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Abstract

In this paper we focus on the problem of on-
line portfolio selection with transaction costs.
We tackle this problem using a novel approach
for combining the predictions of long-term ex-
perts with those of short-term experts so as to
effectively reduce transaction costs. We prove
that the new strategy maintains bounded re-
gret relative to the performance of the best
possible combination (switching times) of the
long-and short-term experts. We empirically
validate our approach on several standard
benchmark datasets. These studies indicate
that the proposed approach achieves state-of-
the-art performance.

1 Introduction

Online portfolio selection (Cover, 1991) remains a chal-
lenging open problem in online vector prediction. In
this problem the learner maintains an online alloca-
tion vector, called a portfolio, specifying the fraction
of wealth to be invested in all the stocks in the market.
At the start of each trading period (e.g., a day), the
learner receives the current prices of the stocks and
submits his next day’s portfolio to his broker. Useful
portfolio vectors should allocate wealth to stocks that
will rise on the following day and avoid allocations to
falling stocks. This prediction problem turns out to
be quite challenging when applied in reality with true
stock prices, but there are several known portfolio selec-
tion algorithms that exhibit interesting performance on
historical data (Györfi et al., 2007; Li and Hoi, 2012).
The problem becomes significantly harder when trying
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to model other elements, such as brokerage transactions
costs, which exist in realistic applications.

Classical portfolio selection algorithms such as Uni-
versal Portfolios (UP) (Cover, 1991; Blum and Kalai,
1999), EG (Helmbold et al., 1998) and Online Newton-
Steps (ONS) (Hazan and Seshadhri, 2009) have been
studied in the context of online learning and were ana-
lyzed using regret analysis, where the comparison class
was the set of constant rebalancing portfolios (CRPs).
Such algorithms can resist very large (proportional)
transaction costs. The reason for this tolerance is that
CRP portfolios change very little from day to day. More
aggressive algorithms that achieve significantly better
empirical performance in a market without transaction
costs, such as Anticor (Borodin et al., 2004), Olmar
(Li and Hoi, 2012) and kernel-based algorithms (Györfi
et al., 2006), are very sensitive even to small transaction
costs.

The two main approaches for adjusting a given algo-
rithm to deal with transaction costs are a regularization
(e.g., Das et al., 2013) and dilution of the trading days.
The latter approach was motivated by an observation
made by Blum and Kalai (1999) that a dilution in the
number of trading days leads to a significant reduction
in transaction costs. In this paper, we focus on the dilu-
tion approach and try to achieve meaningful dilution by
combining the predictions of long-term experts. While
we can reduce transaction costs by ignoring (diluting)
trading periods, such dilutions invalidate some short-
term predictions (and trading decisions). The inclusion
of larger horizon predictions can alleviate this problem.
Therefore, our goal in this paper will be to combine
the best of all worlds. We consider “diluted” experts
that are defined with respect to diluted price sequences
(e.g., only trade every d days). This dilution makes
them robust to larger transaction costs. They, however,
are required to generate longer-term predictions, which
are harder to make (and potentially adversely affect
performance). To overcome this longer term prediction
challenge, we also employ a short-term “emergency”
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expert that observes the entire sequence (every day),
and has the mandate to undo any long-term decision
(recommended by any of the long-term experts) when it
faces extreme events that conflict with these long-term
predictions.

We present an algorithm called Long-and Short-term
Portfolio Ensemble (LSPE) and prove that it is com-
petitive with the best switching strategy in hindsight
over periods defined by applications of the emergency
expert. We explain how to implement this algorithm in
linear time complexity and then present an empirical
study of our strategy implemented as an ensemble over
instances of the well-known OLMAR online portfolio
selection algorithm (Li and Hoi, 2012). These exper-
iments indicate that LSPE consistently outperforms
the known commission-aware strategies.

While here we focus only on the long-standing problem
of handling transaction costs in portfolio selection, our
proposed framework offers a novel approach to deal
with the problem of combining long-and short-term ex-
perts, and can be utilized in other online learning tasks
in which predictions in varying time-scales are required.
Potential applications can be found, for example, in
weather forecasting.

2 Online Portfolio Selection

In Cover’s classic portfolio selection setting (Cover,
1991), we are given a market with n stocks and consider
an online game between an algorithm and an adversary
played through T rounds (say, days). On each day t,
the market is represented by a market vector Xt of
relative prices, Xt , (xt1, x

t
2, ..., x

t
n), where for each

i = 1, . . . , n, 0 < c1 ≤ xti ≤ c2 for some constants c1, c2.
The relative price of stock i is defined to be the ratio
of its closing price on day t relative to its closing price
on day t− 1. We denote by XT−1

0 , X0, . . . ,XT−1 the
sequence of T market vectors starting at day 0. The
algorithm’s portfolio for day t is bt , (bt1, b

t
2, . . . , b

t
n),

where bti ≥ 0 is the wealth allocation for stock i. We
require that the portfolio satisfies

∑m
i=1 b

t
i = 1. Thus,

bt specifies the online player’s wealth allocation for
each of the n stocks on day t, and bti is the fraction
of total current wealth invested in stock i on that
day. We denote by B , b0, . . . ,bT−1 the sequence
of T portfolios played by the algorithm for the entire
game. The portfolio sequence where all bi equal the
same fixed portfolio is called a constant rebalanced
portfolio (CRP). At the start of each trading day t, the
algorithm chooses a portfolio bt. Thus, by the end of
day t, the player’s wealth is multiplied by 〈bt,Xt〉 =∑n
i=1 b

t
ix
t
i, and assuming an initial wealth of $1, the

player’s cumulative wealth by the end of the game is

R(B,XT−1
0 ) ,

T−1∏
t=0

〈bt,Xt〉 . (1)

The goal in the online approach to portfolio learning
is generating a sequence of portfolios BALG, without
the power of hindsight, which competes with the best
fixed strategy A from reference class A. We, therefore,
define the regret w.r.t. reference class A as follows:

Regret(BALG,A, T ) ,

max
A∈A

lnR(BA,X
T−1
0 )− lnR(BBALG

,XT−1
0 ).

Accordingly, we aim to achieve sublinear regret w.r.t A.
In the case where this reference set is all the possible
CRPs, the goal is to be competitive with the best-
in-hindsight fixed portfolio, denoted b∗, which is also
known as the best constant rebalanced portfolio.1 In
this paper we are concerned with portfolio ensembles
over trading strategies (experts). When dealing with
portfolio ensembles, we thus choose a portfolio through
our choice of trading algorithms (each of which selects
its own portfolio).

2.1 Introducing Transaction Costs

We now turn to extend the vanilla portfolio selection
model that abstracts away transaction costs. Transac-
tion costs might include several elements in addition to
the actual commissions paid to brokers, clearing firms
and the exchange for participating in trades. These
may include slippage (the price difference between the
time we decide to buy/sell a security and the time the
transaction is actually executed in the exchange) and
market impact costs. The latter element is considered
to be extremely challenging to model as it might be
affected by factors such as the type of order used and
the present liquidity in the limit order book. Modeling
brokerage exchange commissions, however, follows a
fixed and known schedule and, as a first approximation,
it is common to apply a linear transaction cost model
where each transaction incurs a cost proportional to
its size (Blum and Kalai, 1999; Lobo et al., 2007).

We, therefore, focus on the following simple and com-
mon multiplicative (proportional) cost model, com-
monly used in the online portfolio selection literature
(Borodin and El-Yaniv, 2005, Sec 14.5.4). In this
model, commissions are specified via a fixed parameter,
0 < γ, called the commission rate and for buying (or
selling) $w worth of any stock, the player must pay

1 Interestingly, BCRP is known to be better than any
online strategy in a market governed by an i.i.d. process
(Cover, 1991; Cover and Ordentlich, 1996).
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a commission of $γ2w. Thus, the transaction cost in-
curred when the player rebalances a portfolio b to port-
folio b′ is γ

2 ||b− b′||1. In the present transaction cost
model, we assume that commissions are self-refinanced,
which means that the player pays them immediately
after performing the daily transactions. Thus, on day
t, after rebalancing to portfolio bt, the market vector
Xt is revealed and portfolio bt becomes

b̂t ,
1

〈bt,Xt〉
(b1x1, b2x2, . . . , bnxn). (2)

Accordingly, the commission incurred to rebalance to
the next day’s portfolio, bt+1, is

γ

2
||bt+1 − b̂t||1, (3)

which is paid from the current wealth, 〈bt,Xt〉. Al-
together, the cumulative wealth of a player paying
commission at rate γ is

Rγ(B,XT−1
0 ) =

T−1∏
t=0

(
〈bt,Xt〉

[
1− γ

2
||bt+1 − b̂t||1

])
.

3 Related Work and Contributions

The study of portfolio optimization with transaction
costs within mainstream finance is a huge topic, beyond
our scope. Typically, such studies design solutions
under specific distributions (Davis and Norman, 1990;
Konno and Wijayanayake, 2001; Lobo et al., 2007). In
the brief survey below we only refer to related works
emerging from the online learning research initiated by
Cover (1991).

Blum and Kalai (1999), as far as we know, were the
first to study commissions in online portfolio selection
and they presented an elegant regret analysis for Cover
and Ordentlich’s universal portfolios (UP) algorithm
(Cover and Ordentlich, 1996), which pays proportional
commissions.

The regularization approach for incorporating trans-
action costs was initiated in the papers of Das et al.
(2013, 2014). Their approach, which is called Online
Lazy Updates (OLU), proposes dealing with transac-
tion costs by penalizing costly rebalancing using `1
regularization, which serves as a proxy for the true
proportional transaction cost incurred by the update
as given by Equation (3).

Uziel and El-Yaniv (2016) presented a method called
Commission Avoidant Portfolio Ensemble (CAPE),
which allows one to combine several commission-
oblivious algorithms. Their regularization is in the
form of a static expert that forces the algorithm to
allocate more wealth to the previous portfolio. Li et al.

(2017) presented the Transaction Costs Optimization
(TCO) mechanism that allows transaction cost reg-
ularization to be added in the cases where the base
algorithm has an explicit market vector prediction for
the next period. Although TCO has no theoretical
guarantee, its approach makes several algorithms more
resilient to transaction costs and exhibit nice results
on several datasets.

The Semi-Constant Rebalanced Portfolios (SCRP) al-
gorithm, which operates by diluting the number of
trading days for commission reduction, was studied by
Kozat and Singer (2008, 2009) based on an observa-
tion made by Blum and Kalai (1999). The algorithms
presented there track a fixed and a priori defined CRP.
Huang et al. (2015) extended the above approach and
proposed two strategies, SUP and SUP-q. These algo-
rithms follow the best (global) CRP (SUP) and best
horizon (q) CRP (SUP-q) instead of following a specific
(given) CRP as SCRP does. The SUP algorithms are
shown by Huang et al. (2015) to outperform SCRP
on many random projections (over two stocks) of the
NYSE and SP500 datasets.

Despite the fact that the SCRP-based methods dis-
cussed above are extremely resilient to transaction
costs, they has several drawbacks. First, their em-
pirical performance is only marginally better than a
commission-oblivious BCRP tracking algorithm (e.g.,
UP). This observation is backed up by the results shown
in Table 2. Another serious drawback is that the portfo-
lio updates generated by these methods are too conser-
vative and they are unable to track and utilize market
dynamics such as mean reversion, which is utilized by
the state-of-the-art algorithms (Borodin et al., 2004; Li
et al., 2012; Huang et al., 2013; Li and Hoi, 2014). The
third problematic issue follows from empirical observa-
tions that even the best CRP computed in hindsight is
not a strong contender relative to other known algo-
rithms such as several mean-reversion methods. This
observation has been reported in numerous empirical
studies including those by Borodin et al. (2004); Li
et al. (2012); Li and Hoi (2012). Consequently, if high
(empirical) performance is as an objective, it does not
make sense to consider algorithms that try to track
BCRP.

The goal in this work is exploit the useful observation
made by Blum and Kalai (1999), that a dilution in
the number of trading days results in a superior per-
formance, while maintaining the flexibility to track
state-of-the-art algorithms and not just the CRP class,
even at the cost of reducing resiliency to some levels
of transaction costs. We tackle this task using a novel
mechanism for integrating and exploiting any kind
of long- and short-term experts. Here we note that
long-term prediction has been discussed in several pa-
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pers before (Weinberger and Ordentlich, 2002; Burnaev
et al., 2017). The main focus of those papers, however,
was to deal with the delayed feedback of those experts
since at each time instant, the player has to choose a
prediction for d days. In other words, the feedback for
the prediction made at time t is received only at time
t+ d. Our problem formulation is different, and in our
setting we are not concerned with delayed feedback
but rather with the ability of the learner to commit
to his portfolio choice. This kind of problem arises
in settings where long-term predictions are achievable
only at some periods, and are impossible to make in
others.

4 Long- and Short-Term Predictions

The framework We now describe the trading game
in the presence of long- and short-term experts. At
the start of the first trading day, t = 0, the learner
must choose a long-term portfolio for day d > 0 from
the set of l long-term portfolios proposed by its l long-
term experts bL1,0, . . . ,bLl,0 (where bLi,j denotes the ith
long-term expert portfolio introduced on day j). As
will be discussed below, the learner chooses one of
these long-term portfolios randomly. The chosen long-
term portfolio is executed immediately and remains
in effect until day t = d. The long-term experts thus
receive feedback for their proposals only d days later.
At the end of the first day, t = 0, the resulting market
vector X0 is revealed to the learner, which has already
committed to a long-term portfolio. At the start of
the next day, t = 1, however, the learner can decide
to update his present portfolio for day d, based on
the short-term “emergency” expert bS1 . We denote the
day t short-term portfolio of this expert by bSt . Of
course, any portfolio update (including an “emergency”
update) incurs transaction costs and, therefore, the
player should choose such emergency updates only in
cases when the market moves aggressively against him.

In general, on day t, when t mod d = 0, the player
must choose a long-term portfolio from bL1,t, . . . ,b

L
l,t,

and on any other day t, where t mod d 6= 0, the player
can choose to update to the short portfolio bSt , a port-
folio for the next t mod d = 0 period. The learner’s
challenge is thus to balance between the need to use the
short-term experts whose predictions might be more
accurate and the need to save transaction costs, which
is promoted by using long-term experts.

We define a transition path Sk,T as a vector (t1, . . . , tk)
of transition day indices where the learner performed
short-term portfolio updates. Thus, it contains k short-
term updates in a game of length T . The set of all
transitions with k short-term updates in a game of
length T is denoted by Sk,T and the set of all the

possible transitions of length T is denoted by S·,T . For
a given Sk,T ∈ Sk,T , we denote by btSk,T

the portfolio
used by this transition path at time t.

A transition path Sk,T divides the entire trading period
into k+ 1 contiguous segments called investing periods :

(Xt0 , . . . ,Xt1), (Xt1 , . . . ,Xt2), . . . , (Xtk , . . . ,Xtk+1
).

where we use the convention of t0 = 0 and tk+1 = T −1.
For each investment period (Xti , . . . ,Xti+1

), we denote
by Rγ(BL,X

ti+1

ti ) the wealth achieved by the best long-
term expert for that specific investing period (we might,
of course, have a different best long-term expert for
each investing period). Using the above notation, we
can express the maximal wealth achieved by a specific
transition path Sk,T by:

R̂γ(BSk,T
,XT−1

0 ) , Πk
i=0R

γ(BL,X
ti+1

ti ). (4)

Our player’s objective is to achieve a bounded regret
for any transition path2. In other words, we seek a
strategy for the player whose portfolios will satisfy the
following for some q < 1:

Regret(BA,Sk,T , T ) ≤ O(T q). (5)

For convenience, we summarize the notations intro-
duced in this section in Table 1.

Table 1: Notations

b̂ Portfolio b after prices are revealed
bLi,j The i-th long-term expert’s portfolio on day j
bSj The short-term expert’s portfolio on day j
Sk,T The transition path as a vector (t1, . . . , tk) of

transition day indices
btSk,T

The portfolio used by a transition path Sk,T
at time t

Sk,T The set of all transitions with a total of k
short-term updates

S·,T The set of all the possible transitions of
length T

The algorithm We now describe our player’s strat-
egy, which we call LSPE. The strategy is a combination
of two online experts learning algorithms (similar to
Gyorgy et al. (2012)). The first, which is termed the
outer algorithm, combines all possible transition paths
S·,T (see Equation (6)) and, for each transition path
Sk,T , we apply a second, inner expert algorithm de-
signed to ensure that the long-term portfolios used

2We can expect such a regret bound to have a linear
dependency on the number of investment periods (Arora
et al., 2012).
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Algorithm 1 LSPE
Parameters: d > 0, η > 0, b̂−1 = 0, b0 = ( 1

m
, ..., 1

m
), prior w0

Sk,T
= P(Sk,T ) for any Sk,T .

for t = 0 . . . T do
Play bt and gain daily wealth 〈bt,Xt〉

(
1− γ

2
||bt − b̂t−1||1

)
Update the transition paths weights wt+1

Sk,T
, ∀Sk,T ∈ S·,T :

wt+1
Sk,T

=
wtSk,T

〈
btSk,T

,Xt

〉(
1− γ

2
||btSk,T

− b̂t−1
Sk,T
||1
)

∑
S·,T

wtSj,T

〈
btSj,T

,Xt

〉(
1− γ

2
||btSj,T

− b̂t−1
Sj,T
||1
) (6)

Update the transition paths portfolios bt+1
Sk,T

∀Sk,T ∈ S·,T :
If mod(t, d) = 0 : bt+1

Sk,T
= SDSk,T (η, t)

else:
If t+ 1 ∈ Sk,T : bt+1

Sk,T
= bSt+1 else: bt+1

Sk,T
= b̂tSk,T

Aggregate the suggested portfolios: bt+1 =
∑

Sk,n
wt+1

Sk,T
bt+1
Sk,T

end for

during the investing period will be competitive with
the portfolios of the best long-term expert in hindsight.

LSPE gets, as an input, a prior on the tran-
sition paths, P(Sk,T ) , PKT (k, T − k), where
PKT (·) is the Krichevsky–Trofimov (KT) weighting
(Krichevsky and Trofimov, 1981), which assigns

∫ 1

0
(1−

θ)aθb/π
√
θ(1− θ)dθ, for a binary sequence of length

a+ b with a ones and b zeros. Notice that each tran-
sition path Sk,T , can be seen as a binary sequence in
which each transition represents a one and the lack of a
transition represents a zero, forming a binary sequence
of length T − 1.

The outer algorithm implements a simple online weight-
ing algorithm (Cesa-Bianchi and Lugosi, 2006). This
algorithm assigns a prior probability for each transi-
tion path Sk,T and updates the weights for each path
according to their performance.

The inner algorithm needs to be chosen more carefully
since the calculation of the transaction costs depends
on the previous portfolio chosed by LSPE. Therefore,
to track an arbitrary expert’s achieved wealth, we need
to follow her portfolios precisely and not just to use
a weighted average portfolio over all the existing ex-
perts. Moreover, we will rarely need to change our
chosen expert3. Thus, we use the Shrinking Dartboard
(SD) algorithm of Geulen et al. (2010). We chose
this algorithm because it reserves a probability mass
that remains with the previous expert.4. Many com-
mon expert tracking algorithms, such as Follow the
Regularized Leader (FRL) (Cesa-Bianchi and Lugosi,

3For a further details on this point, we refer the reader
to papers dealing with memory loss setting (Arora et al.,
2012; Anava et al., 2013)

4Several other algorithms also satisfy this property
(Kalai and Vempala, 2005; Anava et al., 2013), and they
could be used as well.

2006) and Exponentiated Gradient (EG) (Helmbold
et al., 1998), do not satisfy this requirement and cannot
achieve sublinear-regret in a market with transaction
costs. We thus denote by SDSk,T

(η, t) the portfolio
suggeted by the SD instance of Sk,T at time t, applied
with learning rate η.

Theoretical guarantee We now state and prove
the performance guarantee for our strategy. Here-
after, for convenience, we assume w.l.o.g. that the
log-cumulative wealth after d days is bounded by 1
(otherwise, we can scale the loss function).

Theorem 1. Let {Xt}T−1t=0 be an arbitrary sequence of
price relative vectors. Then, for any k, T the expected
regret of LSPE for any Sk,T satisfies

Regret(BLSPE,Sk,T , T ) ≤

3k + 1

2
ln(T ) + (k + 1) log l + 4

√
(k + 1)T log(l)

d
+O(k)

Proof. The proof of this theorem has three parts. In
the first part, we analyze the regret of each transition
path. In the second part, we show that the aggregation
of all transition paths yields a portfolio whose expected
wealth is as high as any individual transition path.
Finally, the third part analyzes the time complexity of
the aggregation scheme.

Regret bound for a fixed Sk,T Fixing k and T ,
we analyze the wealth of a transition path Sk,T =
(t1, . . . , tk), denoted by Rγ(Sk,T ,X

T−1
0 ). Recall that

the switching times divide the market sequence into
k+ 1 time segments, where, at each segment, we apply
the SD algorithm on the set of the long-term experts.
Therefore, using its guarantees on the segment starting
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at ti and ending at ti+1, we obtain

E
(

lnRγ(BSD,X
ti+1

ti )
)

+ log(l) + 4

√
(ti+1 − ti) log(l)

d

≥ lnRγ(BL,X
ti+1

ti ). (7)

By restarting the SD algorithm at the start of each
investment period, we gain two things. The first is
the switching regret of Hazan and Seshadhri (2009),
and the second gain is that it helps us reduce the time-
complexity of LSPE, as will be discussed in the last
part of the proof. Using Equation (7) over all the time
segments, we get

E
(
lnRγ(BSk,T

,XT−1
0 )

)
+ (k + 1) log l

+4

k∑
i=0

√
(ti+1 − ti) log(l)

d
≥

k∑
i=0

lnRγ(BL,X
ti+1

ti )

= ln R̂γ(BSk,T
,XT−1

0 ).

The concavity of the root square function results in the
following ineqiality,

E
(
lnRγ(BSk,T

,XT−1
0 )

)
+ (k + 1) log l

+4

√
(k + 1)T log(l)

d
≥ ln R̂γ(BSk,T

,XT−1
0 ). (8)

Regret bound for the aggregated portfolio
Since our portfolio is the aggregation of all the transi-
tion paths,

Rγ(BLSPE,X
T−1
0 ) =

∑
Sk,T∈S·,T

P(Sk,T )Rγ(BSk,T
,XT−1

0 ),

and since all non-zero weights should sum up to 1,∑
Sk,T∈S·,T P(Sk,T ) = 1. Further, the combined wealth

is as large as the wealth of any other portfolio in the
mixture. We thus obtain the following relation,

ln
(
Rγ(BLSPE,X

T−1
0 )

)
≥

ln (P(Sk,T )) + ln
(
Rγ(BSk,T

,XT−1
0 )

)
.

By taking the expectation and combining the above
equation and Equation (8), we get that the expected
regret satisfies

Regret(BLSPE,Sk,T , T ) ≤ max
Sk,T

− ln (P(Sk,T ))

+(k + 1) log l + 4

√
(k + 1)T log(l)

d
. (9)

To finalize the regret proof we need to bound the
prior for each transition path. This can be done
by assigning a prior, which is generated using the
Krichevsky–Trofimov (KT) weighting. Given a binary
sequence of length a+b with a ones and b zeros, the KT

weight assigned to this binary sequence is calculated by
PKT (a, b) =

∫ 1

0
(1 − θ)aθb/π

√
θ(1− θ)dθ. Each tran-

sition path Sk,T , can be seen as a binary sequence in
which each transition represents a one and the lack of a
transition represents a zero, forming a binary sequence
of length T − 1. We get that

∑
Sk,T∈S·,T P(Sk,T ) = 1

(Willems, 1996), and the following bound holds:

− ln (P(Sk,T ))) ≤ 3k + 1

2
ln(T ) +O(k).

Combining the above with Equation (9), we get the
desired result.

Computational complexity A naive implementa-
tion of LSPE is computationally prohibitive as it re-
quires the maintenance and updating of the wealth
associated with the 2T different possible transition
paths and, in addition, applying the SD algorithms
the same number of times. Accordingly, we show an
implementation whose time-complexity is linear in the
number of the trading days t. We will use the weighting
algorithm introduced by Willems (1996) for universal
loss-less source coding. The first thing to notice is
that PKT (a, b) can be calculated recursively using the
following formulas:

PKT (a+ 1, b) =
a+ 0.5

a+ b+ 1
PKT (a, b),

PKT (a, b+ 1) =
b+ 0.5

a+ b+ 1
PKT (a, b). (10)

For convenience, we define t̂ to be the number of times,
up to time t, that the learner was given the opportunity
to switch her portfolio. We next define P(Sk,T ), using
the following formula,

P(Sk,T ) ,(
Πk−1
i=0 PKT (t̂i+1 − t̂i + 1, 1)

)
PKT (t̂k+1 − t̂k, 0). (11)

In Equation (11), we first assign a weight to the first
transition at time t1, which ends the first segment, and
repeat this for all segments. Since, in the last segment
there is no transition, we have PKT (t̂k+1 − t̂k, 0).

The second thing to notice is that at each time instance
t we maintain exactly t̂ portfolios and that transition
paths that last used the short-term expert at the same
time share the same portfolio. Note that this follows
also due to the restart the SD algorithm every time
a transition path uses the short term expert. We,
therefore, define Rγ(BS·,t ,X

t−1
0 , s) to be the wealth

achieved by LSPE after t trading days from invest-
ing in all the transition paths with the last switching
time s and use R̂γ(BS·,t ,X

t−1
0 , s) to denote the (un-

normalized) weight before revealing XT−1. Note that
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this forms a disjoint partition of the wealth of LSPE:
Rγ(BLSPE,X

t−1
0 ) =

∑t̂
s=1R

γ(BBS·,t
,Xt−1

0 , s).

It remains to show that R̂γ(BS·,t ,X
t−1
0 , s) can be calcu-

lated sequentially in time-complexity linear in t. This
will ensure that the aggregated portfolio of LSPE could
be calculated in the same time complexity.

For 1 ≤ s < t̂, the update of R̂γ(BS·,t−1
,Xt−1

0 , s) sim-
ply consists of all the previous transition paths with
s as the last rebalancing time, multiplied by the K-T
weight of not switching at time t̂. This weight can be
calculated easily using Equations (11) and (4) since
only the last term of Equations (11) should be modified.
Thus, we get the following update,

R̂γ(BS·,t ,X
t−1
0 , s) =

t̂− 1− s+ 0.5

t̂− 1− s+ 1
Rγ(BS·,t−1 ,X

t−2
0 , s).

The calculation in cases where s = t̂ consists of the
summation of all the possible paths multiplied by the
K-T weight of switching at time ˆt+ 1. The relevant
weights can be calculated as before. We, therefore, get
the following formula:

R̂γ(BS·,t ,X
t−1
0 , t̂) =

t̂−1∑
i=1

0.5

t̂− 1− i+ 1
Rγ(BS·,t−1

,Xt−2
0 , i).

This concludes the description of our implementation.
The diagram in Figure 1 demonstrates the updating
scheme described above.

Figure 1: LSPE’s update scheme: Green rectangles
indicate times when the learner has to choose a long-
term expert. Blue rectangles represent times when the
learner is given the option to switch. S denotes the last
switching time of the corresponding transition paths.

Choosing d As one might suspect, the performance
of our method will depend on the choice of the parame-
ter d. Given that the long-term experts by themselves

are sensitive to this parameter choice, this fact should
not be surprising. On the one hand, choosing a lower
d, d = 2 for instance, will result in a lot of opportuni-
ties to utilize market fluctuations while increasing the
transaction costs overhead; on the other hand, a larger
d (say, 10) will result in a small transaction costs over-
head but will reduce the possibilities to utilize market
opportunities. Clearly, this choice should be market-
dependent. Therefore, to enable the option of choosing
the parameter, we run the SD algorithm on top of
five instances of LSPE with the following choices of
d : 2, 4, 6, 8, 10. This will give us the theoretical guaran-
tee that this strategy will have a bounded regret from
the best choice of d. We call this algorithm LSPEMETA.
We now state the guarantee for LSPEMETA. The proof
is a straightforward application of the guarantees of
SD and Theorem 1.
Theorem 2. Let {Xt}T−1t=0 be an arbitrary sequence
of price-relative vectors such that Xt ∈ Rn for all t.
Then, for any k, T , the expected regret of LSPEMETA

for any Sk,T satisfies

Regret(BLSPEMETA
,Sk,T , T ) ≤ O(k

√
T )

5 Empirical Study

In this section we present an empirical study of
LSPEMETA, where we examine how well LSPEMETA

can control the set of long-term experts with the oppor-
tunity to switch its decision to the short-term experts,
and compare LSPEMETA to several baselines. The
implementations of all the baseline algorithms are from
the OLPS simulator (Li et al., 2015). Unless otherwise
specified, all critical parameters of the baselines were
set to the parameters recommended by their authors.
The baseline algorithms are all mentioned in Section 3:
(i) UCRP: Uniform CRP, which is an instance of CRP
with equal weights over all the existing stocks; (ii)
UP: Universal portfolios with commissions (Cover and
Ordentlich, 1996); (iii) OLMAR and RMR: Two state-
of-the-art commission-oblivious algorithms (Li and Hoi,
2012) (iv) SCRP: Semi-constant rebalanced portfolios
introduced by Kozat and Singer (2011); (v) SUP: An
improvement of SCRP (Huang et al., 2015); (vi) OLU:
Utilizes gradient steps with an added `1 regularization
term to encourage “lazy” portfolio updates (Das et al.,
2013); (vii) CAPE: The portfolio ensemble method of
(Uziel and El-Yaniv, 2016).

For the implementation of our algorithm, we chose
to take several instances of OLMAR whose variants
are considered state-of-the-art. The three instances
that we used have different window sizes w, which
were set to (3, 4, 5). To fit OLMAR to our long-term
transaction aware prediction, we had to modify its
implementation slightly such that its predictions are
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Table 2: Cumulative wealth of known commission aware algorithms and LSPEMETA

NYSE TSE DJIA
Algorithm .25% .5% .75% 1% .25% .5% .75% 1% .25% .5% .75% 1%

UCRP 28.59 25.9 23.4 21.2 1.55 1.52 1.48 1.45 0.78 0.78 0.77 0.77
UP 30.7 29.35 28.45 26.37 1.46 1.45 1.43 1.43 0.82 0.82 0.81 0.81

OLMAR 272.5 5.4 0.2 0 19.25 5.96 1.83 0.56 1.47 0.88 0.38 0.1
RMR 534.8 7.5 0.7 0 22.73 7.9 1.92 0.32 1.42 0.9 0.41 0

SUP 31.6 31.4 31.3 31.3 1.63 1.61 1.58 1.57 0.70 0.67 0.67 0.55
OLU 18.06 18.02 18.01 17.98 1.63 1.62 1.61 1.61 0.82 0.81 0.77 0.76
SCRP 18.94 18.8 18.65 18.6 1.61 1.61 1.60 1.60 0.78 0.77 0.77 0.76
CAPE 407 144.4 65.66 36 7.84 4.33 2.85 1.69 1.03 1.01 0.98 0.92

LSPEMETA 3.8E4 9.3E3 624.9 137.5 32.5 15.63 9.37 5.59 1.38 1.22 1.14 1.05

based on the relative prices between the prediction
periods {t | mod (t, d) = 0}. This simple modification
can straightforwardly transform any given algorithm to
a long-term expert. The short-term expert, chosen to
be OLMAR with w = 5, is aware of all the price changes
and thus is able to provide short-term predictions.

Our experimental protocol followed the experimental
design of Li et al. (2017), and we considered three
standard datasets, NYSE, TSE and DJIA, which are
used in the relevant literature and appear in the public
domain. These datasets span several types of mar-
ket conditions, a variety of stocks, and total trading
periods (see Table 3). The most challenging dataset
among the three is DJIA (the Dow Jones Industrial
Average), which captures a bear market where 25 of the
30 DJIA stocks declined. We considered transaction
costs γ in the set {.25%, .5%, .75%, 1%}, comprising
a considerable range of transaction costs (Das et al.,
2013; Li et al., 2017). As our algorithm is randomized
we repeated each experiment 50 times and averaged
the results. The average cumulative wealth is reported
in Table 2.

In Table 2, we first examine the first two baselines,
which serve as naive benchmarks. We can see that
both UP and UCRP are resilient to increasing trans-
action costs; however, they are no match for the
state-of-the-art algorithms when commissions are ab-
sent. On the other hand, both OLMAR and RMR
are not suitable for settings with commissions. They
exhibit nasty performance degradation when commis-
sions are introduced. SUP, OLU and SCRP, the CRP
based algorithms, are indeed an improvement over the
commission-oblivious algorithms. Nevertheless, unfor-
tunately, this improvement is only marginal.

The last block of rows in Table 2 presents the results
of non-CRP-based algorithms (CAPE, LSPE), which
can utilize stronger (than CRP) algorithms in their
expert base. It is evident that these algorithms exhibit
impressive improvements over the CRP-based methods
(and the naive baselines). It is striking that LSPE is

superior across almost all the datasets and across the
entire range of transaction costs. Moreover, it is the
only algorithm that remains profitable in a declining
market (DJIA) when commission rates are larger than
.75%.

In another set of experiments, we examined the contri-
bution of the switching option. Results are presented
in Table 4, where LONG represents applying the SD
algorithm over the diluted experts without any option
to use the short-term experts. It is evident that the
addition of this option is beneficial across all datasets.
We note that the benefit of using the switching option
can be observed for other values of d and γ.

Table 3: Some properties of the datasets
Dataset Starting day # Days # stocks
NYSE 1/1/1983 6431 23
DJIA 1/14/2001 507 30
TSE 1/4/1994 1258 88

Table 4: Long Vs. LSPE γ = .5%

NYSE TSE DJIA

Long 6.6E3 7.83 1.14
LSPEd=6 7.9E3 10.11 1.24

6 Conclusions

Focusing on online portfolio selection with transaction
costs, we presented a novel algorithm that can cleverly
combine the predictions of long-term and short-term
experts. We proved a regret bound for our algorithm,
and presented the results of an empirical study demon-
strating the superiority of the proposed algorithm over
all relevant baselines. An important challenge that we
wish to address would be to extend the above setting
to a non-parametric framework. Another interesting
direction would be to combine selective prediction tech-
niques (Wiener and El-Yaniv, 2015) to control risky
long-term predictions by preempting uncertain long-
term predictions.
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