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Abstract

Several statistical models are given in the form
of unnormalized densities, and calculation of the
normalization constant is intractable. We pro-
pose estimation methods for such unnormalized
models with missing data. The key concept is to
combine imputation techniques with estimators
for unnormalized models including noise con-
trastive estimation and score matching. In ad-
dition, we derive asymptotic distributions of the
proposed estimators and construct confidence in-
tervals. Simulation results with truncated Gaus-
sian graphical models and the application to real
data of wind direction reveal that the proposed
methods effectively enable statistical inference
with unnormalized models from missing data.

1 INTRODUCTION

Several statistical models are given in the form of unnor-
malized densities, and the calculation of the normalization
constant (or partition function) is intractable. Namely, a
statistical model is defined as

p(x; θ) =
1

Z(θ)
p̃(x; θ), (1)

where Z(θ) =
∫
p̃(x; θ)µ(dx) is the normalization con-

stant, µ is a base measure such as the Lebesgue mea-
sure or counting measure, and we only have access to
p̃(x; θ). Such unnormalized models are widely used in
many settings: Markov random fields (Besag, 1975), direc-
tional statistics (Mardia and Jupp, 1999), Boltzmann ma-
chines (Hinton, 2002), overcomplete independent compo-
nent analysis models (Hyvärinen et al., 2001), and graph-
ical models (Lin et al., 2016; Yu et al., 2016). Several
methods for estimating θ without computing the normaliz-
ing constant Z(θ) have been proposed, such as noise con-
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trastive estimation (NCE; Gutmann and Hyvärinen, 2012)
and score matching (Hyvärinen, 2005).

In practice, we frequently encounter data with missing val-
ues, which is called missing data or incomplete data (Tsi-
atis, 2006; Kim and Shao, 2013). Missing data must be
handled properly; otherwise incorrect estimates may be ob-
tained such as nonresponse bias (Little and Rubin, 2002).
However, existing estimation methods for unnormalized
models are not applicable to missing data, because they as-
sume that the data is fully observed.

In this study, we develop estimation methods for unnor-
malized models with missing data. The proposed methods
utilize NCE and score matching by imputing missing data
with importance weights. This method is computationally
fast because it does not rely on any sampling techniques.
We derive asymptotic distributions of the proposed estima-
tors and construct confidence intervals. On the way, we
also discuss how to incorporate multiple imputation (Meng,
1994) and contrastive divergence method (Hinton, 2002).

Note that Rhodes and Gutmann (2019) proposed an estima-
tion method called variational NCE for unnormalized latent
variable models, which corresponds to a special case of the
current problem (missing completely at random, MCAR).
Although variational inference is efficient and useful for
large–scale problems, it is not clear how to construct its
confidence intervals (Blei et al., 2017). In contrast, the
proposed methods are valid under general missing mech-
anisms, including missing at random (MAR) and missing
not at random (MNAR) cases. In addition, the proposed
methods allow for the construction of confidence intervals
based on asymptotic theory.

Our main contributions are as follows.

• We propose imputation estimators for unnormalized
models with missing data. These estimators are

√
n–

consistent under general missing mechanisms, includ-
ing MNAR, and computationally efficient.

• We derive asymptotic distributions of the proposed es-
timators and construct confidence intervals.

• We confirm the validity of the proposed methods by
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simulation with truncated Gaussian graphical models
and apply the proposed methods to analyze real data
of wind direction with the bivariate circular model.

2 PRELIMINARY

2.1 Notations

Parameters with a zero in the subscript such as θ0 and τ0
denote true parameters. The notation ∇θ denotes differen-
tiation with respect to θ, and t(x)⊗2 = t(x)t(x)>. The
notation d→ denotes a weak convergence. The expectation
and variance of f(x) under density g(x) are denoted as
Eg[f(x)] and varg[f(x)], respectively. The subscript and
argument are often omitted when they are clear from the
context. A summary of the notation is provided in Ap-
pendix A.

2.2 Estimation Methods for Unnormalized Models

Several methods have been developed for estimating the
unnormalized model (1) such as noise contrastive estima-
tion (NCE; Gutmann and Hyvärinen, 2012), score match-
ing (Hyvärinen, 2005), and Monte Carlo maximum likeli-
hood estimation (MC–MLE; Geyer, 1994).

2.2.1 Noise Contrastive Estimation (NCE)

In NCE, the unnormalized model (1) is rewritten to a
one-parameter extended model q(x; τ) = exp(−c)p̃(x; θ),
where τ = (c, θ) and the true value of c is c = logZ(θ).

In addition to data samples x = {xi}ni=1 from the un-
normalized model (1), we generate noise samples y =
{yj}n

′

j=1 from a noise distribution with density a(y). Just
for simplicity, we set n′ = n in the following.

Let r(z; τ) = q(z; τ)/a(z) be the density ratio. Then, in
NCE, the estimator is defined as the maximizer of the fol-
lowing function with respect to τ ;

n∑
i=1

log
r(xi; τ)

r(xi; τ) + 1
+

n∑
j=1

log
1

r(yj ; τ) + 1
. (2)

This objective function is interpreted as the negative log-
likelihood of the naive Bayes classifier. Regarding more
intuitive explanations, see Gutmann and Hyvärinen (2012).
NCE gives a

√
n–consistent estimator under mild regularity

conditions.

NCE can be generalized from the divergence perspective
(Pihlaja et al., 2010; Gutmann and Hirayama, 2011). Let
g(x) be the true data distribution and consider the Bregman
divergence

Df (g(x), q(x; τ)) =

∫
Brf

(
g(x)

a(x)
,
q(x; τ)

a(x)

)
a(x)µ(dx),

where f is a twice differentiable strictly convex function
and Brf (u, v) = f(u) − f(v) − f ′(v)(u − v). By sub-
tracting a term independent of τ from Df (g, q(x; τ)), the
cross entropy df (g(x), q(x; τ)) between g(x) and q(x; τ)
is obtained as

Eg(x) [mnc1(x; τ)] + Ea(y) [mnc2(y; τ)] ,

where

mnc1(x; τ) = −f ′(r(x; τ)),

mnc2(y; τ) = f ′ (r(y; τ)) r(y; τ)− f(r(y; τ)).

Then, the generalized NCE is defined as the min-
imizer of Mnc1(x; τ) + Mnc2(y; τ) with respect to
τ , where Mnc1(x) = n−1

∑n
i=1mnc1(xi; τ) and

Mnc2(y) = n−1
∑n
j=1mnc2(yj ; τ). By differenti-

ation with respect to τ , the estimator is also given
by the solution to Znc1(x; τ) + Znc2(y; τ) = 0,
where Znc1(x; τ) = n−1

∑n
i=1 znc1(xi; τ), Znc2(y; τ) =

n−1
∑n
j=1 znc2(yj ; τ) and

znc1(x; τ) = −∇τ log q(x; τ)f ′′ (r(x; τ)) r(x; τ),

znc2(y; τ) = ∇τ log q(y; τ)f ′′ (r(y; τ)) r(y; τ)2.

The original NCE (2) corresponds to f(x) = x log x −
(1 + x) log(1 + x) and it is optimal in terms of asymptotic
variance (Uehara et al., 2018). On the other hand, when
f(x) = x log x, the estimator is given by the minimizer of

− 1

n

n∑
i=1

log q(xi; τ) +
1

n

n∑
j=1

r(yj ; τ),

which is essentially identical to MC–MLE (Geyer, 1994)
by profiling-out c.

2.2.2 Score Matching

Score matching was originally developed as a general esti-
mation method for the unnormalized model (1) on Rd. Let
c(x; θ) = ∇x log p̃(x; θ) ∈ Rd and denote the s-th coor-
dinate of x by xs. For data samples x = {xi}ni=1, the
score matching estimator of θ is defined as the minimizer
of Msc(x; θ) = n−1

∑n
i=1msc(xi; θ), where

msc(x; θ) =
1

2

d∑
s=1

cs(x; θ)2 +

d∑
s=1

∂cs(x; θ)

∂xs
,

cs(x; θ) =
∂

∂xs
log p̃(x; θ).

Note that this estimator is also given by the solution to
Zsc(x; θ) = 0, where Zsc(x; θ) = n−1

∑n
i=1 zsc(xi; θ)

and zsc(x; θ) = ∇θmsc(x; θ).

Hyvärinen (2007) extended score matching to unnormal-
ized models on Rd+ = [0,∞)d. The estimator is defined
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as the minimizer of Msc+(x; θ) = n−1
∑n
i=1msc+(xi; θ),

where msc+(x; θ) is given by

d∑
s=1

{
2xscs(x; θ) + (xs)2cs(x; θ)2 + (xs)2

∂cs(x; θ)

∂xs

}
.

2.3 Missing Data and Imputation Methods

We briefly review the framework of missing data and impu-
tation methods. For more details, see Kim and Shao (2013).

Suppose that {xi}ni=1 are independently and identically
distributed (i.i.d.) samples from a distribution with den-
sity p(x; θ). We consider the situation where some part of
xi may be missing. Let {δi}ni=1 be the missing indicators.
Accordingly, xi = (xi,obs, xi,mis) is fully observed when
δi = 1, while only xi,obs is observed and xi,mis is missing
when δi = 0. We assume that δi follows a Bernoulli dis-
tribution with probability Pr(δi = 1 | xi). The case with
several missing patterns, that is, the case where the dimen-
sion of xi,obs may differ with i, can be easily considered
by extending this notation (Seaman et al., 2013). For more
details, see Appendix C.

The missing mechanism is called missing at random
(MAR) if Pr(δ = 1 | x) = Pr(δ = 1 | xobs) holds. Impor-
tantly, the missing process can be ignored for estimation of
θ in MAR cases (Little and Rubin, 2002), because

p(xobs; θ) =

∫
p(xobs, xmis; θ)Pr(δ | x)µ(dxmis)

∝
∫
p(xobs, xmis; θ)µ(dxmis).

As a special case of MAR, a missing mechanism is referred
to as missing completely at random (MCAR) if Pr(δ = 1 |
x) is independent of x. When MAR does not hold, the
missing mechanism is referred to as missing not at random
(MNAR).

For estimating θ from missing data, the fundamental al-
gorithm is the expectation maximization (EM) algorithm
(Dempster et al., 1977), which maximizes the observed
likelihood p(xobs; θ). Equivalently, the EM algorithm
solves the following observed (mean) score equation with
respect to θ (Louis, 1982):

1

n

n∑
i=1

E [∇θ log p(xi; θ) | xi,obs; θ] = 0. (3)

However, the EM algorithm requires a closed-form expres-
sion of the conditional expectation in (3), which is often in-
tractable. To overcome this obstacle, a method called frac-
tional imputation (FI) has been proposed (Kim, 2011; Yang
and Kim, 2016), which is closely connected with the Monte
Carlo EM algorithm (Wei and Tanner, 1990). FI is com-
putationally efficient because it uses importance sampling

and does not rely on MCMC. Another method called multi-
ple imputation (MI) is also commonly used, which utilizes
MCMC (Rubin, 1987; Murray, 2018).

3 FINCE and FISCORE

We propose two estimation methods for unnormalized
models with missing data: FINCE (fractional imputation
noise contrastive estimation) and FISCORE (fractional im-
putation score matching).

In this section, we focus on the MAR case, that is, Pr(δ =
1 | x) = Pr(δ = 1 | xobs). In Section 5, we discuss an
extension to the MNAR case.

Throughout this section, we assume one missing pattern.
For the case of multiple missing patterns, see Appendix C.

3.1 NCE with EM algorithm

First, we incorporate the EM algorithm into NCE. Al-
though the score equation cannot be used as in (3) for un-
normalized models, the estimating equation Znc1(x; τ) +
Znc2(y; τ) = 0 of NCE can be used instead. Thus, the
estimator of τ = (c, θ) is defined as the solution to the fol-
lowing equation:

1

n

n∑
i=1

E[znc1(xi; τ)|xi,obs; θ] +
1

n

n∑
j=1

znc2(yj ; τ) = 0,

(4)

where each conditional expectation in the first term is taken
with respect to the posterior

p(xi,mis | xi,obs; θ) =
p̃(xi; θ)∫

p̃(xi; θ)µ(dxi,mis)
. (5)

Note that the first term in the left hand side of (4) formally
means

1

n

n∑
i=1

{δiznc1(xi; τ) + (1− δi)E[znc1(xi; τ) | xi,obs; θ]} ,

(6)

because the dimension of xi,obs may vary with i. Through-
out this paper, we implicitly assume this conversion follow-
ing the convention in the literature of missing data (Seaman
et al., 2013).

Generally, it is difficult to analytically calculate the condi-
tional expectation in (4). In the subsequent subsection, we
develop a method to resolve this problem. Here, assuming
that the conditional expectation in (4) can be calculated an-
alytically, we propose the EM algorithm to solve the equa-
tion (4), which is given by Algorithm 1.

Note that each update of τ̂t in Algorithm 1 can be re-
placed with M-estimators. For example, when f(x) =
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Algorithm 1: NCE with EM algorithm

input : {xi}ni=1, τ̂0 = (ĉ0, θ̂0)

output: τ̂T = (ĉT , θ̂T )
1 Initialize t = 0
2 Take n samples {yj}nj=1 from a(y)

3 repeat
4 Solve the following equation w.r.t τ and update

τ̂t+1:

E[Znc1(x; τ) | xobs; θt] + Znc2(y; τ) = 0.

5 t = t+ 1

6 until τ̂t converges;

x log x − (1 + x) log(1 + x) (original NCE), τ̂t+1 is ob-
tained by maximization with respect to τ of

n∑
i=1

E

[
log

r(xi; τ)

r(xi; τ) + 1

∣∣∣∣xi,obs; θ̂t]+

n∑
j=1

log
1

r(yj ; τ) + 1
.

(7)

When f(x) = x log x (MC–MLE), τ̂t+1 is obtained by
minimization with respect to τ of

− 1

n

n∑
i=1

E[log q(xi; τ) | xi,obs; θ̂t] +
1

n

n∑
j=1

r(yj ; τ).

Remark 3.1 (Difference from variational NCE) From
(7), Algorithm 1 and variational NCE (Rhodes and
Gutmann, 2019) are different. See Appendix D for details.

3.2 NCE with Fractional Imputation (FINCE)

It is often infeasible to analytically calculate the conditional
expectation in Algorithm 1. Thus, in the same spirit of frac-
tional imputation (FI; Kim, 2011), we incorporate impor-
tance sampling using random variables from an auxiliary
distribution b(xmis). Namely, we use the formula∫

u(x)p(xmis | xobs; θ)µ(dxmis)

=
Eb(xmis)[u(x)p̃(xmis, xobs; θ)/b(xmis)]

Eb(xmis)[p̃(xmis, xobs; θ)/b(xmis)]

to calculate E[Znc1(x; τ) | xobs; θ] in (4). The resulting
procedure is given in Algorithm 2. Here, ∝ in the W-step
indicates a normalization so that the summation ofwik over
k is equal to 1 for each i.

Note that again the update of τ̂t in M-step can be replaced
with M-estimators. For example, the conditional expecta-
tion in (7) is calculated as

m∑
k=1

wik log
r(x∗ki ; τ)

r(x∗ki ; τ) + 1
.

Algorithm 2: FINCE

input : {xi}ni=1, τ̂0 = (ĉ0, θ̂0)

output: τ̂T = (ĉT , θ̂T )
1 Initialize t = 0
2 Take n samples {yj}nj=1 from a(y).
3 For i with δi = 0, take m samples {x∗ki,mis}mk=1

from b(xmis) and set x∗ki = (xi,obs, x
∗k
i,mis).

4 For i with δi = 1, set m samples {x∗ki }mk=1 to
x∗ki = xi

5 repeat
6 W-Step:
7 For i with δi = 0; wik ∝ q(x∗ki ; τ̂t)/b(x

∗k
i,mis).

This means

wik =
q(x∗ki ; τ̂t)/b(x

∗k
i,mis)∑m

k=1 q(x
∗k
i ; τ̂t)/b(x∗ki,mis)

.

8 For i with δi = 1; wik = 1/m
9 M-step: Solve the following equation w.r.t τ

and update τ̂t+1:[
1

n

n∑
i=1

m∑
k=1

wikznc1(x∗ki ; τ)

]
+ Znc2(y; τ) = 0.

10

t = t+ 1
11 until τ̂t converges;

The choice of the noise and auxiliary distributions is im-
portant for improved estimation accuracy. Specifically,
the noise distribution a(x) should be generally close to
p(xmis, xobs; θ0), while the auxiliary distribution b(xmis)
should be close to p(xmis | xobs; θ0). When there are sam-
ples without missing data (complete data) as in Section 6,
moment matching with complete data can be used to deter-
mine a(x) and b(xmis). We recommend using heavy-tailed
distributions for a(x) and b(xmis), following the common
strategy of importance sampling (Owen, 2013).

3.3 Score Matching with Fractional Imputation
(FISCORE)

Since score matching is defined in the form of Z-estimators
like NCE, we can define score matching with the EM algo-
rithm as the solution to Zsc,obs(xobs; θ) = 0, where

Zsc,obs(xobs; θ) = E[Zsc(x; θ) | xobs; θ]. (8)

Since calculation of the conditional expectation in (8) is of-
ten challenging, we again propose using importance sam-
pling with an auxiliary distribution b(x) like FINCE. The
resulting procedure of FISCORE is provided in Algorithm
3. A similar algorithm is obtained for the non–negative
score matching.

Remark 3.2 (MINCE and MISCORE) We can also
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Algorithm 3: FISCORE

input : {xi}ni=1, ĉ0, θ̂0
output: θ̂T

1 Initialize t = 0, τ̂0 = (ĉ0, θ̂0).
2 For each i with δi = 0, take m samples
{x∗ki,mis}mk=1 from b(x).

3 For i with δi = 1, set m samples {x∗ki }mk=1 so that
x∗ki = xi

4 repeat
5 W-Step:
6 If δi = 0; wik ∝ p̃(x∗ki ; θ̂t)/b(x

∗k
mis).

7 If δi = 1; wik = 1/m
8 M-step: Solve the following equation to obtain

for θ̂t+1 w.r.t θ:

1

n

n∑
i=1

m∑
k=1

wikzsc(x
∗k
i ; θ) = 0.

9 t = t+ 1

10 until τ̂t converges;

combine MI with NCE and score matching though it is
unstable and computationally heavy. See Appendix F.

Remark 3.3 (FICD) We can also extend our approach to
the contrastive divergence (CD) method as in Appendix G.

4 ASYMPTOTICS AND CONFIDENCE
INTERVALS

We derive the asymptotic distributions of FINCE and FIS-
CORE. Based on the asymptotic distributions, we construct
confidence intervals, which enable hypothesis testing. This
is an advantage of the proposed methods over variational
NCE (Rhodes and Gutmann, 2019). Proofs of the theorems
are given in the Appendix.

4.1 FINCE

We start with the analysis of FINCE with the EM algorithm
τ̂nc, which is the solution to Znc,obs(xobs,y; τ) = 0 where

Znc,obs(xobs,y; τ) = E[Znc1(x; τ) | xobs; τ ] + Znc2(y; τ).

Based on the theory of Z-estimators (van der Vaart, 1998),
its asymptotic distribution is obtained as follows.

Theorem 1 We have
√
n(τ̂nc − τ0)

d→ N(0, I−11,ncJ1,nc(I>1,nc)−1),

where

I1,nc = E[∇τ>Znc,obs(xobs,y; τ0)],

J1,nc = var[Znc,obs(xobs,y; τ0)].

Next, we investigate FINCE by considering each iteration.
Given an initial

√
n-consistent estimator τ̂p, we obtain the

imputed equation Znc,m(τ | τ̂p) = 0, where Znc,m(τ | τ̂p)
is given by{

1

n

n∑
i=1

m∑
k=1

w(x∗ki ; τ̂p)znc1(x∗ki ; τ)

}
+

1

n

n∑
j=1

znc2(yj ; τ),

where x∗ki = (xi,obs, x
∗k
i,mis), x∗ki,mis ∼ b(xmis), and

w(x∗ki ; τ̂p) ∝ q(x∗ki ; τ̂p)/b(x
∗k
i,mis). As m → ∞,

Znc,m(τ | τ̂p) converges to Z̄nc(τ | τ̂p) given by{
1

n

n∑
i=1

E[znc1(xi; τ) | xi,obs; τ̂p]

}
+

1

n

n∑
j=1

znc2(yj ; τ).

Let τ̂nc,∞ be the solution to Z̄nc(τ | τ̂p) = 0. Then, as
proved later in Theorem 3, we obtain

τ̂nc,∞ = τ̂nc + I−13,ncI2,nc(τ̂p − τ̂nc) + op(n
−1/2),

where I3,nc = E[∇τ>Znc(x,y; τ0)] and I2,nc = I3,nc −
I1,nc.

Let τ̂ (0) = τ̂p and define τ̂ (t) to be the solution to Z̄nc(τ |
τ̂ (t−1)) = 0 for each t. Then, we obtain the following.

Corollary 1 We have

τ̂ (t) = τ̂nc + (I−13,ncI2,nc)t−1(τ̂ (0) − τ̂nc) + op(n
−1/2).

If the spectral radius of I−13,ncI2,nc is less than 1, then τ̂ (t)

converges to τ̂nc as t→∞.

Let v(x; τ) = ∇τ log q(x; τ) and r0(x) = r(x; τ0) =
q(x; τ0)/a(x). For the original NCE, each term in the
above is explicitly obtained as follows.

Corollary 2 When f(x) = x log x− (1 + x) log(1 + x),

I1,nc =E

[
E

[
v(x; τ0)

1 + r0(x)

∣∣∣∣xobs]E
[
v(x; τ0)> | xobs

]]
,

I3,nc =E

[
v(x; τ0)⊗2

1 + r0(x)

]
,

J1,nc =varq[E[znc1(x; τ0) | xobs]] + vara[znc2(y; τ0)],

znc1(x; τ) = − v(x; τ)

1 + r(x; τ)
, znc2(y; τ) =

r(y; τ)v(y; τ)

1 + r(y; τ)
.

For MC–MLE, we can prove the convergence of FINCE as
follows.

Corollary 3 When f(x) = x log x,

I1,nc = E
[
E [v(x; τ0)|xobs]⊗2

]
, I3,nc = E

[
v(x; τ0)⊗2

]
.

Additionally, {I−13,ncI2,nc}j → 0 as j →∞.
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4.2 FISCORE

First, we analyze score matching with the EM algorithm
θ̂sc, which is the solution of Zsc,obs(xobs; θ) = 0 where
Zsc,obs(xobs; θ) is defined by (8). The asymptotic distribu-
tion of θ̂sc is obtained as follows.

Theorem 2 We have
√
n(θ̂sc − θ0)

d→ N(0, I−11,scJ1,sc(I>1,sc)−1),

where

I1,sc = E[∇θ>Zsc,obs(xobs; θ0)],

J1,sc = var[Zsc,obs(xobs; θ0)].

Next, we study the asymptotic property of FISCORE by
focusing on each update. Given an initial

√
n-consistent

estimator θ̂p for θ, consider the imputed equation:

Zsc,m(θ | θ̂p) :=
1

n

n∑
i=1

m∑
k=1

w(x∗ki ; θ̂p)zsc(θ;x
∗k
i ) = 0,

where x∗ki = (xi,obs, x
∗k
i,mis), x∗ki,mis ∼ b(xmis), and

w(x∗ki ; θ̂p) ∝ p̃(x∗ki ; θ̂p)/b(x
∗k
i,mis).

Here, we consider the case m → ∞. See Appendix E for
the case of finite m. As m → ∞, the function Zsc,m(θ |
θ̂p) converges to

Z̄sc(θ | θ̂p) = E[Zsc(x; θ) | xobs; θ̂p].

Let θ̂sc,∞ be the solution to Z̄sc(θ | θ̂p) = 0. Its asymptotic
property is obtained as follows.

Theorem 3 We have

θ̂sc,∞ = θ̂sc + I−13,scI2,sc(θ̂p − θ̂sc) + op(n
−1/2),

where

I2,sc = −E[cov[zsc(x; θ0),∇θ log p̃(x; θ0) | xobs]],

I3,sc = E

[
d∑
s=1

∇θcs(x; θ0)⊗2

]
.

In the proof of Theorem 3, we use the relation I3,sc =
I1,sc + I2,sc, which corresponds to the missing infor-
mation principle or Louis’ formula for normalized mod-
els (Kim and Shao, 2013; Orchard and Woodbury, 1972;
Louis, 1982). Specifically, if Zsc(x; θ) is replaced by the
true score function Ssc(x; θ) = ∇θ log p(x; θ), then Theo-
rem 3 reduces to the result of Wang and Robins (1998). In
this case, I3,sc, I1,sc and I2,sc are replaced by

Icom = E[∇θ>Ssc(x; θ0)], Iobs = E[∇θ>Sobs(xobs; θ0)],

Imis = E[Smis(x; θ0)⊗2],

respectively, where

Smis(x; θ) = Ssc(x; θ)− E[Ssc(x; θ) | xobs; θ],

Sobs(xobs; θ) =

∫
Ssc(x; θ)µ(dxmis).

The relation Icom = Iobs + Imis holds, and the term
I−1comImis is often called the fraction of missing information
(Kim and Shao, 2013). For the current problem, I−13,scI2,sc
can be considered as an analog. As seen in Corollary 1,
this qunantity is important to guarantee the convergence.
It is generally difficult to prove that the spectral radius of
I−13,scI2,sc is less than 1 in FISCORE. However, the exper-
imental results presented in Section 6 imply that this algo-
rithm converges in practice.

Remark 4.1 Similar results hold for the non–negative
score matching defined by Msc+(x; θ). See Appendix I.

Remark 4.2 See Appendix I for variance estimators based
on Theorems 1, 2 and 3.

5 EXTENSION TO MNAR CASE

We discuss an extension to the case of missing not at ran-
dom (MNAR). In general, the nonparametric identification
condition does not hold in the MNAR case (Robins and
Ritov, 1997). However, assuming the existence of nonre-
sponse instrument and parametric models, the parameter
can be identified in some cases (Kim and Kim, 2012; Wang
et al., 2014). We hereafter assume the existence of a nonre-
sponse instrument so that the parameter can be identified.

Assumption 1 (Wang et al. (2014) ) There exists nonre-
sponse instrument x2 s.t. x = (x1,x2) and x2 ⊥⊥ δ | x1.

To estimate the parameter under MNAR data, FISCORE
and FINCE can be still applied. First, we specify a propen-
sity score model π(δ|x;φ) for Pr(δ|x). For the case of
FISCORE, we want to solve the equation with respect to η:

E

[(
Zsc(x; θ)

∇φ log π(δ|x;φ)

)
|xobs, δ; η

]
= 0, (9)

where the expectation is taken under t(xmis|xobs, δ; η) ∝
p(x; θ)π(δ|x;φ), and η = (θ, φ). Importantly, we must
address the selection mechanism unlike in the MAR and
MCAR cases, because p(xmis|xobs) = p(xmis|δ, xobs)
does not hold. The difference is evident when we com-
pare (9) with (8). Owing to MNAR, the first modifi-
cation is such that the selection mechanism π(δ|x) ap-
pears when calculating the fractional weight: wik ∝
p̃(x∗ki ; θ̂t)π(δi|x∗ki ; φ̂t)/b(x

∗k
mis). The second modification

is the score function of the propensity score model which
is illustrated in (9).

In the case of FINCE, let ζ = (τ>, φ>)> and
Znc(δ,x,y; ζ) be defined as an augmented estimating
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equation: (
Znc1(x; τ) + Znc2(y; τ)
∇φ log π(δ|x;φ)

)
.

The algorithm is modified to solve the following equation
with respect to ζ:

E

[(
Znc1(x; τ) + Znc2(y; τ)
∇φ log π(δ|x;φ)

)
|xobs, δ; ζ

]
= 0.

Refer to Appendix H for the details.

6 SIMULATION RESULTS

Here, we confirm the validity of FINCE and FISCORE by
simulation. We do not compare them with variational NCE
because the latter does not take the MNAR case into ac-
count and does not provide a confidence interval.

6.1 Truncated Normal Distribution

First, we consider covariance estimation for the two-
dimensional truncated normal distribution:

p̃(x1, x2; Σ) = exp

(
−1

2
x>Σ−1x

)
,Σ =

(
2.0 0.3
0.3 2.0

)
,

where x1, x2 ≥ 0. For n samples of x = (x1, x2), x1
was always observed whereas missing data of x2 was intro-
duced with the following two mechanisms. The binary ran-
dom variable δ is the missing indicator: x2 was observed if
and only if δ = 1.

• MAR: Pr(δ = 1 | x) = 1/[1+exp{−(x1−0.9)/0.3}]

• MNAR: Pr(δ = 1 | x) = 1/[1 + exp{−5(x2− 0.9)}]

For data generation, we used the R-package mvtnorm
(Genz et al., 2018). In both cases, the overall missing rates
were about 30%.

We compared three estimators of Σ: original NCE based on
complete data, (original) FINCE, and FISCORE. Note that
the noise and auxilliary distributions were set to truncated
normal distributions with moment matching and m = 100
imputations were used in FINCE and FISCORE.

Table 1 presents the absolute bias and median squared er-
ror from 200 simulations. It shows that NCE on com-
plete data has significant bias in both the MAR and MNAR
cases, which is expected from the theory of missing data
(Little and Rubin, 2002). On the other hand, FINCE and
FISCORE achieve better estimation accuracy with reduced
bias by appropriately accounting for the missing data.

In addition, we constructed 95% confidence intervals based
on the variance estimators in Appendix I. Table 2 shows
their coverage probabilities: they are approximately equal
to 95% in both FINCE and FISCORE.

Table 1: The absolute bias and median square error

MAR
n NCE FINCE FISCORE

500 (bias) 0.29 0.03 0.03
(mse) 0.040 0.024 0.021

1000 (bias) 0.25 0.02 0.02
(mse) 0.032 0.015 0.011

MNAR
n NCE FINCE FISCORE

500 (bias) 0.33 0.18 0.12
(mse) 0.041 0.027 0.021

1000 (bias) 0.24 0.14 0.14
(mse) 0.039 0.020 0.012

Table 2: Coverage probabilities: MAR setting

n FINCE FISCORE

500 94% 89%
1000 94% 92%

6.2 Truncated Gaussian Graphical Model

Next, we consider estimation of the truncated Gaussian
graphical model (GGM) considered in Lin et al. (2016)
with missing data.

Let G = (V,E) be an undirected graph where V =
{1, · · · , d}. Then, a truncated GGM with graph G is de-
fined as the unnormalized model (1) with

p̃(x; Σ) = exp

(
−1

2
x>Σ−1x

)
(x ∈ Rd+), (10)

where Σ is a d× d positive definite matrix satisfying
(Σ−1)ij = 0 for (i, j) 6∈ E. Similar to the original GGM
(Lauritzen, 1996), Xi and Xj are conditionally indepen-
dent on the other variables Xk (k 6= i, j) if (i, j) 6∈ E.
Here, we estimate G by using the confidence intervals of
the entries of Σ−1.

We generated n = 1000 independent samples from a
truncated GGM with d = 10 and G provided in the
top panel of Figure 1. Namely, there are three clusters
(x1, x2, x3), (x4, x5, x6), and (x7, x8, x9) of three vari-
ables and one isolated variable x10. We set all diagonal
entries of Σ−1 to 1 and all nonzero off-diagonal entries
of Σ−1 to 0.5. We introduced missing values on x3, x6
and x9 by using the following MAR mechanism: for k =
1, 2, 3, random vector ck ∈ R10 was generated by (ck)3 =
(ck)6 = (ck)9 = 0 and (ck)j ∼ N(0, 1) (j 6= 3, 6, 9) and
then x3k was missed with probability 1/(3 + exp(c>k x)).
The proportion of missing data was approximately 60%.

Then, we fitted the truncated GGM by using FINCE and
FISCORE with 100 imputations. We used N(0, 2) trun-
cated to the positive orthant as the proposal distribution for
missing entries. In FINCE, we generated n = 1000 noise



Imputation Estimators for Unnormalized Models with Missing Data

samples from the product of the coordinate-wise exponen-
tial distributions with the same mean as the data.

We determined graph G by collecting all edges (i, j) for
which the 95 % confidence interval of (Σ−1)ij did not in-
clude zero. Figure 1 presents the result of one realization.

Table 3 shows the proportions of falsely selected edges
(false positive) and falsely unselected edges (false negative)
in 100 realizations. The coverage probabilities of the con-
fidence intervals are approximately equal to 95% in both
FINCE and FISCORE.

truth

FINCE FISCORE

Figure 1: True and selected graphs for the truncated GGM

Table 3: Proportions of false positives (FP) and false nega-
tives (FN) in edge selection of truncated GGM

FINCE FISCORE

FP 10.5% 6.4%
FN 12.6% 23.3%

7 APPLICATION TO REAL DATA

Many models in directional statistics have intractable nor-
malization constants (Mardia and Jupp, 1999). Here, we
consider estimation of the bivariate circular distribution
proposed by Singh et al. (2002), which is a probability dis-
tribution on two circular variables x1, x2 ∈ [0, 2π). It is an
unnormalized model (1) with

p̃(x1, x2; θ) = exp(κ1 cos(x1 − µ1) + κ2 cos(x2 − µ2)

+ λ12 sin(x1 − µ1) sin(x2 − µ2)), (11)

where θ = (κ1, κ2, µ1, µ2, λ12). For identifiability, we
imposed the parameter constraints κ1 ≥ 0, κ2 ≥ 0,
0 ≤ µ1 < 2π and 0 ≤ µ2 < 2π. Although Mardia
et al. (2008) developed a method for estimating θ based
on pseudo-likelihood, it is not applicable to missing data.
We applied FINCE to estimate θ from missing data.

We used the data on wind direction in Tokyo on 00:00 (x1)
and 12:00 (x2) for each day in 20181. Thus, the sample
size is n = 365. The data were discretized into 16 direc-
tions, such as north-northeast. Figure 2 presents a 16× 16
histogram of raw data in gray scale.

1available on Japan Meteorological Agency website

Figure 2: Wind direction data
For each of the 365 samples, we introduced missing for x2
with probability 1/(1 + exp(cos(x1))). Thus, the missing
mechanism was MAR. Among 365 samples, x2 was ob-
served in 212 samples.

Then, we fit the model (11) by FINCE with 100 imputa-
tions and 1000 noise samples, where the noise distribution
and proposal distribution for missing entries were set to
uniform distributions on [0, 2π) × [0, 2π) and [0, 2π), re-
spectively. For comparison, we also fit the model (11) by
NCE, in which 153 samples with x2 missing were simply
discarded, which is called the complete case analysis and
known to have bias in MAR cases (Kim and Shao, 2013).

Table 4 presents the confidence intervals obtained by
FINCE, NCE on complete cases, and NCE on the full data
(365 samples) for reference. Whereas complete case anal-
ysis has a large bias, FINCE provides similar estimates to
NCE on full data, with wider confidence intervals due to
missing. In particular, FINCE succeeds in detecting the
5% significance of λ12 6= 0, which implies that x1 and x2
are not independent. Thus, FINCE enables statistical infer-
ence based on unnormalized models by properly handling
missing data.

Table 4: Confidence intervals for bivariate circular distri-
bution (11). (cc: complete case)

FINCE NCE (cc) NCE (full)

κ1 [0.30,1.17] [0.58,1.99] [0.26,1.16]
µ1 [0.59,1.62] [-0.18,1.31] [0.69,1.58]
κ2 [0.11,1.09] [-0.07,0.96] [0.16,0.84]
µ2 [4.08,5.01] [3.46,5.70] [4.09,4.85]
λ12 [-2.20,-0.29] [-1.96,0.94] [-1.67,-0.48]

8 CONCLUSION

We have proposed estimation methods for unnormalized
models with missing data: FINCE and FISCORE. The pro-
posed methods are computationally efficient, valid under
general missing mechanisms, and enable statistical infer-
ence using the confidence intervals. Extending the recently
developed statistically efficient estimators for unnormal-
ized models (Uehara et al., 2020) to missing data is an in-
teresting future research.
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