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Abstract

The parameter estimation of unnormalized mod-
els is a challenging problem. The maximum like-
lihood estimation (MLE) is computationally in-
feasible for these models since normalizing con-
stants are not explicitly calculated. Although
some consistent estimators have been proposed
earlier, the problem of statistical efficiency re-
mains. In this study, we propose a unified, statis-
tically efficient estimation framework for unnor-
malized models and several efficient estimators,
whose asymptotic variance is the same as the
MLE. The computational cost of these estima-
tors is also reasonable and they can be employed
whether the sample space is discrete or contin-
uous. The loss functions of the proposed esti-
mators are derived by combining the following
two methods: (1) density-ratio matching using
Bregman divergence, and (2) plugging-in non-
parametric estimators. We also analyze the prop-
erties of the proposed estimators when the un-
normalized models are misspecified. The experi-
mental results demonstrate the advantages of our
method over existing approaches.

1 INTRODUCTION

Unnormalized models are widely used in many settings:
Markov random fields (Besag, 1975), Boltzmann machines
(Hinton, 2002), models in the independent component
analysis (Hyvärinen, 2001), submodular diversity models
(Tschiatschek et al., 2016) and generalized gamma distri-
butions (Stacy, 1962). When the parametric model is de-
noted as p(x; θ), p(x; θ) is called an unnormalized (aka in-
tractable) model if its normalizing constant

∫
p(x; θ)dµ(x)
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cannot be explicitly calculated, or it is difficult to compute
in practice. For example, when µ is a counting measure
as in the case of Markov random fields and Boltzmann ma-
chines, the computational cost exponentially increases with
the dimension of the sample space. When µ is a Lebesgue
measure, as in the case of the models in independent com-
ponent analysis or generalized gamma distributions, this
cannot be analytically calculated . When we use unnormal-
ized models, we believe that the true data generating pro-
cess belongs to the family {p(x; θ)/

∫
p(x; θ)dµ(x), θ ∈

Θ}, where Θ denotes a parameter space. Unnormalized
models p(x; θ) can be converted to normalized models by
dividing their normalizing constants; however, their ex-
plicit form cannot be obtained; therefore, an exact maxi-
mum likelihood estimation (MLE) is infeasible.

Several approaches for the estimation of unnormalized
models have been suggested. Roughly, there are two major
approaches. First, noise contrastive estimation (NCE) (Pih-
laja et al., 2010; Gutmann and Hyvärinen, 2012; Hyvarinen
and Morioka, 2016; Matsuda and Hyvärinen, 2019) and
contrastive divergence (CD) (Hinton, 2002) rely on sam-
pling techniques, such as importance sampling and Markov
Chain Monte Carlo. Second, score matching (Hyvärinen,
2005; Hyvärinen, 2007; Dawid et al., 2012; Parry et al.,
2012) and pseudo likelihood (Besag, 1975; Varin et al.,
2011; Lindsay et al., 2011) use a tractable form without
the aid of a sampling technique. The first approach is gen-
erally superior to the second approach in terms of statistical
efficiency, whereas the second approach is superior to the
first approach in terms of computational efficiency, leaving
a tradeoff between computational and statistical efficiency.

In the present study, we propose a unified framework for
the statistically efficient estimation of unnormalized mod-
els irrespective of whether the sample space is discrete or
continuous. The estimators are defined as a form of M-
estimators (van der Vaart, 1998) and their loss functions
are derived by combining two methods: (1) density-ratio
matching using Bregman divergence, and (2) plugging-in
nonparametric estimators. These estimators are statisti-
cally efficient in the sense that the asymptotic variance is
the same as that of the MLE; thus, the proposed estima-
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Figure 1: Comparison of methods, where Score stands for
score matching; NCE stands for noise contrastive estima-
tion, CD stands for contrastive divergence method; and a
self density-ratio matching estimator (SDRME) is the pro-
posed estimator. Note that statistically efficient estimators
can be constructed in the case of NCE and CD. When the
ratio of the auxiliary and original sample sizes is infinite
in the NCE, the estimator becomes statistically efficient.
However, implementing it is in practice infeasible. The
same argument applies to the CD.

tors are superior to other previously proposed estimators
in terms of statistical efficiency. Moreover, the proposed
estimators do not rely on any sampling techniques and the
evaluation cost of the objective function isO(n); therefore,
they are competitive in terms of computational efficiency.
Figure 1 illustrates a comparison of our proposed estima-
tors to the other previously proposed estimators. To the
best of our knowledge, the proposed estimators are the first
statistically efficient estimators with evaluation cost O(n),
which works in the continuous sample space.

Note that for a discrete sample space, Takenouchi and
Kanamori (2017) proposed an efficient estimator, that can
be seen as a special case from our proposed framework.
Importantly, it is extended to the case of a continuous sam-
ple space based on the proposed framework.

2 PRELIMINARIES

Our general setting is as follows. Let us consider a sit-
uation in which an unnormalized model p(x; θ) is used,
that is, for each θ ∈ Θ, p(x; θ) is a non-negative func-
tion and the normalizing constant defined by the integral∫
X p(x; θ)dµ(x), is finite. The measure µ over the sample

space X is a counting measure when the sample space is
discrete, and a Lebesgue measure when the sample space
is continuous. We refer to it herein as a baseline measure.
We introduce a one-parameter extended model defined by

q(x; τ) ≡ exp(−c)p(x; θ), τ ≡ (c, θ>)> where c is also
regarded as a parameter.

Our aim is to estimate θ using a set of identically indepen-
dent distributed (i.i.d) n samples {xi}ni=1 by assuming that
these samples are obtained from the true distribution Fη∗

with density η∗(x) with respect to the baseline measure µ.
Unless otherwise noted, we assume that the unnormalized
model is well-specified, that is, there exists θ∗ satisfying
η∗ = exp(−c∗)p(x; θ∗), exp(c∗) =

∫
p(x; θ∗)dµ(x). The

problem of unnormalized models arises because it is ex-
tremely difficult or infeasible to calculate the normalizing
constant analytically. In such a case, one should avoid a di-
rect computation of the normalizing constant; therefore, the
loss function of the MLE cannot be used. In this section, we
review the Bregman divergence and the generalized NCE,
needed to understand the proposed methods.

We summarize frequently used notations. We denote E∗(·)
as an expectation under the true density η∗(x). The nota-
tions Var∗(·) and Ẽ∗(·) represent variance and empirical
analogues. Notation Pn denotes an empirical distribution
of n samples from the true distribution Fη∗ . We denote
dPn/dµ as pn, evaluation at τ , i.e., |τ=τ∗ as |τ∗ , and ∇x
as the differentiation with respect to x. A summary of the
notation is provided in a table in the Appendix A.

2.1 Bregman Divergence

Let R≥0 be a set of non-negative real numbers. We define
F as a collection of non-negative real-valued functions on
the sample space X , and assume that F is a convex set.
Given a convex function ψ(u) on F , the Bregman diver-
gence (Bregman, 1967; Gneiting and Raftery, 2007; Dawid
and Musio, 2014) on F × F is defined as Bψ(u, v) =
ψ(u) − ψ(v) − ∇ψ(v)(u − v), where ∇ψ(v) is a linear
operator defined by limε→+0 [{ψ(v + εh)− ψ(v)}/ε] =
∇ψ(v)(h). Here, h is a function onX such that v+εh ∈ F
holds for an arbitrary small ε > 0. The convexity of ψ(u)
guarantees the non-negativity of the Bregman divergence.
We introduce two kinds of Bregman divergences; one is
separable, while the other is non-separable.

The separable Bregman divergence is defined using the
function ψ(u):

ψ(u) = E∗[f{u(x)}], (1)

where f : R≥0 → R is a strictly convex function. For the
differentiable f , the corresponding Bregman divergence
Bf (u, v; η∗) between u and v is given as

E∗[f{u(x)} − f{v(x)} − f ′{v(x)}{u(x)− v(x)}]. (2)

For the strictly convex function f , the corresponding
Bf (u, v; η∗) vanishes if and only if u = v up to a null
set with respect to measure η∗(x)dµ(x).
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Example 2.1 For f(x) = 2x log x− 2(1 + x) log(1 + x),
the corresponding Bf (u, v; η∗) is known as the Jensen-
Shannon divergence. In other cases, for f(x) = x log x,
we have the Kullback-Liber (KL) divergence. For f(x) =
xm/{m(m− 1)}, we obtain the β-divergence (Basu et al.,
1998; Murata et al., 2004).

The Bregman divergence is non-separable if the convex
function ψ(u) is not expressed as (1). The pseudo-spherical
divergence and the γ-divergence are examples of non-
separable Bregman divergences, commonly used in robust
inference (Kanamori and Fujisawa, 2014). The function
ψ(u) of the pseudo-spherical divergence is the γ-norm
with γ > 1 under the density η∗(x), that is, ‖u‖γ =
E∗{u(x)1+γ}−γ/(1+γ). The pseudo-spherical divergence
Bps(u, v; η∗) is defined as follows:

‖u‖γ −
1

‖v‖γ−1
γ

E∗{v(x)γ−1u(x)}. (3)

The pseudo-spherical divergence Bps(u, v; η∗) vanishes if
and only if u and v are linearly dependent. When we apply
a log-transformation to each term in (3), this becomes a
γ-divergence (Fujisawa and Eguchi, 2008), represented as

Bγ(u, v; η∗) =
1

γ
log E∗{u(x)γ}+

γ − 1

γ
log E∗{v(x)γ}−

(4)

log E∗{v(x)γ−1u(x)}.

2.2 Generalized Noise Contrastive Estimation

We review an estimation method for unnormalized models
focusing on a generalized NCE (Pihlaja et al., 2010; Gut-
mann and Hirayama, 2011). The strategy to estimate θ, c in
q(x; τ) is matching a density ratio q(x; τ)/a(x) with a true
densith ratio q(x; τ∗)/a(x), where a(x) is a known aux-
iliary density, by generating samples from the distribution
with a density a(x).

Using a set of samples {yi}ni=1 from the auxiliary distribu-
tion with a density a(y) with respect to the baseline mea-
sure µ, the estimator τ̂NC for τ is defined as the minimizer
of the following function

1

n

n∑
i=1

rq,a(yi; τ)f ′ {rq,a(yi; τ)}− (5)

f {rq,a(yi; τ)} − f ′ {rq,a(xi; τ)} ,

where rq,a(x; τ) = q(x; τ)/a(x), f(x) is a strictly
convex function, and the support of density a(x)
includes the support of p(x; θ). This estimation
is derived from a divergence perspective as fol-
lows: let the divergence between the true distribution
η∗(x) and the one-parameter extended model q(x; τ)
be Bf {rη∗,a(x), rq,a(x); a(x)} when rη∗,a(x) =

η∗(x)/a(x). We have Bf {rη∗,a(x), rq,a(x); a(x)} ≥ 0
and Bf {rη∗,a(x), rq,a(x); a(x)} = 0 ⇔ η∗(x) = q(x; τ).
Therefore, the estimation problem of τ is reduced to a
minimization problem of Bf {rη∗,a(x), rq,a(x); a(x)}
with respect to τ . By subtracting the term not associated
with q(x; τ) from Bf {rη∗,a(x), rq,a(x); a(x)}, we obtain
the term:

−
∫
f ′ {rq,a(x)} η∗(x)dµ(x)+∫

[f ′ {rq,a(x)} rq,a(x)− f {rq,a(x)}] a(x)dµ(x).

The loss function of τ̂NC, (5), is constructed using an em-
pirical approximation of this term.

Unless otherwise noted, we hereafter assume the following
properties for f(x):

Assumption 1 Function f : R+ → R satisfies the follow-
ing three properties: strictly convex, third-order differen-
tiable and f ′′(1) = 1.

Among f(x) satisfying the abovementioned conditions, the
estimator when f(x) = 2x log x − 2(1 + x) log(1 + x) is
proven to be optimal from the perspective of asymptotic
variance, irrespective of the auxiliary distribution (Uehara
et al., 2018). In this case, the loss function of the estimator
becomes:

− 1

n

n∑
i=1

log
rq,a(xi; τ)

1 + rq,a(xi; τ)
− 1

n

n∑
i=1

log
1

1 + rq,a(yi; τ)
.

(6)

This loss function is identical to the original NCE (Gut-
mann and Hyvärinen, 2012). Although it satisfies some
aforementioned optimality, the asymptotic variance of the
estimator derived from the above loss function is larger
than that of the MLE. We can also use another type of f(x).
For example, when f(x) = x log x, ths loss function is

− 1

n

n∑
i=1

log rq,a(xi; τ) +
1

n

n∑
i=1

rq,a(yi; τ). (7)

This is reduced to the same from as the one of Monte Carlo
MLE (Geyer, 1994):

− 1

n

n∑
i=1

log p(xi; θ) + log

{
1

n

n∑
i=1

p(yi; θ)

a(yi)

}
(8)

by profiling out c beforehand. The asymptotic variance of
the Monte Carlo MLE is lager than that of the NCE (Riou-
Durand and Chopin, 2018).

We have so far assumed that the sample size of the aux-
iliary distribution goes to infinity at the same rate as the
size of the true distribution when considering an asymp-
totic regime. In this case, generalized NCE is not statisti-
cally efficient. In contrast, when the sample size of the aux-
iliary density grows faster than the sample size of the true



A Unified Statistically Efficient Estimation Framework for Unnormalized Models

distribution, it is easily proved that the Monte Carlo MLE
is statistically efficient. However, this asymptotic regime is
suggesting that the evaluation cost of the objective function
is larger than O(n), which is the order when MLE can be
done exactly. This is problematic because it requires much
computational time. Throughout this paper, our goal is to
find an efficient estimator such that the evaluation cost of
the objective function is O(n).

3 ESTIMATION WITH SELF
DENSITY-RATIO MATCHING

We propose two types of statistically efficient estimators
with a reasonable computational time. Our key idea is to
match the ratio of the unnormalized model and nonpara-
metrically estimated density using Bregman divergence.
We introduce an estimator based on a separable Bregman
divergence. Then, we introduce an estimator based on a
non-separable Bregman divergence.

3.1 Separable Case

We introduce an estimator, called self density-ratio match-
ing estimator (SDRME) for τ as a form of M-estimators:

τ̂s = arg min
τ∈Θτ

Bf [h1{w(x; τ)}, h2{w(x; τ)}; pn], (9)

where Θτ is a parameter space for τ , w(x) =
q(x; τ)/η̂n(x), η̂n(x) is the nonparametric estimator us-
ing an entire set of samples, q(x; τ) is a one-parameter ex-
tended model in Section 2.2, pn = dPn/dµ, and h1(x) and
h2(x) are functions satisfying the conditions mentioned in
the next paragraph. We introduce h1, h2 to generalize the
result as much as possible. More specifically, the loss func-
tion is written as

1

n

n∑
i=1

Bf{h1(wi), h2(wi)}, (10)

where wi = q(xi; τ)/η̂n(xi). Importantly, it requires only
sample order O(n) calculation.

When the baseline measure is a counting measure, we use
an empirical distribution pn(x) as η̂n(x), whereas when
the baseline measure is a Lebesgue measure, we use a
kernel density estimator as η̂n(x). Three conditions for
h1(x), h2(x) are assumed herein.

Assumption 2 Functions h1 : R+ → R and h2 : R+ →
R must be (2I) monotonically second-order differentiable
increasing functions, (2II) h1(x) = h2(x) ⇐⇒ x = 1,
and (2III) h′1(1) 6= h′2(1).

Condition (2II) is required for the identification, and (2III)
is needed to state the asymptotic normality of the estima-
tors.

Figure 2: Graphical explanation of the SDRME with
h1(w) = w, h2(w) = 1. The objective function
is measuring the difference between q(x; τ)/η̂n(x) and
q(x; τ∗)/η∗(x) = 1 utilizing a Bregman divergence with
density pn(x).

Table 1: Comparison between the generalized NCE and the
SDRME in Example 3.1. Both methods are seen as match-
ing a ratio with τ (ratio I) to a target ratio (ratio II). Here,
efficiency means statistical efficiency.

Generalized NCE SDRME in Eg 3.1
Ratio I q(x; τ)/a(x) q(x; τ)/η̂n(x)
Ratio II q(x; τ∗)/a(x) q(x; τ∗)/η∗(x) = 1

Evaluation cost O(n) O(n)
Efficiency No Yes

This estimator works based on the following intuitive
equivalence. By replacing pn(x) and η̂n(x) with η∗(x) in
(9), we obtain Bf{h1(w), h2(w); η∗} = 0 ⇐⇒ h1(w) =
h2(w) ⇐⇒ w = 1 ⇐⇒ q(x; τ) = η∗(x). As ex-
plained in Section 4, this estimator is rigorously proven to
be consistent and efficient. Several specific choices can be
considered as h1(w) and h2(w) as in Example 3.1. We ex-
plain the SDRME with a separable divergence in Figure 2
and Algorithm 1.

Example 3.1 (An extension of the generalized NCE )
Consider a case where h1(w) = w and h2(w) = 1. We
practically recommend this choice as h1(w) and h2(w).
The loss function becomes

1

n

n∑
i=1

{
− f ′(wi) + wif

′(wi)− f(wi)
}
.

This is considered to be a natural extension of the general-
ized NCE as in Table 1 because the loss function (5) is the
same as the one above when we replace a(x) with η̂n(x),
and yi with xi in (5). Especially, when f(x) = x log x, the
loss functions corresponding (7) and (8) are

− 1

n

n∑
i=1

log q(xi; τ) +
1

n

n∑
i=1

q(xi; τ)

η̂n(xi)
, (11)

− 1

n

n∑
i=1

log p(xi; θ) + log

{
1

n

n∑
i=1

p(xi; θ)

η̂n(xi)

}
.
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3.2 Non-separable Case

Similar to the separable Bregman divergence case, the
pseudo-spherical divergence Bps and the γ-divergence Bγ
also provide statistically efficient estimators for unnormal-
ized models. Following the analogy of the separable case
when h1(w) = wα, h2(w) = wβ (α 6= β), suppose that
Bps(w

α, wβ ; η∗) = 0 holds. Then, wα should be propor-
tional towβ because of the property of the pseudo-spherical
divergence. In other words, w(x) is a constant function.
When w(x; θ) is p(x; θ)/η(x) and η(x) is close to η∗(x),
p(x; θ) should be close to η∗(x) up to the constant factor.
This implies that the parameter θ can be estimated using the
pseudo-spherical divergence. Replacing η̂n(x) with a non-
parametric estimator, the SDRME with the non-separable
divergence θ̂ns-ps is obtained as

arg min
θ∈Θ

Bps(w(x; θ)α/γ , w(x; θ)β/γ ; pn),

and w(x; θ) = p(x; θ)/η̂n(x), under the condition α 6= β.
Then, the loss function is(

n∑
i=1

wαi

) 1
γ

−

(
n∑
i=1

wβi

)(1−γ)/γ n∑
i=1

wδi ,

where δ = (α + β(γ − 1))/γ,wi = p(xi; θ)/η̂n(xi). By
taking a logarithm of each term as in (4), we can construct a
loss function corresponding to γ-divergence. This is equal
to Bγ(wα, wβ ; pn):

1

γ
log

n∑
i=1

wαi +
γ − 1

γ
log

n∑
i=1

wβi − log

n∑
i=1

wδi . (12)

We define estimator θ̂ns-γ as a minimizer of the above func-
tion with respect to θ over Θ. We explain the SDRME with
a non-separable divergence in Algorithm 2.

Two things should be noted. First, compared with the
case of the separable divergence, the unnormalized model
p(x; θ) is directly used instead of a one-parameter ex-
tended model q(x; τ) = exp(−c)p(x; θ). This is due to
the scale-invariance property of the pseudo-spherical di-
vergence; Bγ(u, v; pn) = Bγ(u, κv; pn) for constant κ
(Kanamori and Fujisawa, 2014, 2015). Second, when the
baseline measure is a counting measure, Takenouchi and
Kanamori (2017) proposed an estimator defined as a mini-
mizer of the following function with respect to θ,

1

γ
log
∑
x∈X

c1−αx p(x; θ)α +
γ − 1

γ
log
∑
x∈X

c1−βx p(x; θ)β

− log
∑
x∈X

c1−δx p(x; θ)δ,

where cx = nx/n, and nx is a sample number taking the
value of x. This loss function is essentially the same as (12)
by modifying the form of summing. The case was only

considered when the sample space is discrete. However,
it can be generalized to the case where the sample space
is continuous, using our new unified perspective. For sim-
plicity, hereafter, we assume δ = 0 to eliminate the third
term in (12). This restriction is also reasonable to obtain
the convexity as seen in Appendix B.

Algorithm 1: SDRME with separable divergence
input : Data {xi}ni=1 and model p(x; θ)
output: τ̂

1 Set h1(x), h2(x), f(x) (Default
h1(x) = x, h2(x) = 1, f(x) = x log x)

2 Make a nonparametric estimator η̂n(x) from {xi}ni=1

3 Define wi = q(xi; τ)/η̂n(xi)
4 Minimize (10) with respect to τ

Algorithm 2: SDRME with non-separable diver-
gence

input : Data {xi}ni=1 and model p(x; θ)

output: θ̂
1 Set α, β, γ (Default α = −0.01, β = 0.99, γ = 1.01)
2 Make a nonparametric estimator η̂n(x) from {xi}ni=1

3 Define wi = p(xi; θ)/η̂n(xi)
4 Minimize (12) with respect to θ

4 PROPERTIES OF SDRME

We prove that the asymptotic variance of estimators θ̂s
and θ̂ns-γ is identical to that of the MLE. We utilize the
property in which our estimators take the form of the Z-
estimators with infinite dimensional nuisance parameters
(van der Vaart, 1998, 2002). For the proofs, refer to Ap-
pendix.

4.1 Efficiency in the Separable Case

First, we discuss the case when the divergence is sep-
arable. The estimator τ̂s based on the separable di-
vergence is defined as the minimizer of the following
function n−1

∑n
i=1Bf{h1(wi), h2(wi)}, where wi =

q(xi; τ)/η̂n(xi) and η̂n(x) is a nonparametric density es-
timator using an entire sample.

If η̂n(x) was equal to η∗(x), this estimator τ̂s would be
regarded as the solution to Ẽ∗[φ(x; τ, η∗)] = 0, where
φ(x; τ, η) is

f [h1{w(x)}]− f [h2{w(x)}]−
f ′[h2{w(x)}] [h1{w(x)} − h2{w(x)}] ,

and w(x) = q(x; τ)/η(x), by differentiating the loss
function with respect to τ . Here, the moment condition
E∗{φ(x; τ, η∗)|τ∗} = 0 holds. This condition guarantees
that the estimator converges to τ∗. However, this includes
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the unknown term η∗(x). By replacing η∗(x) with the
nonparametric estimator η̂n(x), the estimator τ̂s is still re-
garded as a Z-estimator. In fact, the estimator τ̂s satisfies
the equation Ẽ∗{φ(x; τ, η̂n)} = 0. The consistency holds
as follows when the sample space is discrete. Before that,
we assume the following conditions throughout this paper:

Assumption 3 The model is q(x; τ) is C2-function with
respect to τ . The parameter space Θτ is compact and τ∗ is
in the interior of Θτ . The equation q(x; τ) = η(x) holds if
and only if τ = τ∗.

All of the conditions are common conditions used in MLE
(van der Vaart, 1998).

Theorem 1 (Consistency in discrete space) τ̂s
p→ τ∗ .

We next show the asymptotic normality of the estimator τ̂s
when the sample space is discrete.

Theorem 2 (Asymptotic normality in discrete space )
When the sample space is discrete, assume that (2a)
the following matrix Ω = E∗(∇τ log q∇τ> log q|θ∗) is
non-singular, and (2b) the second order derivative of the
map η → φ(x; τ, η) is uniformly bounded around in a
neighborhood of η∗. We then have:
√
n(τ̂s − τ∗) = Ω−1Gn {∇τ log q(x; τ)|τ∗}+ op(1),
√
n(τ̂s − τ∗)

d→ N (0,Ω−1).

These assumptions originate from van der Vaart (2002,
Theorem 6.18.). Assumption (2b) is required to control the
remainder term in the proof. It is commonly used to state
an asymptotic normality in MLE (van der Vaart, 1998).

The variance estimator for τ̂s is easily constructed from
Theorem 2. Finally, we prove that θ̂s in τ̂s = (ĉs, θ̂s) is
equivalent to MLE in terms of the asymptotic variance.

Corollary 1 When the sample space is discrete, we have

√
n(θ̂s − θ∗)

d→ N (0, I−1
θ∗ ),

where Iθ∗ is the Fisher information matrix at θ∗ of the nor-
malized model, that is, Var∗{S(x; θ∗)}, where S(x; θ) =
∇θ
{

log p(x; θ)− log
∫
p(x; θ)dµ(x)

}
.

Next, we investigate the asymptotic behavior when the
sample space is continuous. We use the kernel density es-
timator as a nonparametric estimator for η∗(x). Note that
any nonparametric estimators can also be applied. Assume
that η∗(x) belongs to a Hölder class of smoothness ν (Ko-
rostelev, 2011). The kernel density estimator is constructed
as η̂n(x) = (nι)−dx

∑n
i=1K {(xi − x)/ι}, where ι de-

notes a bandwidth,K denotes a dx-dimensional kernel, and
dx denotes a dimension of x (Silverman, 1986). The over-
all error ‖η̂n − η∗‖∞ is Op((log n/n)1/2ι−dx/2 + ιν) by

choosing high-order kernel (Fan and Hu, 1992). We have
‖η̂n − η∗‖∞ = Op((log n/n)−

ν
2ν+dx ) by selecting the or-

der of bandwidth correctly (Stones, 1982) .

From here, we analyze the asymptotic behavior of estima-
tor τ̂s when the sample space is continuous. We conclude
that the estimator is still efficient.

Theorem 3 (Asymptotic normality in continuous space )
When the sample space is continuous, under the condi-
tions used in Theorem 2 and (2c): ν/2 > dx, (2d):∫
‖∇τ log q(x; τ)‖τ∗dµ(x) is finite, (2e): there is ε > 0

such that E∗{sup‖u‖<ε ‖∇τ log q(x + u; τ)|τ∗‖4} < ∞,
then, τ̂s is consistent and
√
n(τ̂s − τ∗)

d→ N (0,Ω−1),
√
n(θ̂s − θ∗)

d→ N (0, J−1
θ∗ ),

where Ω is defined in Theorem 2.

Assumption (2c) is introduced to control a remainder term.
In other words, this condition states that the convergence
rate of η̂n is op(n

−1/4). This is a mild assumption to state
an asymptotic normality such that the reminder term in the
Taylor expansion is negligible. Assumptions (2d) and (2e)
are introduced following Newey and Mcfadden (1994, The-
orem 8.11)

4.2 Efficiency in the Non-separable Case

We consider an asymptotic analysis of estimator θ̂ns-γ with
the γ-divergence. When µ is a counting measure, by differ-
entiating (12) with respect to θ and multiplying by −γ/α,
we obtain Sα,β(x; θ):∫

{∇θ log p(x; θ)}w(x; θ)β∫
w(x; θ)βdPn(x)

dPn(x)−∫
{∇θ log p(x; θ)}w(x; θ)α∫

w(x; θ)αdPn(x)
dPn(x),

where w(x) = p(x; θ)/η̂n(x). Importantly, compared with
the case in Section 4.1, p(x; θ) is used in w(x) instead
of q(x; τ) because of the scale invariant property of γ-
divergence. The estimator θ̂ns-γ satisfies Sα,β(x; θ) = 0.
The estimator θ̂ns-γ can be also seen as a Z-estimator with
infinite and finite-dimensional nuisance parameters, that
is, the solution to Ẽ∗[Uα,β(x; θ, c1, c2, η̂n)] = 0, where
Uα,β(x; θ, c1, c2, η):∇θ log p(x; θ)

{
p(x;θ)β

exp(c1)η(x)−β − p(x;θ)α

exp(c2)η(x)−α
}

exp(c1)− p(x; θ)βη(x)−β

exp(c2)− p(x; θ)αη(x)−α

 .
The estimator validity is based on the moment condition
0 = E∗{Uα,β(x; θ, c1, c2, η)|θ∗,c∗1 ,c∗2 ,η∗}, where exp(c∗1) =

exp(c∗)β and exp(c∗2) = exp(c∗)α. Note that θ is a param-
eter of interests, and c1, c2, and η are nuisance parameters.
We can derive the asymptotic results as in Section 4.1 and
conclude that θ̂ns-γ is an efficient estimator.



Masatoshi Uehara, Takafumi Kanamori, Takashi Takneouchi, Takeru Matsuda

Theorem 4 When the sample space is discrete, under the
conditions of Theorem 2, we have

√
n(θ̂ns-γ − θ∗)

d→
N (0, J−1

θ∗ ). When the sample space is continuous, under

the conditions of Theorem 3, we have
√
n(θ̂ns-γ − θ∗)

d→
N (0, J−1

θ∗ ).

Remark 4.1 Refer to Appendix C.1 regarding the result
when the models are mis-specified.

4.3 Convexity

Convexity is important for optimization. We consider
herein the convexity of loss functions. Suppose that the
model is expressed by unnormalized exponential models,
q(x; τ) = exp(τ>ξ(x)), where ξ(x) is a basis function
and the corresponding basis function for c is −1. This
model contains many types of unnormalized models such
as Boltzmann machines and generalized gamma distribu-
tions. Regarding separable estimators τ̂s in Example 3.1,
we can find sufficient conditions to ensure the convexity of
loss functions as Theorem 5. Refer to Appendix B for the
specific examples of f(x).

Theorem 5 Suppose that f(z) satisfies the inequality

(2z − 1)f ′′(z) + z(z − 1)f ′′′(z) ≥ 0

for arbitrary z > 0. Then, the loss function of the estimator
τ̂s in Example 3.1 is convex in τ .

5 NUMERICAL EXPERIMENTS

We present herein several examples to illustrate the perfor-
mance of the proposed procedure, and demonstrate that the
asymptotic variance of the proposed estimators is the same
as that of the MLE. We ran simulations in the settings of
restricted Boltzmann machines, submodular diversity mod-
els, generalized gamma distributions. Regarding additional
experiments using Poisson distributions, gamma distribu-
tions, refer to Appendix D.2.

We chose h1(x) = x, h2(x) = 1 as in Example 3.1. We
used the following package for the kernel density estima-
tion (Hayfield and Racine, 2008). We also used 6-th order
kernel, and the bandwidth was selected by a cross valida-
tion based on the likelihood. We compare the following
estimators:

• MLE: estimator by the MLE.

• NCE: estimator by the NCE (Gutmann and
Hyvärinen, 2012). The sample size of the auxil-
iary distribution is set as the original sample size
unless otherwise noted.

• s-KL, s-Chi, s-JS: proposed estimators, i.e., SDRME
with a separable divergence θ̂s. When f = x log x,

Table 2: Monte Carlo mean of the KL divergence between
the true and estimated densities scaled by sample size,
nKL(η∗(v), P (v; Ŵ )), in the RBM. Parenthesis indicates
the standard deviation. The computational time (seconds)
is measured per each iteration when n = 4000.

dimv = 10,dimh = 2, iteration: 20
n s-KL ns-γ NCE MLE

1000 12.8(3.56) 13.9(3.23) 19.7(5.31) 15.5(4.05)
2000 12.4(4.17) 13.1(5.13) 17.3(5.68) 12.8(4.35)
4000 14.3(5.77) 14.1(4.68) 18.0(7.35) 14.5(6.38)

Time 0.35 0.21 2.25 0.24

dimv = 18,dimh = 2, iteration: 20
n s-KL ns-γ NCE MLE

1000 18.7(4.03) 21.2(4.57) 76.7(87.9) 30.5(4.49)
2000 21.5(3.29) 23.0(3.34) 51.9(23.3) 31.2(5.70)
4000 25.9(8.97) 25.4(8.38) 38.8(9.25) 30.0(6.31)

Time 2.28 0.79 5.60 43.5

denote s-KL. When f = 0.5x2, denote s-Chi. When
f = 2x log x− 2(1 + x) log(1 + x), denote s-JS.

• ns-γ: SDRME with the non-separable γ-divergence,
θ̂ns-γ . Regarding the choice of α, β, see each section.
We selected several α, β following an experiment sec-
tion (Takenouchi and Kanamori, 2017)

We do not compare the proposed estimators with score
matching type estimators because the superiority of the sta-
tistical efficiency of NCE over score matching has been al-
ready shown (Gutmann and Hyvärinen, 2012).

5.1 Restricted Boltzmann Machine (RBM)

The RBM has parameter W ∈ Rdv×dh . The joint
probability of the RBM with the visible nodes v ∈
{+1,−1}dv and hidden nodes h ∈ {+1,−1}dh is
P (v,h;W ) ∝ ev

TWh and the marginal probability of
v is P (v;W ) ∝

∏dv
k=1 cosh{(vTW )k}. The unnormal-

ized model of the RBM is thus expressed as q(v; τ) =

e−c
∏dv
k=1 cosh{(vTW )k} with parameter τ = (c,W ).

We compared four estimators: s-KL, ns-γ, NCE and
MLE. Regarding the results of s-Chi, s-JS, refer to Ap-
pendix D.2. The parameters in ns-γ were set to α =
0.01, β = −1 and γ = 1.01. In low dimensional mod-
els, MLE is feasible because the normalized constant is ac-
cessible in practice. For s-KL and ns-γ, we incorporated
the sample-based regularization to make the estimator sta-
ble. For the empirical distribution of the data η̂n(v), the
mixture model (1 − 1/n)η̂n(v) + un(v)/n was used as
the non-parametric estimator of η(v), where un(v) is the
empirical distribution of n samples generated from the uni-
form distribution over {+1,−1}dv . The additional term
un is expected to work as a regularization. In the NCE, the
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auxiliary distribution is defined as the uniform distribution,
and the sample size from a(y) is set to 5n.

Table 2 shows Monte Carlo mean, and the standard devia-
tion of the KL divergence between the true and estimated
densities scaled by sample size. We confirm that the pro-
posed methods, s-KL and ns-γ, are comparable to the MLE
while they do not suffer from the computational burden of
the normalization constant.1 The accuracy of the NCE is
lower than the other methods, and would be improved us-
ing larger samples from the auxiliary distribution, while the
computational cost increases.

5.2 Submodular Diversity Model

Several types of probabilistic submodular models have
been developed to model the diversity of item sets for appli-
cations such as recommendation systems and information
summary. Among them, Tschiatschek et al. (2016) pro-
posed the FLID (Facility LocatIon Diversity) model, which
is a probability distribution over subsets S of {1, · · · , V }.
Specifically, FLID is defined as

P (S;u,w) ∝ exp

{∑
i∈S

ui +

L∑
d=1

(max
i∈S

wi,d −
∑
i∈S

wi,d)

}
,

where ui and wi = (wi,1, · · · , wi,L) represent the quality
and latent embedding vector of the i-th item, respectively
(i = 1, · · · , n). Since the computation of the normalization
constant of FLID is prohibitive, Tschiatschek et al. (2016)
proposed to estimate this model by using the NCE.

We compared s-KL, ns-γ and NCE. The parameters in ns-
γ were set to α = −0.01, β = 0.99 and γ = 1.01. We
generated samples from the FLID model with L = 2 and
V = 12. Each entry of u and w herein was sampled in-
dependently from the uniform distribution on [0, 1]. For
the auxiliary distribution in the NCE, we used the product
distribution following Tschiatschek et al. (2016).

Table 3 presents the Monte Carlo mean and standard er-
ror of the KL divergence between the true and estimated
densities. The computation time of each estimator is also
presnted. These results indicate the significant superiority
of s-KL to NCE in terms of statistical efficiency with a
reasonable computational time. We also observe that the
performance of s-KL is more stable than that of ns-γ.

5.3 Generalized Gamma Distribution

We consider herein a distribution with the following unnor-
malized density P (x; θ1, θ2) ∝ exp(−θ1x

2)xθ2I(x > 0),
when the baseline measure is the Lebesgue measure. This

1When v = 10, MLE is fast because the calculation of the nor-
malizing constants is easy. The computational problem in MLE
arises when v = 18.

Table 3: Monte Carlo mean of the KL divergence between
the true and estimated densities, scaled by sample size in a
submodular diversity model. The computational time (sec-
onds) is measured per iteration when n = 2× 105.

n s-KL ns-γ NCE

5× 104 36.4(7.3) 46.6(5.9) 44.4(4.0)
1× 105 21.5(4.9) 46.4(4.2) 37.5(7.8)
2× 105 16.9(7.6) 69.3(7.0) 35.9(20.9)

Time 4911 2020 9827

Table 4: Monte Carlo mean of the mean squared errors
scaled by the sample size in a generalized gamma distri-
bution. The computational time (seconds) is measured per
iteration when n = 2000.

n s-KL ns-γ NCE

500 68.2(10.3) 77.6(9.3) 250.3(64.0)
1000 67.9(7.7) 76.3(5.3) 240.7(69.7)
2000 68.3(5.4) 75.3(4.6) 246.1(43.5)

Time 1.3 1.3 0.5

is referred to as a generalized gamma distribution (Stacy,
1962). We set the true value at (θ1, θ2) = (1.3, 1.3).

We compared three estimators: s-KL, ns-γ and NCE. The
parameters in ns-γ were set to α = −0.01, β = 0.99 and
γ = 1.01. Unlike Sections 5.1 and 5.2, we used a ker-
nel density estimator for s-KL and ns-γ, and a half-normal
distribution for NCE as an auxiliary distribution.

Table 4 presents the Monte Carlo mean of the mean squared
errors. The result demonstrates the significant superiority
of s-KL and ns-γ over NCE in terms of statistical effi-
ciency with a reasonable computational time even when the
sample space is continuous.

6 CONCLUSION

We have proposed self density-ratio matching estimators.
Importantly, proposed estimators are as statistically effi-
cient as MLE without calculating normalizing constants,
regardless of whether the sample space is discrete or con-
tinuous. In addition, they do not rely on any sampling tech-
niques. Among the several estimators, we recommend us-
ing s-KL with h1(x) = x, h2(x) = 1 for practical pur-
poses because its experimental performance is stable as
shown in in Appendix D.2, its loss function is convex, and
it is seen as a projection regarding the KL divergence, even
when the model is misspecified. More extensive compari-
son is a future work.
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