
Designing an efficient dual solver for discrete energy minimization
Appendix

Contents:

A Proofs of Theorems 1,2.

B Algorithms details and description of monotonic chains used in experiment Fig. 5.

C Detailed experimental results.

A. PROOFS

Theorem 1. Let G′ be a tree and
∑
uv∈E′ mins,t θ

φ
uv(s, t) = 0. The function g(y) =

∑
u∈V′ θφu(yu) is a minorant

for the energy EG′(y) if and only if φ is dual optimal on G′.

Proof. The ”if” part Let φ be a dual optimal reparameterization for EG′ on the graph G′ = (V ′, E ′). We need
to show that g(y) is a minorant. i.e.

• g(y) ≤ EG′(y) for all y. (lower-bound property)

• g(y∗) = EG′(y∗) is the cost of a minimizing labeling y∗. (same-minima property)

We have by the definition of reparametrization∑
u∈V′

θφu(yu) +
∑
uv∈E′

θφuv(yu, yv) =
∑
u∈V′

θu(yu) +
∑
uv∈E′

θuv(yu, yv) = EG′(y). (15)

We assume w.l.o.g. θφuv(yu, yv) ≥ 0. Substituting this in (15) we have

g(y) =
∑
u∈V′

θφu(yu) ≤
∑
u∈V′

θφu(yu) +
∑
uv∈E′

θφuv(yu, yv) = EG′(y),∀y ∈ Yn =⇒ g(y) ≤ EG′(y),∀y ∈ Yn, (16)

where the left hand side matches the definition of g(y) in the theorem. With this we have proved the lower bound
property.

Now we prove the same minima property. Comparing the dual function (3) with g(y) and g(y) with (1) we have
the following inequalities:

D(φ) =
∑
u∈V′

min
yu

θφu(yu) +
∑
uv∈E′

min
yu,yv

θφuv(yu, yv) ≤
∑
u∈V′

θφu(yu) +
∑
uv∈E′

min
yu,yv

θφuv(yu, yv) = g(y),∀y ∈ Yn; (17)

g(y) =
∑
u∈V′

θφu(yu) =
∑
u∈V′

θφu(yu) +
∑
uv∈E′

θφuv(yu, yv) ≤ EG′(y),∀y ∈ Yn. (18)

Since G′ is a tree-subgraph, strong duality holds and we have for all pairs of an optimal labeling y∗ and an optimal
dual φ that D(φ) = EG′(y∗) and there holds complementarity slackness conditions. It follows that minyu θ

φ
u(yu) is

attained at y∗u and minyu,yv θ
φ
u,v(yu, yv) is attained at (y∗u, y

∗
v) (there is an optimal solution composed of minimal

nodes and edges). It follows that the next inequalities are satisfied:

θφu(yu) ≥ θφu(y∗u),∀yu ∈ Y; (19)

θφu(yu, yv) ≥ θφu,v(y∗u, y∗v), ∀yu, yv ∈ Y. (20)

Using (19) in g(y) we obtain

g(y) ≥
∑
u

θφu(y∗u) = E∗G′ . (21)

Thus as EG′(y∗) ≤ g(y∗) ≤ EG′(y∗), g(y∗) = EG′(y∗), proving the equal-minima property.

The ”only if” part We have to show that if g(y) is a minorant of EG′ , then φ is an optimal reparameterization,
i.e. D(φ) = EG′(y∗) = g(y∗), where y∗ is the optimal labelling for EG′ .

Due to the minorant equal-minima property, we have

g(y∗) =
∑
u∈V′

θφu(y∗u) =
∑
u∈V′

θφu(y∗u) +
∑
uv∈E′

θφuv(y
∗
u, y
∗
v) = EG′(y | θφ) =⇒

∑
uv∈E′

θφuv(y
∗
u, y
∗
v) = 0; (22)

As we assume θφuv(s, t) ≥ 0, for all s, t ∈ Y2 and uv ∈ E ′, this would imply all terms θφuv(y
∗
u, y
∗
v) are identically

zero, i.e.
θφuv(y

∗
u, y
∗
v) = 0, ∀uv ∈ E ′. (23)

Our initial objective was to show D(φ) = g(y∗) = E(y∗ | θφ). As we assume
∑
uv∈E′ mins,t θ

φ
uv(s, t) = 0, we just

have to show
D(φ) =

∑
u∈V′

min
s
θφu(s) =

∑
u∈V′

θφu(y∗u) = g(y∗). (24)

Following a proof by contradiction argument, we claim

D(φ) =
∑
u∈V′

min
s
θφu(s) =

∑
u∈V′

θφu(y∗u) = g(y∗) = EG′(y∗ | θφ). (25)

Assume the above statement is false and let D∗ be the optimal dual.

Further, w.l.o.g. let’s assume the mins θ
φ
u(s) = y∗u for all u ∈ V ′ \ k and mins θ

φ
k (s) = y+k . As strong duality holds,

we have

D(φ) =
∑
u∈V′

min
s
θφu(s) =

∑
u∈V′\k

θφu(y∗u) + θφk (y+k); (26)

D∗ =
∑
u∈V′

θφu(y∗u) = EG′(y∗ | θφ). (27)

Thus by assumption D(φ) ≥ D∗,

D(φ) ≥ D∗ =⇒
∑

u∈V′\k

θφu(y∗u) + θφk (y+k) ≥
∑
u∈V′

θφu(y∗u) =⇒ θφk (y+k) ≥ θφk (y∗k). (28)

But θφk (y+k) = minyk θ
φ
k (yk) ≤ θφk (y∗k), this is therefore a contradiction and D(φ) = D∗ = g(yφ) = E(yφ | θφ).

Theorem 2. Let G′ be a tree and reparametrization φ be dual optimal on G′. The function g(y) =
∑
u∈V′ θφu(yu)

is a maximal minorant if and only if ∀uv ∈ E ′ and ∀s, t ∈ Y:

mins′∈Y θ
φ
uv(s

′, t) = mint′∈Y θ
φ
uv(s, t

′) = 0 . (14)

Proof. ”Only if part” .

For an optimal reparametrization φ, its corresponding tight minorant by Theorem 1 is g(y) =
∑
u θ

φ
u(yu). We

need to prove the statement that minorant g is maximal only if the conditions in the theorem are fulfilled.

Recall that we are working with the constrained dual so that θφ ≥ 0 component-wise. Assume for contradiction
that one of the two zero minimum conditions is violated. Let it be the one with minimum over s′. Then ∃uv ∈ E ′
∃t such that λ(t) := mins′ θuv(s

′, t) > 0. We can then add λ(t) to φvu(t). This will not destroy optimality of φ
but will strictly increase θφv (t), therefore leading to a strictly greater minorant, which contradicts maximality of g.

”If part” We need to show that if the conditions of the theorem are fulfilled then g is maximal.

Assume for contradiction that g is not maximal, i.e. there is a modular function h(y) such that it is also a
minorant for EG′ and it is strictly greater than g: h(y) ≥ g(y) for all y and h(y′) > g(y′) for some y′.

The inequality h(y) ≥ g(y) for modular functions without constant terms is equivalent to component-wise
inequalities:

hu(yu) ≥ gu(yu), ∀u,∀yu. (29)

From the inequality h(y′) > g(y′) we conclude that there exists u and y′u such that hu(y′u) > gu(y′u). By the
conditions of the theorem, and assuming a tree graph, a labeling y′ can be constructed such that it takes label

y′u in u and all costs θφu,v(y
′
u, y
′
v) are zero. The construction starts from y′u, finds labels in the neighbouring

nodes such that edge costs with them is zero and proceed recurrently with the neighbours and their unassigned
neighbouring nodes. For the labeling y′ constructed in this way we have that

g(y′) =
∑
u

θφu(y′u) =
∑
u

θφu(y′u) +
∑
uv

θφu,v(y
′
u, y
′
v) = EG′(y′). (30)

At the same time, h(y′) > g(y′) and therefore h(y′) > EG′(y′), which contradicts that h is a minorant of EG′ .

B. ALGORITHMS DETAILS

B.1 Maximal Monotonic Chains

In this section we describe how we selected a collection of monotonic chains (MMC), on which TRW-S can run in its
full efficiency and at the same time subgraph-based updates of TBCA and HM can be computed.

A chain is a subgraph of graph G = (V, E) that is completely defined by enumerating the sequence of nodes it
contains, i.e. a chain C is denoted as C = (n1, . . . , nM), ni ∈ V , with (ni, ni+1) ∈ E for i = 1 : M − 1 denoting the
edges it contains. Therefore, for every pair of consecutive nodes (ni, ni+1) there must also exist a corresponding
edge in E for a chain to be a subgraph of G.

Let there be a partial order defined on the nodes V such for each edge uv ∈ E the nodes are comparable: either
u > v or v < u. This can be always completed to a total order as was used for simplicity in Kolmogorov (2006).
A chain C is said to be monotonic if ni < ni+1 holds for its nodes. A chain C is maximal monotonic if it is
monotonic and not a a proper subgraph of some other monotonic chain.

For a given ordering, we select a collection of edge disjoint monotonic chains covering the graph by greedily
finding and removing from the edge set maximal monotonic chains. Finding and removing one chain is specified
by Algorithm 3. The algorithm works on the graph adjacency list representation. Let Ad be the adjacency list
corresponding to the directed version of directed the graph G: Ad(i) contains all neighbours of node i in G that
are greater than i, i.e. ∀j ∈ Ad(i), j > i. The operation Ad(i).remove(j) removes element j from the list Ad(i).
The algorithm is executed until all Ad lists are empty (all edges have been covered).

Algorithm 3 Compute Maximal Monotonic Chain

1: function (C, Ad)=computeMMC(Ad) . Ad is the adjacency list of G as defined above.
2: C = ∅, tail = ∅, done = false . C is initially empty., tail is the last node added to the chain.
3: Find the smallest in the order i such that Ad(i) is not empty.
4: C.add(i), tail = i. . Add node i to C. Update tail.
5: while !done do
6: Find j in Ad(tail) such that j > tail.
7: if j is found then
8: C.add(j), Ad(tail).remove(j), tail = j . The node j is added to C, removed from Ad(tail).

tail is updated.
9: else if j is not found then

10: done = true . The loop exit condition is satisfied.

The result of the algorithm is a collection of chains that are monotonic w.r.t. to the ordering. TRWS running on
the respective ordering of nodes as introduced in Sec. 3.3 can be viewed also as optimizing the dual decomposition
with monotonic chains Kolmogorov (2006). It can be shown that the number max(Nin(u), Nout(u) used to
calculate weights in TRWS is exactly the number of different chains containing node u for any collection of
monotonic chains found as above. Hence such a collection natively represent subproblems associated with TRWS.

B.2 Message Passing in Spanning Trees

The hierarchical minorant for chains involves passing messages from the ends of the chain to the central nodes, as
shown in 2. For trees, the process is similar. Messages are passed from the leaf nodes to the central nodes. The
centroid of a tree of size n is the node whose removal results in subtrees of size ≤ bn2 c. The central nodes of a
tree are defined as nodes connected by an edge whose removal gives trees that are similar in length. One of the

central nodes is always the tree-centroid. The other inode s selected keeping in mind minimum deviation between
the different sub-trees that arise from the removal of this node. As the hierarchical minorant is recursive, the
recursion is repeated with a subtree.

B.3 Generation of Spanning Trees in TBCA

For the static strategy, we compute a sequence of minimum weight spanning trees with the weights being the
number of times an edge has already been included in a spanning tree. This weighing scheme ensures that
un-sampled edges are prioritized in building spanning trees. The sampling is stopped when all the edges are
covered. In the experiments (below) we observed that with the block update strategy that we chose, dynamic
updates were not advantageous any more and performed slower overall.

Algorithm 4 Compute Strictly Shortest Path

1: function (C)=computeSSP(G = (V, E),src) . src is the source node from which to grow the shortest path.
2: Create Vertex Set Q from graph G
3: for Each Vertex v in G do
4: dist[v] :=∞ . Set distance of all vertices to ∞
5: prev[v] := UNDEFINED . Initialize all previous nodes to default value.

6: dist[src] = 0 . Distance from the source node to the source node is 0
7: while Q is not empty do
8: u := vertex in Q with min dist[u] . u is assigned vertex in Q with minimum value in dist[]
9: for each neighbor v of u do . Only v that are still in Q

10: alt := dist[u] + 1 . alt is dist[u] + length(u, v), which equals 1
11: if alt < dist[v] then . If dist[v] is greater than alt update distance
12: dist[v] := alt
13: prev[v] := u
14: else if alt == dist[v] then . Condition for strictness of shortest path is violated
15: break

16: Construct chain C from prev[]

C. DETAILED EXPERIMENTAL RESULTS

We show in Fig. C.1 results per individual application, with performance in both messages and time. Since in
each application, there are still multiple instance, we apply the same normalization and averaging procedures as
in the main paper.

stereo mrf-inpainting

S
p

a
rs

e

denser-stereo worms

D
e
n

se
r

protein pose

C
o
m

p
le

te

Figure C.1: The averaged plots for application-specific datasets: messages and time.

SPAM/TRW-S on sparse graphs SPAM/TRW-S on denser graphs

SPAM/TRW-S on complete graphs SPAM/MPLP++ on sparse graphs

Figure C.2: Speed-up factors of SPAM w.r.t. TRW-S and MPLP++ with confidence intervals for the different datasets.
The x-axis shows the normalized dual value and the y-axis the speed-up to achieve the same dual. The statistics
are computed over all instances in a dataset. We show asymmetric confidence intervals with the equal percentage
around the mean.

