
(k1 + 2k2 + 2k3 + k4) .

Roughly 4 times the flops of Euler are needed per
step, but the deviation from (17) is O(h4) instead of
O(h) for Euler.

A brief recap of multiclass Fisher Linear
Discriminant Analysis (LDA)

(This subsection is not new research but, for the self-
containment of the article, a quick excerpt of the ex-
isting methods of Fisher Linear Discriminant Analy-
sis Fisher (1936) and Multiple Discriminant Analysis
(e.g., Johnson et al. (2002)), mainly based on Li et al.
(2006)).

Given d-by-1 vectorial data xi, i = 1, · · · , N labeled
into M -classes, define ‘inter-class scatter matrix’ A
and ‘intra-class class scatter matrix’ B by

µm =
1

|Cm|
∑
i∈Cm

xi,

x̄ =
1

N

N∑
i=1

xi,

A =

M∑
m=1

(µm − x̄)(µm − x̄)T ,

B =

M∑
m=1

∑
i∈Cm

(xi − µm)(xi − µm)T ,

where Cm is the set of indices corresponding to class-
m. FDA seeks a projection represented by a d-by-l
matrix Q that maximizes the Rayleigh quotient:

max
Q

det(QTAQ)

det(QTBQ)
,

where a standard choice of l is l = M − 1. This prob-
lem can be reformulated as the generalized eigenvalue
problem Aw = λBw (e.g., Li et al. (2006); Welling
(2005)), and thus equivalent to

max tr (QTAQ)

s.t. QTBQ = I.

Additional LDA experimental results

To demonstrate that the proposed methods still work
when there is no eigengap (i.e., two largest eigenval-
ues being identical), we take A and B from LDA for
MNIST, Cholesky decompose B as B = LTL, let
Â = L−TAL−1, diagonalize Â = V DV −1, and then
replace D’s largest diagonal element by the value of
the 2nd largest. Denoting the result by D̃, we replace
A by Ã = LTV D̃V −1L. The generalized eigenvalue
problem associated with {Ã, B} now has a zero eigen-
gap, which prevents, for example, power-method based
approaches from working. However, Fig. 5 shows that
the proposed methods perform almost identically to
the original {A,B} case (c.f., Fig. 4).
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Figure 5: Same experiment as in Fig.4 for modified
MNIST with 0 eigengap.
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Figure 6: The computation of leading l = 2 eigenvalues
of 2000-dimensional scaled GOE, compared with that
for 500-dimension. Other descriptions are same as in
Fig.1.

l largest eigenvalues of A = (Ξ + ΞT )/2/
√
n:

n = 2000 result

Fig.6 describes the same experiment as in Sec.4.1.1
when the dimension is n = 2000 instead of 500. When
compared with the n = 500 case, one sees Lie-GD
and GHA converge much slower, but Lie-NAG’s con-
verge only marginally slower. This suggests that the
advantage of variational methods increases in higher
dimension, at least in this experiment.

l largest eigenvalues of A = (Ξ + ΞT )/2/
√
n:

n = 500 result in wallclock count

Fig.7 illustrates the actual computational costs of
methods used in this paper by reproducing Fig.1 with
x-axis replaced by the time it took for each method
to run. All qualitative conclusions remain unchanged.
Experiments were conducted on a 4th-gen Intel Core
laptop with integrated graphics unit running 64-bit
Windows 7 and MATLAB R2016b.

Two 4th-order versions of Lie-NAG algorithms

Version 1: more accurate but more computation

φh = φa1h2 ◦ φb1h1 ◦ φa2h2 ◦ φb2h1 ◦ φa3h2 ◦ φb3h1

◦ φa4h2 ◦ φb3h1 ◦ φa3h2 ◦ φb2h1 ◦ φa2h2 ◦ φb1h1 ◦ φa1h2 +O(h5)
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Figure 7: The computation of leading l = 2 eigenvalues
of 500-dimensional scaled GOE. All descriptions are
same as in Fig.1, except that x-axis is no longer in
iteration steps but in wallclock.

where 
a1

a2

a3

a4

 =


0.079203696431196
0.353172906049774
−0.042065080357719
0.219376955753500

 ,
b1b2
b3

 =

 0.209515106613362
−0.143851773179818
0.434336666566456

 .
Version 2: less accurate but less computation

φa1h2 ◦ φb1h1 ◦ φa2h2 ◦ φb2h1 ◦ φa2h2 ◦ φb1h1 ◦ φa1h2

where[
a1

a2

]
=

[
γ4/2

(1− γ4)/2

]
,

[
b1
b2

]
=

[
γ4

1− 2γ4

]
, γ4 =

1

2− 21/3
.

Details can be found, e.g., in McLachlan and Quis-
pel (2002). Swapping φ1 and φ2 will yield additional
methods at the same order of accuracy. We present
the above because φ1 is computationally more costly
due to Cayley transform.

Some heuristic insights on the correction of
the NAG dissipation coefficient in SG context

Based on the discussion in the main text, heuristically,
large γ values correspond to lower ‘temperatures’ and
reduced variances accumulated from stochastic gra-
dients. However, they also slow down the conver-
gences of the stochastic processes, and yet we’d like to
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take advantage of the fast convergence of determinis-
tic NAG dynamics. Therefore, we consider an additive
correction that is small for small t and increasing to
infinity.

For simplicity, restrict the correction to be a monomial
of t, i.e., δγ = ctp. Then we select the value of p by
resorting to intuitions first gained from a linear deter-
ministic case, for which our choice of p has to lead to
convergence because the deterministic solution is the
mean of the stochastic solution. It is proved in Art-
stein and Infante (1976) that a sufficient condition for
asymptotic stability of q̈ + γ(t)q̇ + q = 0 is

lim sup
T→∞

(
1

T 2

∫ T

0

γ(t)dt

)
<∞ and γ(t) ≥ γ0

for some constant γ0 > 0. It is easy to check that
γ(t) = γ0 + ctp or 3/t + ctp satisfies this condition
if p ≤ 1, but not when p > 1. We thus inspect the
boundary case of p = 1 for a fast decay of variance at
large t, now in a stochastic setup:{

dq = pdt

dp = (−(γ0(t) + ct)p− q)dt+ σdW
, (18)

where γ0 is either a constant or 3/t. Since this is a
linear SDE whose solution is Gaussian, it suffices to
show the convergences of the (deterministic) mean and
covariance evolutions in order to establish the SDE’s
convergence.

It is standard to show the mean x(t) := E[q(t), p(t)]
satisfies a closed non-autonomous ODE system, and
the covariance V (t) := E

[
[q(t) − E[q(t)], p(t) −

E[p(t)]]T [q(t)−E[q(t)], p(t)−E[p(t)]]
]

satisfies another.
These systems are not analytically solvable, but we can
analyze their long time behavior by asymptotic anal-
ysis.

More precisely, under the ansatz of E[q] = bta + o(ta),
matching leading order terms in the mean ODE leads
to

E[q(t)] ∼ t−1/c, E[p(t)] ∼ t−1/c−1

for both constant γ0 and γ0(t) = 3/t in (18).

Under the ansatz of Var[q] = b1t
a1 + o(ta1), Var[p] =

b2t
a2 + o(ta2), E[(q − Eq)(p − Ep)] = b3t

a3 + o(ta3),
matching leading order terms in the covariance ODE
leads to

Var[q] =
1

c(2− c)
t−1, Var[p] =

1

2c
t−1,

E[(q − Eq)(p− Ep)] =
1

2c(c− 2)
t−2.

Note this means, for small but positive c, convergence
is guaranteed, and covariance converges slower than
mean, at the rate independent of c.

Therefore, adding ct to γ in the original NAG’s works
in the linear case, and thus it has a potential to work
for nonlinear cases (e.g., Lie group versions). And it
does in experiments (Sec.4.2).

Hamiltonian Formulation

In this section, we give a Hamiltonian formulation of
the variational optimization equation (7) and prove
the conformal symplecticity of its flow.

Symplectic Structure on G× g∗

Let λ be the left trivialization of T ∗G, i.e.,

λ : T ∗G→ G× g∗; pg 7→(g, T ∗e Lg(pg)) .

Then its inverse is given by

λ−1 : G× g∗ → T ∗G; (g, µ) 7→ T ∗g Lg−1(µ).

Let Θ and Ω := −dΘ be the canonical one-form and
the symplectic structure on T ∗G, and θ and ω be their
pull-backs via the left trivialization, i.e.,

θ := (λ−1)∗Θ, ω := (λ−1)∗Ω.

According to Abraham and Marsden (1978, Proposi-
tion 4.4.1 on p. 315) (see also the reference therein),
for any (g, µ) ∈ G × g∗ and any (v, α), (w, β) ∈
T(g,µ)(G× g∗),

θ(g,µ)(w, β) =
〈
µ, TgLg−1(w)

〉
(19)

and

ω(g,µ)((v, α), (w, β))

=
〈
β, TgLg−1(v)

〉
−
〈
α, TgLg−1(w)

〉
+
〈
µ, [TgLg−1(v), TgLg−1(w)]

〉
.

(20)

Given a function h : G × g∗ → R, the corresponding
Hamiltonian vector field Xh ∈ X(G × g∗) defined by
iXhω = dh is given by

Xh(g, µ) =

(
TeLg

(
δh

δµ

)
, ad∗δh

δµ
µ− T ∗e Lg(dgh)

)
,

where dg stands for the exterior differential with re-
spect to g.

Legendre Transform and Hamiltonian Formu-
lation
We may apply a time-independent Legendre trans-
form using the initial Lagrangian as follows: Let us
define the initial Lagrangian L0 : G × g → R by set-
ting L0(g, ξ) := L(g, ξ, 0), and the time-independent
Legendre transform

FL0 : g→ g∗; ξ 7→ δL0

δξ
(g, ξ, t) = r(0) I(ξ),
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whose inverse is given by

(FL0)−1 : g∗ → g; µ 7→ 1

r(0)
I−1(µ).

We define the initial Hamiltonian H : G × g∗ → R as
follows:

H(g, µ) :=
〈
µ, (FL0)−1(µ)

〉
− L0

(
g, (FL0)−1(µ)

)
=

1

2r(0)

〈
µ, I−1(µ)

〉
+ r(0)f(g).

Its associated Hamiltonian vector field XH on g∗ is
defined as iXHω = dH using the symplectic form ω on
G× g∗ (see (20)):

XH(µ) = ad∗δH
δµ
µ− T ∗e Lg(dgH).

Then we may rewrite (7) as follows:

µ̇ = −γ(t)µ+ ad∗δH
δµ
µ− T ∗e Lg(dgH)

= XH(µ)− γ(t)µ,
(21)

where we set γ(t) := r′(t)/r(t).

Conformal Symplecticity
Given the Lagrangian of the form r(t)L0(q, q̇), the
Euler–Lagrange equation is

d

dt

(
r(t)

∂L0

∂q̇

)
− r(t)∂L0

∂q
= 0. (22)

We would like to show that the two-form r(t)dp ∧ dq
with p := ∂L0/∂q̇ is preserved in time in two different
ways. The first is based on the variational principle:
Consider

dd

∫ t1

t0

r(t)L0(q, q̇)dt,

which is obviously 0 because any exact form is closed.
On the other hand, it is the same as (due to integration
by parts)

d

(∫ t1

t0

(
r
∂L0

∂q
dq − d

dt

(
r
∂L0

∂q̇

)
dq

)
dt+ r

∂L0

∂q̇
dq

∣∣∣∣t1
t0

)

The first term is zero because of (22). Therefore,

0 = d

(
r
∂L0

∂q̇
dq

∣∣∣∣t1
t0

)
= d(rpdq)|t1t0 = rdp ∧ dq|t1t0

The second proof uses the Hamiltonian formulation.
We may write the Hamiltonian system corresponding
to the Euler–Lagrange equation for the Lagrangian of
the form r(t)L0(q, q̇) as follows:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
− γ(t)p, (23)

where the Hamiltonian H is obtained via the Legendre
transform of L0(q, q̇) not r(t)L0(q, q̇).

In what follows, we would like to generalize the work
of McLachlan and Perlmutter (2001)—in which γ is
set to be constant—to derive the conformal symplec-
ticity of dissipative Hamiltonian systems of the above
type. Let P be an (exact) symplectic manifold with
symplectic form Ω = −dΘ and H : P → R be a
(time-independent) Hamiltonian. Let us define a time-
dependent vector field XH,(·) : R × P → TP by defin-
ing, for any t ∈ R, a vector field XH,t on P by setting

XH,t := XH − Zt,

where XH is the Hamiltonian vector field on P defined
by

iXHΩ = dH,

and the time-dependent vector field Z(·) : R×P → TP
is defined as follows: Let Ω(·) be the time-dependent
symplectic form on P defined as, for any t ∈ R,

Ωt := r(t)Ω.

We define Zt by setting

iZtΩt = −r′(t)Θ.

In terms of the canonical coordinates (q, p) for P , we
have

Zt = pi
∂

∂pi
,

and hence we have

XH,t(q, p) =
∂H

∂pi

∂

∂qi
+

(
∂H

∂qi
+ γ(t)pi

)
∂

∂pi
.

Therefore, XH,t yields the dissipative Hamiltonian sys-
tem (23).

Let Φ: R × R × P → P be the time-dependent flow
of XH,(·) (assuming for simplicity that the solutions
exist for any time t ∈ R with any initial time t0 ∈
R). Then, for any t0, t1 ∈ R (see, e.g., Lee (2013,
Proposition 22.15)),

d

dt
Φ∗t,t0Ωt

∣∣∣∣
t=t1

= Φ∗t1,t0

(
∂

∂t
Ωt

∣∣∣∣
t=t1

+ LXH,t1 Ωt1

)
= Φ∗t1,t0(r′(t1)Ω + LXHΩt1 + LZt1 Ωt1)

= Φ∗t1,t0
(
r′(t1)Ω + r(t1)LXHΩ + r(t1)LZt1 Ω

)
= Φ∗t1,t0

(
r′(t1)Ω− r(t1)

(
diZt1 Ω + iZt1 dΩ

))
= Φ∗t1,t0

(
r′(t1)Ω− diZt1 Ωt1

)
= Φ∗t1,t0(r′(t1)Ω− d(−r′(t1)Θ))

= Φ∗t1,t0(r′(t1)Ω + r′(t1)dΘ)

= 0.
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Therefore, we have

Φ∗t1,t0Ωt1 = Ωt0 . (24)

Now, (21) is a special case of the above setting. Specif-
ically, we may define a time-dependent vector field
Z(·) : R × (G × g∗) → T (G × g∗) by setting, for any
t ∈ R,

iZtωt = −r′(t)θ,

where ωt := r(t)ω. This yields Zt(µ) = γ(t)µ. Then
we may write (21) as

µ̇(t) = (XH − Zt)(µ(t)).

Let ϕ : R×R×(G×g∗)→ G×g∗ be the time-dependent
flow of this system. Then, the conformal symplectic-
ity (24) implies that, for any t0, t1 ∈ R,

ϕ∗t,t0ωt = ωt0 .




