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Abstract

Gaussian Processes (GPs) are powerful non-
parametric Bayesian regression models that
allow exact posterior inference, but exhibit
high computational and memory costs. In
order to improve scalability of GPs, approx-
imate posterior inference is frequently em-
ployed, where a prominent class of approxi-
mation techniques is based on local GP ex-
perts. However, local-expert techniques pro-
posed so far are either not well-principled,
come with limited approximation guarantees,
or lead to intractable models. In this paper,
we introduce deep structured mixtures of GP
experts, a stochastic process model which i)
allows ezxact posterior inference, ii) has attrac-
tive computational and memory costs, and iii)
when used as GP approximation, captures pre-
dictive uncertainties consistently better than
previous expert-based approximations. In a
variety of experiments, we show that deep
structured mixtures have a low approxima-
tion error and often perform competitive or
outperform prior work.

1 INTRODUCTION

Gaussian Processes (GPs) are powerful and versa-
tile models for probabilistic non-linear regression that
can capture complex non-linear relationships in data.
GPs allow for exact inference, that is, computing the
posterior mean and covariance of a GP given N ob-
servations with D dimensions. However, the com-
putational and memory costs scale as O(N?) and
O(N? + ND) [Rasmussen and Williams, 2006], respec-
tively, which limits their use to small data domains or
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require approximation schemes for big datasets. The
most common approaches to overcome these limitations
are variational approximations to the GP posterior and
methods based on local GP experts [Liu et al., 2018].

The first approach is undoubtedly the more domi-
nant one as it allows for straightforward implementa-
tion using differential programming [Wang et al., 2018].
In this case, the posterior of a GP is represented
with @ inducing points which are treated as vari-
ational parameters and learned by minimising the
KL divergence between approximate and full poste-
rior. Variational approximations reduce the compu-
tational burden to O(NQ?) [Titsias, 2009]. As shown
by [Burt et al., 2019], the number of inducing points
has to increase with @ = O(logD N) in order to guar-
antee convergence with high probability. In the non-
asymptotic regime, this may imply that inducing points
struggle in producing a good sparse approximation.

Approximations based on local experts, on the other
hand, use a divide-and-conquer strategy and par-
tition the covariate space (or the data set) into
subsets, each modelled with an individual GP ex-
pert. For K experts, each with M << N ob-
servations, the computational and memory costs
are typically reduced to O(KM?3) and O(K(M? +
MD)), respectively. Prominent examples include the
Naive-Local-Experts model (NLE) [Kim et al., 2005|
Vasudevan et al., 2009], which naively models each
partition of the covariate space with an indepen-
dent GP, Products-of-Experts (PoE) [Tresp, 2000al,
Cao and Fleet, 2014], which aggregate predictive dis-
tributions from experts using a product operation,
and the Mixture-of-Experts (MoE) [Tresp, 2000bl,
Rasmussen and Ghahramani, 2001], which dynami-
cally distribute observations to experts.

All these local-expert approaches have different advan-
tages and disadvantages. The NLE model allows exact
posterior inference, which reduces to independent GP
inference at each expert, but introduces hard disconti-
nuities in the covariate space. Thus, leading to high gen-
eralisation errors [Liu et al., 2018] if the partitioning is
not well-supported by the data. PoE approaches have
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been shown to result in sub-optimal rates of the pos-
terior contraction [Szabd and van Zanten, 2019] and
the combination of local experts using product
aggregation is known to be Kolmogorov inconsis-
tent [Samo and Roberts, 2016]. Even in the case of the
Bayesian committee machine (BCM) [Tresp, 2000a],
where the PoE approach is justified as approximation
to Bayesian posterior inference, the introduced approx-
imation error is hard to analyse. Finally, while MoE
models specify a sound stochastic process model, they
do not permit tractable posterior inference and rely on
approximate inference techniques.

In this paper, we introduce Deep Structured Mixtures
of GPs (DSMGPS)H as an attractive alternative to pre-
vious local-expert approaches. Our model is based on a
natural combination of Sum-Product Networks (SPNs)
[Darwiche, 2003|, [Poon and Domingos, 2011] and GPs.
SPNs, in a nutshell, are a deep generalisation of classical
mixture models, and recursively model a distribution
using i) user-provided distributions (leaves), ii) factori-
sations (products), and iii) mixtures (sums), whose
arrangement is captured by an acyclic directed graph.
See Section [2] for details on SPNs. A key advantage of
SPNs is that — akin to GPs — many inference scenarios
can be computed exactly.

So far, SPNs have solely been used as density represen-
tations for finitely many random variables. DSMGPs,
introduced in this paper, can be understood as an
extension of SPNs to the stochastic process case, by
equipping SPNs with Gaussian measures (correspond-
ing to GPs |[Rajput and Cambanis, 1972]) as leaves.
Equivalently, we can also interpret our model as an
hierarchically structured mixture over a large num-
ber of NLEs. In particular, the posterior of DSMGPs
can be naturally understood as Bayesian model av-
eraging over an exponentially large mizture of NLEs,
i.e. combinatorial in the states of latent SPN vari-
ables [Zhao et al., 2016] [Peharz et al., 2017]. The cru-
cial key advantage of DSMGPs is that posterior infer-
ence can be computed exact and efficiently, i.e. they
inherit tractable inference from SPNs and GPs.

We further show that the structure of DSMGPs can
be exploited to speed up computations, by sharing
Cholesky decompositions among GP leaves, and to
model non-stationary time-series, by locally adapting
hyperparameters. In a variety of experiments we show
that our approach captures uncertainties consistently
better than previous experts-based approximations, is
competitive to state-of-the-art, and has competitive
running times compared to state-of-the-art.

"https://tinyurl.com/dsmgp-jl

2 RELATED WORK

While our proposed DSMGP is a process model on
its own right, our main motivation in this paper is to
use it as an approximation to a full GP, following a
divide-and-conquer approach. In this sense, the most
related approaches are expert-based approaches, which
we review in this section.

The probably simplest approach are Naive-Local-
Experts [Kim et al., 2005], and subsequent approaches
[Gramacy and Lee, 2008 Vasudevan et al., 2009].
NLEs use a pre-defined, sometimes nested, partition
of the covariate space and model each subspace using
an independent GP expert. Due to the independence
assumptions, NLEs introduce hard discontinuities
in the modelled functions. Recent approaches
[Park and Huang, 2016] try to ameliorate this effect
by imposing continuity constraints onto the local
experts using patched GPs. However, this approach
suffers from inconsistent variances and does not scale
well with the number of boundaries and, consequently,
the dimensionality of the covariate space. In contrast
to NLEs and patched GPs, our model does not rely
on a single partition, but rather performs posterior
inference over a large set of partitions, and thus
effectively selects partitions which are well supported
by the data.

Product-of-Expert (PoE) approaches, generalised
PoE (gPoE) [Cao and Fleet, 2014], the Bayesian
Committee Machine (BCM) [Tresp, 2000a] and
the robust Bayesian Committee Machine (rBCM)
[Deisenroth and Ng, 2015] distribute subsets of the
data to local experts and aggregate their predictive
distributions using a product operation — weighted by
some adaptive or non-adaptive scale factors. The key
motivation in these approaches is that a product of
Gaussians is still Gaussian. The major drawback of
these methods is that they are somewhat heuristic, as
PoEs typically do not correspond to inference in some
well-defined statistical model. BCMs justify PoEs as
approximation to posterior inference in GPs, but the in-
troduced approximation error is hard to analyse. More-
over, the product aggregation of expert predictions
is Kolmogorov inconsistent [Samo and Roberts, 2016],
and PoEs are known to have sub-optimal rates of the
posterior contraction, and therefore uncalibrated pre-
dictive uncertainties [Szab6 and van Zanten, 2019]. In
contrast to PoE approaches, our model is a well-defined
stochastic process and adequately captures predictive
uncertainties.

The MoE model [Tresp, 2000b] is a sound probabilistic
model, defined as a mixture of GP experts and a so-
called gating network which dynamically assigns data
to GPs. One of the most prominent variants is the infi-
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nite MoE model |[Rasmussen and Ghahramani, 2001],
which removes the i.i.d. assumption of the MoE and
uses a Dirichlet process as gating network. Alternative
formulations and improvements of the infinite MoE
model can be found in [Meeds and Osindero, 2005,
Gadd et al., 2019]. However, while MoE models are de-
signed to capture multi-modality and non-stationarity,
they usually lack tractable inference. Consequently,
they inherently rely on approximate posterior infer-
ence, which hampers their application to large data
domains. In contrast to MoE models, our approach
does not use a gating network, but performs infer-
ence over a large set of pre-determined partitions of
the covariate space. Crucially, and unlike as in MoE
models, posterior inference in our model can be per-
formed exactly and efficiently. Note that the approach
by [Zhang and Williamson, 2019], which was published
around the time of this paper, is similar in spirit but
does not utilise exact posterior inference.

3 BACKGROUND

3.1 Gaussian Process Regression

A Gaussian Process (GP) is defined as a collec-
tion of random variables (RVs) F indexed by an
arbitrary covariate space X, where any finite sub-
set of F is Gaussian distributed, and of which any
two overlapping finite sets are marginally consistent
[Rasmussen and Williams, 2006]. In that way, GPs
can naturally be interpreted as distributions over func-
tions f: X — R. A GP is uniquely specified by a
mean-function m: X — R and a covariance function
k: X x X - R. Given a training set of N obser-
vations D = {(xn,yn)}Y_; with X = {x,})_; and
y = {yn}X_1, let kx x be the N x N covariance matrix
defined by [kx x|n,m = k(Xn,Xmn) and let mx be the
respective mean values, i.e., [mx], = m(x,).

In GP regression, we aim to model noisy observed
output y, € R given input locations x,, € X, i.e.,

f ~ GP(mx, kX,X) 5 (1)
Yn | %0 S N(f(x0),02) (2)

where o2 is the noise variance. The posterior of a GP
conditioned on D can be obtained by computing the
posterior mean, mp(x*) = ky x[kx x + c2I] 'y, and
the posterior variance, Vp (x*) = kx+ x+ — kx= x[kx x +
021]_114:)(7,(*. The main challenge is the inversion
of [kx x + o%I], which is frequently realised via the
Cholesky decomposition [Press, 2002].

Note that there is an intimidate relationship between
GPs, whose function draws are almost surely from
a certain function space, and Gaussian measures de-
fined on the same function space. In particular, this

relationship is one-to-one for the space of continu-
ously differentiable functions on any real interval, and
for Lo-spaces defined on arbitrary measurable spaces
[Rajput and Cambanis, 1972]. We will take use of this
equivalence, and describe our model as a hierarchi-
cal mixture, realised as a sum-product network, over
Gaussian measures.

3.2 Sum-Product Networks

Sum-Product Networks (SPNs) [Darwiche, 2003|
Poon and Domingos, 2011] are a prominent type of
tractable deep probabilistic model, which allow fast
and exact inference in high-dimensional data domains.

Definition 1 (Sum-Product Network). 4 sum-product
network over a finite set of RVs F = {Fy,...,Fp} is
a 4-tuple S = (G, ¥, w, 8), where G is a computational
graph, v is a scope-function, w denotes a set of sum-
weights, and 0 is a set of leaf parameters.

The computational graph G is a connected acyclic di-
rected graph, containing three types of nodes: sums (S),
products (P) and leaves (L) (nodes without children).
We use N to denote a generic node, and N is the set of
all SPN nodes. The set of children of node N is denoted
as ch(N).

The scope function is a function 1: N — 2F | assigning
each node in G a subset of F, where 2F denotes the
power set of F. It has the following properties: i) If
N is the root node, then ¥(N) = F; i) If N is a sum
or product, then Y(N) = Uy cenn) ¥(N'); iii) For each
sum node S we have YN,N' € ch(S): ¢/(N) = ¢(N’)
(completeness); iv) For each product node P we have
VYN, N € ch(P): ¥y(N) Ny (N') = @ (decomposability).

In an SPN, each node N in G represents a distribution
over RVs #(N). In particular, each L computes a dis-
tribution over its scope parameterised by 6. A sum
node S computes a weighted sum S = ENEch(S) wsn N
where wsn > 0. Note that w.l.o.g. we assume that
all sum nodes are normalised, i.e., ZNECh(S) Ws N =
1 [Peharz et al., 2015, [Zhao et al., 2015]. Finally, a
product node P computes a factorisation over its chil-
dren, i.e’. .P = IIneenpy N It can be shown, that
the conditions completeness and decomposability guar-
antee that many inference scenarios, e.g. marginali-
sation, can be performed in linear time of the net-
work size [Darwiche, 2003, [Poon and Domingos, 2011,
Peharz et al., 2015].

As shown in [Zhao et al., 2015, [Zhao et al., 2016],
SPNs can be interpreted as deep structured mixture
models, using the notion of induced trees.

Definition 2 (|Zhao et al., 2016]). Given an SPN
graph G, a sub-graph T = (Tv,Tg) of G is called an
induced tree if i) the root of G is in T; i) if N € Ty is



Deep Structured Mixtures of Gaussian Processes

a sum node, then exactly one child of N in S is in Ty,
and the corresponding edge is in Tg; i) if N € Ty is
a product node, then all the children of N in S are in
Tv, and the corresponding edges are in Tg.

Using the notion of induced trees, it can be shown that
the distribution of an SPN, denoted as S(x), can be
expressed as a mixture whose components correspond
to induced trees [Zhao et al., 2016], i.e.,

K
S(x):z H ws N H p(x[0), (3)

i=1 (S,N)ETi. 5 LET: v

=p(T:)

where K denotes the (exponentially large) number of
induced trees.

To the best of our knowledge, SPNs have been pre-
viously defined only over finitely many RVs. In the
next section, we extend SPNs to stochastic process
models, i.e. extending SPNs to infinitely many RVs, by
equipping them with GP leaves.

4 DEEP STRUCTURED MIXTURE
OF GAUSSIAN PROCESSES

Intuitively, a Deep Structured Mixture of GPs
(DSMGPs) can be though of as an “SPN over GPs.”
Formally, this is most naturally defined via the one-to-
one correspondence of Gaussian measures on a function
space of interest and GPs which almost surely realise
in this function space [Rajput and Cambanis, 1972].

Definition 3 (Deep Structured Mixture of GPs).
Given a measurable covariate space (X,X), let (F,Xx)
be a measurable function space of real-value functions
defined on X, i.e., F C RY equipped with a suitable
sigma algebra X g. Then a Deep Structured Mixture
of GPs (DSMGP) is defined as an SPN (G, ¢, w,0),
where G is a computational graph (as in Definition ,
¥ is a scope function ¥: N — X, w is a set of sum
weights, and 0 is a set of GP parameters. When N is
the root of G, then ¥(N) = X'; additionally, ¢ satisfies
the conditions ii-iv) in Definition . Furthermore:

1. Aleaf L € G computes a Gaussian measure, corre-
sponding to a GP on (L), parametrised by 0y .

2. A product node P € G computes a product measure
of its children.

3. A sum nodes S € G computes a convex combination
(determined by its sum-weights) of the measures
computed by its children.

Definition [3]is mathematically elegant as it replaces the
usual definition of an SPN leaf — involving densities over

Figure 1: Hlustration of a DSMGP (depth 1). Vertical
lines (red) represent hypotheses of split-points in the
input space, i.e., independence assumptions.

finitely many RVs — to Gaussian measures, correspond-
ing to GPs. On the other hand, this definition might ob-
scure how to work with DSMGPs in practice. Therefore,
recall that a Gaussian measure evaluated (projected
onto) on finitely many data points yields a multivari-
ate Gaussian and similarly a NLE yields a multivari-
ate Gaussian with block-diagonal covariance-structure.
Consequently, a DSMGP evaluated on finitely many
data points yields a finite — albeit large — mixture of
Gaussians with block-diagonal covariance-structure, for
which covariance-structure is determined by the scope
function . Therefore, our model yields a “normal”
SPN with Gaussian leaves, when evaluated on finitely
many data points.

The structure (G,v) of a DSMGP is either
pre-defined or learned wusing posterior infer-
ence |[Trapp et al., 2019a]. For simplicity, we

assume that G is tree-shaped (i.e. each node has at
most one parent), and pre-specify ¢ by fixing a random
partition of the covariate space at each product node.
An algorithm to construct a DSMGPs is described in
detail in the supplement. When using DSMGPs as a
prior over functions, we assume all sum node weights to
be uniform, i.e. wsn = 1/Ks where Ks is the number
of children under S. Note that in the course of exact
posterior inference, these weights will be automatically
updated. Intuitively, each sum node represents a prior
over hypotheses of split-points in the input space,
were a split-point marks statistical independence.
Split-points are selected in a hierarchical manner,
following the same hierarchy as sum nodes in the
DSMGP. This mechanism is illustrated in Figure [I
Therefore, a DSMGP is particularly well suited when
it can be expected that certain regions of the input
space are approximately independent. The respective
split-points will be automatically inferred (among a
rich set of choices) through exact posterior inference.
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Because DSMGPs naturally have overlapping local
GPs, leaves share parts of their kernel matrix. Thus,
making it possible to speed up computations of the
Cholesky decompositions. We refer to Section[0.1]in the
supplement for a detail discussion on sharing Cholesky
decompositions in DSMGPs.

4.1 Exact Posterior Inference

Posterior inference in DSMGPs combines exact infer-
ence in GP experts, defined over a subspace of X', with
tractable computations in SPNs. This is a crucial ad-
vantage over PoE approaches, which do not define a
sound probabilistic model, and over MoE approaches,
which are inherently intractable.

Theorem 1. Let § = (G, v, w,0) be a DSMGP on
the measurable space (X,X%), with X being a covariate
space and 3 a o-algebra over X. Then, computing the
unnormalised posterior distribution of S simplifies to
tractable posterior inference at the leaves.

Proof. Under the usual iid. assumption, given a train-
ing set D the unnormalised posterior is

p(FID) o ] plunlfn) pfnlxn) . (4)
———
(%n,yn)€D likelihood prior

If the DSMGP is a leaf L, i.e. it is a Gaussian mea-
sure induced by the GP at L, then the computa-
tion of the posterior follows the standard computa-
tions [Rasmussen and Williams, 2006, Eq. 2.7].

In case the DSMGP is a sum node S, the likelihood
terms can be “pulled” over the sum, i.e.,

ps(f1D)
o8 H yn|fn Z wSNpN fn'xn)
(%Xn,yn)ED Nech(S) (5)
Z Ws,N H P(Yn | fr) PN(fr | %n),
N€Ech(S) (%n,yn)ED

simplifying inference to inference at the children.

Finally, in case the DSMGP is a product node P, we can
swap the product over observations with the product
over children and “pull” the likelihood terms down to
the respective children, i.e.,

pP(.f|D)OC H p ’Un‘fn H PN fnlxn
(%n,Yyn)ED Nech(P)
= H < H P(Yn | fr) PN (fin |Xn)> ) (6)
Nech(P) \ (xn,yn)EDn)
—_———
U Dny=D
Nech(P)

where D) denotes the subset of observations node
N is responsible for and NnecnpyD(ny = 0. Therefore,

posterior inference simplifies to inference at the children
of the product node P using sub-sets of D.

Inductively repeating this argument for all internal
nodes, we see that we obtain the unnormalised poste-
rior by multiplying each leaf with its local likelihood.
Therefore, the unnormalised posterior of a DSMGP is
obtained by performing inference on the leaves, which
can be done exactly [Rasmussen and Williams, 2006/,
Eq. 2.7]. O

Finally, we can obtain the normalised posterior,
ie. p(f|D) = %, by re-normalising the un-
normalised posterior of the DSMGP using a bottom-up
propagation of the marginal likelihood of each expert.
In this paper we use [Peharz et al., 2015 Alg. 1], which
scales linear in the number of nodes, for this purpose,
c.f. algorithm [2] in the supplement for a pseudocode im-
plementation. Note that normalising the posterior can
be understood as updating our belief over split-points,
i.e., independence assumptions in X.

4.2 Predictions

The predictive posterior distribution of a DSMGP for
an unseen datum x* is naturally a mixture distribu-
tion and, therefore, can be multimodal. For prac-
tical reasons, it is, therefore, useful to project the
posterior of a DSMGP to the closest GP, i.e., the
GP with minimal KL divergence from the DSMGP.
This can be done by computing the first and sec-
ond moments of the resulting mixture distribution,
see |[Rasmussen and Williams, 2006, Eq. A.24]. Let L
be the set of all GP leaves in a DSMGP. Then, given a
function 7;: X — L which maps an unseen datum at
location x* to a leaf L for each induced tree T, we can
write the mean (first moment) as

K
mo() =3, I

i=1 (S,N)ET; &

Ws,N mn(x*)(X*) ) (7>

and the variance (second moment) as

K
):Z H wS,N(mi(x*)(X*)

i=1 (SN)ET (8)

+ VTi(X*)(X*) - m%(x*)) )
where we use m., x+)(x*) and V7, x+)(x*) as short-hand
notation for the mean and variance of the predictive

distribution of the GP allocated at leaf 7;(x*). Both
moments can be computed efficiently in DSMGPs.

4.3 Hyperparameter Optimisation

We can optimise the hyperparameters, i.e. noise vari-
ance and kernel parameters, of a DSMGP by max-
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Figure 2: Noise parameter of DSMGP after global
hyperparameter optimisation (global) and fine-tuning
on a dataset with heteroscedastic noise.

imising the log marginal likelihood of the data D. As-
suming a zero mean-function, the log marginal like-
lihood of a GP at leaf L is computed only for the
observations that fall into the subspace A}. Let
Dy = {(Xn,yn) € D]z, € AL} denote the respec-
tive observations and let X () and y() be the in-
puts/covariates and the observed outputs contained in
D). Then the log marginal likelihood is given as

log p(y ) | X))
= —% (yy"C 'yy) +1og|C| + Nlog2r) ,
(9)
where C' = kx ,, x, + oI and log |C| denotes the log
determinant of C. Consequently, because the DSMGP
is a mixture of Gaussian measures, the log marginal

likelihood is

log p(y | X)
K
=LXE [log p(T:) + D logplyw | Xw) | .
1=
of Bq.3 LE€Tiv Eq. 9

(10)

where p(T) is the probability of the i** induced tree

and L Z E denotes the log-sum-exp operation. Note

that Eq . can be computed efficiently using a single
upward-pass through the model.

To optimise the hyperparameters we perform gradient-
based optimisation according to the partial derivatives
of 6, i.e.,

Ologp(y |X) _ T

- dlogp(yw) | X))
80 L 5

00

(11)

LeS

rLPlyW) [ X)) Bp(y | X)
p(y | X)
ent for leaf L and p(L) is the probablhty of selecting

L, c.f. [Poon and Domingos, 2011]. Note that V| can
be computed by applying the chain-rule. We refer

where V| =

denotes the gradi-

to [Poon and Domingos, 2011} [Trapp et al., 2019b] for
details on the gradient computation in SPNs.

In case of non-stationary data, we can optionally fine-
tune the hyperparameters of each expert. For this
purpose, let #L denote the cardinality of L and let S €
R#LX#L be a similarity matrix. Further, let S contain
similarity values, i.e. 0 < [S];; < 1 and [S];; = 1,
between all pairs of leaves (L;,L;), with L; € L,L; € L.
A natural choice for S is a matrix of normalised overlap
values, i.e. [S];j = Zxnen,, Hxn € Papt/zp,, where
#D(v,) is the cardinality of D(,).

Given a similarity matrix S, we can compute the gra-
dients for 0, of leaf L; as

ae ——0log p(y | X)
dlog p(yw,) | X, 0u; = 0L,)
= Z Si,jVLj 89 - .
L;eS L

(12)
Therefore, S constraints hyperparameters of similar
leaves to similar values. Note that Eq. reduces to
(11) if S is a matrix of ones.

Figure [2] illustrates the effects of fine-tuning on
a synthetic dataset with heteroscedastic noise
[Tolvanen et al., 2014]. In contrast to global hyper-
parameter optimisation (Eq. (11))), fine-tuning allows
to capture heteroscedasticity by obtaining an individual
noise parameter for each leaf.

5 EXPERIMENTS

To assess the performance of DSMGPs, we first compare
the approximation error of our model against existing
approaches in Section [5.1} Subsequently, we evaluate
the predictive performance of DSMGPs against state-
of-the-art on various benchmark datasets in Section

To construct the DSMGP structure for each experi-
ment, we used algorithm [I]in the supplement. In short,
we construct a hierarchical structure consisting of sum
nodes, with Ks children and ws ¢ = +-, and product
nodes, with Kp children, by alternatlng between sum
and product nodes. This process terminates and con-
structs a leaf node once we reached R many repetitions
— consecutive sum and product nodes — or the number
of observations in the subspace is smaller than a pre-
defined minimum M. Finally, we equip each GP leaf
with a Squared Exponential (SE) covariance function
with Automatic Relevance Detection (ARD) and a zero
mean-function. Note that we use the same covariance-
and mean-function for all other methods. To obtain
suitable hyperparameters, we perform global hyperpa-
rameter optimisation for each model using RMSprop
(over 1k iterations) and in case of DSMGPs refrain
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(a) generalized PoE

(b) robust BCM

(c) DSMGP (our work)

Figure 3: Comparison of generalized PoE, robust BCM and DSMGP (orange) against an exact GP (blue).

from local fine-tuning in favour of a fair comparison.

5.1 Approximation Error
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Figure 4: Approximation error on Kin40k dataset.

We use the motorcycle dataset [Silverman, 1985] to
compare the approximation error of DSMGPs against
popular expert-based approaches. Figure [3]shows the
posterior distribution a gPoE, a rBCM and our DSMGP
overlain by the posterior of an exact GP. All models
use the same SE covariance-function as the exact GP
and distribute the covariate space/data set onto local
experts with M = 7 observations. We see that the gPoE
and the rBCM algorithms result in over-conservative
predictions and wrong estimates of the mean in regions
without observations. On the other hand, our model
provides an accurate representation of the uncertainties
and mean in regions with and without observed data,
when used as an approximation to a GP. Note that
DSMGPs do not suffer from severe discontinuities and
can exploit discontinuities in data when appropriate,
e.g. [Cornford et al., 1998]. We want emphasise that
we selected the number of observations M in favour of
the gPoE and the rBCM as both degenerate with less
observations.

Figure [] quantitatively compares the approximation
error on the Kin40k dataset [Seeger et al., 2003, in
terms of the Root Mean Squared Error (RMSE). Note
that the DSMGP was constructed using Ks =4, R =

Table 1: Average runtime (seconds) of an iteration of
hyperparameter opt. on an i7-6900k CPU @ 3.2 GHz.

Dataset GP gPoE rBCM Ours
Airfoil 0.28 0.05 0.05 0.06
Parkin. 42.61 1.21 1.30 1.27
Kind0k 107.65 0.86 0.87 0.89
House NA 2.55 2.55 2.59
Protein NA 2.69 2.70 2.53
Year NA 28.82 28.90 22.17
2 and Kp = Rq/%. DSMGPs consistently obtain a

lower approximation error than existing approaches,
independently of the number of observations per expert.

5.2 Quantitative Evaluation

To compare the performance of the DSMGP against
state-of-the-art, we assess the predictive performance
of an exact GP, linear regression (LR), constant re-
gression (Conts.), gPoE, rBC sparse variational
GPs (SVGPS)E| [Gal et al., 2014] and structured kernel
interpolation (KISS)? [Wilson and Nickisch, 2015] on
various benchmark dataset. Statistics and details on
the benchmark datasets are described in the supple-
mentary. The experiments use @ = 100 inducing points
and consistently use M = 100 observations per expert
for each expert-based approach and Ks = 4 for the
DSMGP. For the structured kernel interpolation (KISS)
we chose the grid size according to the number of data
points and used an additive kernel decomposition as
KISS GPs scale exponentially with the dimensionality
of the covariate space. Note, that we obtained the hy-
perparameters for DSMGPs using surrogate DSMGP
with Ks = 1. The results for DSMGPs are likely to
improve if hyperparameter optimisation is performed
with Kg = 4.

2https://github.com/jopago/GPyBCM
Shttps://gpytorch.ai
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Table 2: Mean Absolute Error (MAE) and Negative Log Predictive Density (NLPD) of state-of-the-art approaches
and DSMGPs (our work) on benchmark datasets with 1.5K to 500K observations. Smaller values are better.

Dataset Const. LR GP SVGP KISS | gPoE rBCM DSMGP
Airfoil MAE 0.82 0.53 0.50 0.32 051 | 0.35 0.34 0.32
NLPD | 1.43 1.05 0.99 0.59 1.00 | 0.72 3.21 0.57
Parkin. MAE 0.85 0.82 0.78 0.68 0.78 | 0.84 0.80 0.74
NLPD | 2.88 279 273 2.2 273 | 449 3.80 2.66
Kind0K MAE 0.81 0.81 0.79 0.25 0.79 | 0.80 0.43 0.78
NLPD | 1.42 1.42 139 0.37 1.39 | 2.68 4.14 1.38
House MAE 0.62 049 NA 0.39 043 | 050 0.40 0.39
NLPD | 1.45 1.30 NA  1.06 1.10 | 4.61 4.58 111
Protein MAE 0.89 0.71 NA  0.57 0.64 | 0.82 0.70 0.55
NLPD | 1.41 125 NA 1.11 1.19 | 2.38 4.57 1.11
Year MAE 0.74 0.73 NA 0.57 NA 0.74 0.74 0.72
NLPD | 1.41 1.39 NA 1.21 NA 3.78 1.49 1.38
Flight MAE 0.56 0.54 NA 0.54 NA 0.56 0.56 0.54
NLPD | 2.87 285 NA 2.80 NA 8.06  11.51 2.84

Table @ reports the Mean Absolute Error (MAE)
and the Negative Log Predictive Density (NLPD) on
each dataset, see supplement for details on the pre-
processing and an extended results table. Note that
NLPDs for LR and Const are computed using the
inferred noise as the variance of the predictive distri-
bution. We see that DSMGPs consistently outperform
other expert-based approaches and often perform com-
petitive or outperform SVGPsﬂ Further, our model
consistently captures predictive uncertainties better
than previous expert-based approaches resulting in low
NLPDs. Note that DSMGPs often have a lower approx-
imation error, compared to exact GPs, then SVGPs.

Additionally, we computed the effective number of mix-
ture components of the DSMGPs and measured the
average runtime of a single hyperparameter optimisa-
tion step on an i7-6900k CPU @ 3.2 GHz. The effec-
tive mixture sizes are: airfoil: 5.44 x 102, parkinsons:
1.41x 103, kin40k: 6.71 x 107, house: 1.68 x 107, protein:
7.21x10'¢, and year: 4.30 x 10'8. We want to emphasis
that these mixtures are not explicitly constructed but
rather implicitly encoded through the structure of the
DSMGP. Table [] lists the resulting runtimes for hy-
perparameter optimisation, indicating that optimising
DSMGPs is competitive to prior work when trained
as described above. Finally, we empirically evaluated
the performance gains through sharing solutions of the
Cholesky decompositions, see supplement Section
Through exploitation of the structure of DSMGPs we
gain a speed-up by a factor of two, allowing us to
explore twice as many partitions of the input space.

4We refer to the extended arXiv version of this paper
for additional experiments and discussion.
5We reran the experiments due to errors in the software.

6 CONCLUSION

In this paper, we have introduced Deep Structured
Mixtures of GPs (DSMGPs), which combine Sum-
Product Networks (SPNs) with Gaussian Processes
(GPs) as sub-modules, i.e., leaf distributions. For this,
we first introduced a measure-theoretic perspective on
DSMGPs, extending the standard definition of SPNs.
Subsequently, we showed that DSMGPs enable efficient
and exact posterior inference and have attractive com-
putation costs for hyperparameter optimisation. We
discussed that DSMGPs can be understood to perform
exact Bayesian model averaging over a large set of
naive-local-experts (NLE) models and showed that the
structure can be exploited to speed-up computations
and model non-stationary data.

Finally, we showed, in a variety of experiments, that
DSMGPs provide low approximation errors and capture
predictive uncertainties consistently better than exist-
ing expert-based approximations. Future directions
include, more advanced structure learning techniques,
advanced techniques to distributed the load of the in-
dividual experts, approaches to reduce the memory
requirements and combinations with sparse variational
GPs and deep GPs.
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